Show tag cloud

Filter by author:
Filter by year:
Filter by bibtex key:
Filter by type:
Filter by keyword:
and
and
 

Filtered by keyword:radiation

There is currently a filter applied. To see the complete list of publications, clear the filter.
  1. Allan, R. P., M. A. Ringer, J. A. Pamment, and A. Slingo (2004), Simulation of the Earth's radiation budget by the European Centre for Medium-Range Weather Forecast 40-year reanalysis (ERA40)J. Geophys. Res., 109, D18107, doi:10.1029/2004JD004816.
  2. Allan, R. P. (2011), Combining satellite data and models to estimate cloud radiative effect at the surface and in the atmosphereMet. Appl., 18, 324–333, doi:10.1002/met.285.
  3. Allan, R. P., K. P. Shine, A. Slingo, and J. A. Pamment (1998), The Dependence of clear-sky Outgoing Longwave Radiation on Surface Temperature and Relative HumidityQ. J. R. Meteorol. Soc., 999, 1–22.
  4. Anthony, R. (1952), Atmospheric Absorption of Solar Infrared RadiationPhys. Rev., 85(4), 672.
  5. Atlas, D., S. Y. Matrosov, A. J. Heymsfield, M.-D. Chou, and D. B. Wolff (1995), Radar and Radiation Properties of Ice CloudsJ. Appl. Meteorol., 34, 2329–2345.
  6. Augustsson, T. and V. Ramanathan (1977), A Radiative-Convective Model Study of the CO2 Climate ProblemJ. Atmos. Sci., 34(3), 448–451, doi:10.1175/1520-0469(1977)034<0448:ARCMSO>2.0.CO;2.
  7. Barkstrom, B. R. (1984), The Earth Radiation Budget Experiment (ERBE)Bull. Amer. Met. Soc., 74.
  8. Becker, G. E. and S. H. Autler (1946), Water Vapor Absorption of Electromagnetic Radiation in the Centimeter Wave-Length RangePhys. Rev., 70(5–6), 300–307.
  9. Bell, T. L., M.-D. Chou, A. Y. Hou, and R. S. Lindzen (2002), ReplyBull. Amer. Met. Soc., 598–600.
  10. Bennartz, R. and U. Lohmann (2001), Impact of improved near infrared water vapor line data on absorption of solar radiation in GCMsGeophys. Res. Lett., 28(24), 4591–4594.
  11. Blake, N. O. (1990), A quantum electrodynamical study of intermolecular line broadening and line shiftJ. Chem. Phys., 93(9), 6165–6183.
  12. Cess, R. D. (1974), Radiative transfer due to atmospheric water vapor: Global considerations of the Earth's energy balanceJ. Quant. Spectrosc. Radiat. Transfer, 14(9), 861–871, doi:10.1016/0022-4073(74)90014-4.
  13. Charney, J. G., A. Arakawa, D. J. Baker, B. Bolin, R. E. Dickinson, R. M. Goody, C. E. Leith, H. M. Stommel, and C. I. Wunsch (1979), Carbon dioxide and climate: a scientific assessment, .
  14. Chen, T. and W. B. Rossow (2002), Determination of top-of-atmosphere longwave radiative fluxes: A comparison between two approaches using ScaRaB dataJ. Geophys. Res., 107(D8), doi:10.1029/2001IJD000914.
  15. Choi, Y-S. and C-H. Ho (2006), Radiative effect of cirrus with different optical properties over the tropics in MODIS and CERES observationsGeophys. Res. Lett., 33, L21811, doi:10.1029/2006GL027403.
  16. Clement, A. C. and B. Soden (2005), The Sensitivy of the Tropical-Mean Radiation BudgetJ. Climate, 18, 3189–3203.
  17. Clough, S. A., M. W. Shephard, E. J. Mlawer, J. S. Delamere, M. Iacono, K. Cady-Pereira, S. Boukabara, and P. D. Brown (2005), Atmospheric radiative transfer modeling: a summary of the AER codesJ. Quant. Spectrosc. Radiat. Transfer, 91(2), 233–244, doi:10.1016/j.jqsrt.2004.05.058.
  18. Collins, W. D., V. Ramaswamy, M. D. Schwarzkopf, Y. Sun, R. W. Portmann, Q. Fu, S. E. B. Casanova, J.-L. Dufresne, D. W. Fillmore, P. M. D. Forster, V. Y. Galin, L. K. Gohar, W. J. Ingram, D. P. Kratz, M.-P. Lefebvre, J. Li, P. Marquet, V. Oinas, Y. Tsushima, T. Uchiyama, and W. Y. Zhong (2006), Radiative forcing by well-mixed greenhouse gases: Estimates from climate models in the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4)J. Geophys. Res., 111, D14317, doi:10.1029/2005JD006713.
  19. Costales, J. B., G. F. Smoot, C. Witebsky, and G. De Amici (1986), Simultaneous measurements of atmospheric emissions at 10, 33, and 90 GHzRadio Sci., 21(1), 47–55.
  20. Czekala, H. (1998), Effects of ice particle shape and orientation on polarized microwave radiation for off-nadir problemsGeophys. Res. Lett., 25(10), 1669–1672.
  21. DeAngelis, A. M., X. Qu, M. D. Zelinka, and AlexHall (2015), An observational radiative constraint on hydrologic cycle intensificationNature, 528, 249–253, doi:10.1038/nature15770.
  22. Delamere, J. S., S. A. Clough, V. H. Payne, E. J. Mlawer, D. D. Turner, and R. R. Gamache (2010), A far-infrared radiative closure study in the Arctic: Application to water vaporJ. Geophys. Res., 115, D17106, doi:10.1029/2009JD012968.
  23. Ellingson, R. G. and W. J. Wiscombe (1996), The Spectral Radiance Experiment (SPECTRE): Project Description and Sample ResultsBull. Amer. Met. Soc., 77(9), 1967–1985.
  24. Eriksson, P. (2003), Atmospheric longwave radiation, Insti. foer Radio- och Rymdvetenskap.
  25. ESA (2001), The Five Candidate Earth Explorer Core Missions - EarthCARE- Earth Clouds, Aerosols and Radiation Explorer, European Space Agency Agence spatiale europeenne.
  26. Flerchinger, G. N., W. Xaio, D. Marks, T. J. Sauer, and Q. Yu (2009), Comparison of algorithms for incoming atmospheric long-wave radiationWat. Res. Res., 45, W03423, doi:10.1029/2008WR007394.
  27. Fomin, B. A., T. A. Udalova, and E. A. Zhitnitskii (2004), Evolution of spectroscopic information over the last decade and its effect on line-by-line calculations for validation of radiation codes for climate modelsJ. Quant. Spectrosc. Radiat. Transfer, 86(1), 73–85.
  28. Fomin, B. A. (1995), Effective Interpolation Technique for Line-by-Line Calculations of Radiation Absorption in GasesJ. Quant. Spectrosc. Radiat. Transfer, 53(6), 663–669, doi:10.1016/0022-4073(95)00029-K.
  29. Foster, J. L., J. S. Barton, A. T. C. Chang, and D. K. Hall (2000), Snow Crystal Orientation Effects on the Scattering of Passive Microwave RadiationIEEE Geosci. Remote Sens., 38(5), 2430–2434.
  30. Gallagher, A. (1996), Line Shape and Radiation Transfer, University of Colorado and National Institute of Standards and Technology.
  31. Gayet, J.-F., J. Ovarlez, V. Shcherbakov, J. Strom, U. Schumann, A. Minikin, F. Auriol, A. Petzold, and M. Monier (2004), Cirrus cloud microphysical and optical properties at southern and northern midlatitudes during the INCA experimentJ. Geophys. Res., 109, doi:10.1029/2004JD004803.
  32. Gebbie, H. A. (1957), Detection of Submillimeter Solar RadiationPhys. Rev., 107, 1194–1195.
  33. Goody, R. and A. Sobel (1996), A Graduate Radiation Course Based upon Numerical MethodsBull. Amer. Met. Soc., 77(12), 2919–2924.
  34. Hall, J. T. (1967), Attenuation of Millimeter Wavelength Radiation by Gaseous WaterAppl. Opt., 6(8), 1391–1398.
  35. Han, Q., W. B. Rossow, J. Chou, and R. M. Welch (1998), Global Survey of the Relationships of Cloud Albedo and Liquid Water Path with Droplet Size Using ISCCPJ. Climate, 11, 1516–1528.
  36. Hansen, J., D. Johnson, A. Lacis, S. Lebedeff, P. Lee, D. Rind, and G. Russell (1981), Climate impact of increasing atmospheric carbon dioxideScience, 213(4511), 957–966.
  37. Harries, J. E., H. E. Brindley, P. J. Sagoo, and R. J. Bantges (2001), Increases in greenhouse forcing inferred from the outgoing longwave radiation spectra of the Earth in 1970 and 1997Nature, 410, 355–357.
  38. Harries, J. E. (1997), Atmospheric radiation and atmospheric humidityJ. Quant. Spectrosc. Radiat. Transfer, 123(544), 2173–2186.
  39. Harrop, B. E. and D. L. Hartmann (2015), The Relationship between Atmospheric Convective Radiative Effect and Net Energy Transport in the Tropical Warm PoolJ. Climate, 28(21), 8620–8633, doi:10.1175/JCLI-D-15-0151.1.
  40. Harrop, B. E. and D. L Hartmann (2016), The role of cloud radiative heating within the atmosphere on the high cloud amount and top-of-atmosphere cloud radiative effectJ. Adv. Model. Earth Syst., 8, 1391–1410, doi:10.1002/2016MS000670.
  41. Harshvardhan, R. C. E. Jr. (1995), Simple parameterizations of the radiative properties of cloud layers: a reviewAtmos. Res., 35, 113–125.
  42. Hartmann, D. L. and D. A. Short (1980), On the use of earth radiation budget statistics for studies of clouds and climateJ. Atmos. Sci., 37, 1233–1249.
  43. Heastie, R. and D. H. Martin (1962), Collision-Induced Absorption of Submillimeter Radiation by Non-Polar Atmospheric GasesCan. J. Phys., 40, 122–127.
  44. Held, I. M. and B. J. Soden (2000), Water Vapor Feedback and Global WarmingAnnu. Rev. Energy Environ., 25, 441–475.
  45. Herman, G. F., M.-L.C. Wu, and W.T. Johnson (1980), The effect of clouds on the Earth's solar and infrared radiation budgetsJ. Atmos. Sci., 37, 1251–1261.
  46. Herring, D. (2002), Does the Earth Have an Iris Analog?, EOStudy.
  47. Hovenier, J. W. and C. V. M. van der Mee (1996), Testing Scattering Matrices: A Compendium of RecipesJ. Quant. Spectrosc. Radiat. Transfer, 55(4), 649–661.
  48. Iacono, M. J., E. J. Mlawer, and S. A. Clough (2000), Impact of an improved longwave radiation model, RRTM, on the energy budget and thermodynamic properties of the NCAR community climate model, CCM3J. Geophys. Res., 105(D11), 14,873–14,890.
  49. Ide, K., H. Le Treut, Z.-X. Li, and M. Ghil (2001), Atmospheric radiative equilibria. Part II: bimodal solutions for atmospheric optical propertiesClimate Dynamics, 18, 29–49.
  50. Iwasa, Y., Y. Abe, and H. Tanaka (2004), Global Warming of the Atmosphere in Radiative-Convective EquilibriumJ. Atmos. Sci., 61, 1894–1910.
  51. Kaplan, L. D. (1959), Inference of Atmospheric Structure from Remote Radiation MeasurementsJ. Optical Soc. o. Am., 49(10), 1004–1007.
  52. Kiehl, J. T. and Kevin E. Trenberth (1997), Earth's Annual Global Mean Energy BudgetBull. Amer. Met. Soc., 2(78), 197–208.
  53. Kim, D. and V. Ramanathan (2008), Solar radiation budget and radiative forcing due to aerosols and cloudsJ. Geophys. Res., 113(D02), D02203, doi:10.1029/2007JD008434.
  54. Knapp, K. R. (2012), Intersatellite bias of the high-resolution infrared radiation sounder water vapor channel determined using ISCCP B1 dataJ. Appl. Rem. Sens., 6(1), 1–19, doi:10.1117/1.JRS.6.063523.
  55. Koch, D., Y. Balkanski, S. E. Bauer, R. C. Easter, S. Ferrachat, S. J. Ghan, C. Hoose, T. Iversen, A. Kirkevåg, J. E. Kristjansson, X. Liu, U. Lohmann, S. Menon, J. Quaas, M. Schulz, Ø. Seland, T. Takemura, and N. Yan (2011), Soot microphysical effects on liquid clouds, a multi-model investigationAtmos. Chem. Phys., 11, 1051–1064, doi:10.5194/acp-11-1051-2011.
  56. Lal, M. (2001), A model study of the atmospheric heating rates due to O3, H2O and O2Indian J. of Radio & Space Physics, 30, 254–259.
  57. van Lammeren, A., et al. (1999), Clouds and Radiation: Intensive Experimental Study of clouds and Radiation in the Netherlands (CLARA), Proc. Symposium Remote Sensing of Cloud Parameters: Retrieval and Validation.
  58. Lau, K.-M., C.-H. Ho, and I.-S. Kang (1998), Anomalous Atmospheric Hydrologic Processes Associated with ENSO: Mechanisms of Hydrologic Cycle-Radiation InteractionJ. Climate, 11, 800–815.
  59. Learner, R. C. M., W. Zhong, J. D. Haigh, D. Belmiloud, and J. Clarke (1999), The Contribution of Unknown Weak Water Vapor Lines to the Absorption of Solar RadiationGeophys. Res. Lett., 26(24), 3609–3612, doi:10.1029/1999GL003681.
  60. L'Ecuyer, T. S., N. B. Wood, T. Haladay, G. L. Stephens, and P. W. Stackhouse Jr. (2008), Impact of clouds on atmospheric heating based on the R04 CloudSat fluxes and heating rates data setJ. Geophys. Res., 113, D00A15, doi:10.1029/2008JD009951.
  61. Lesht, B. M. and J. C. Liljegren (1996), Comparison of Precipitable Water Vapor Measurements Obtained by Microwave Radiometry and Radiosondes at the Southern Great Plains Cloud and Radiation Testbed Site, Argonne National Laboratory, Pacific Northwest National Laboratory.
  62. Lindzen, R. S., M.-D. Chou, and A. Y. Hou (2001), Does the Earth Have an Adaptive Infrared Iris?Bull. Amer. Met. Soc., 82(3), 417–432.
  63. Lindzen, R. S., M.-D. Chou, and A. Y. Hou (2002), Comment on "No Evidence for Iris"Bull. Amer. Met. Soc., 345–349.
  64. Lio, F., G. J. Smallwood, and O. L. Guelder (2001), Application of the statistical narrow-band correlated-k method to non-grey gas radiation in CO2-H2O mixtures: approximate treatment of overlapping bandsJ. Quant. Spectrosc. Radiat. Transfer, 68, 401–417.
  65. Liou, K. N. (2002), An Introduction to Atmospheric Radiation, chap. Light scattering by atmospheric particulates, Academic Press.
  66. Liou, K. N. (2002), An Introduction to Atmospheric Radiation, Academic Press.
  67. Liou, K.-N. and Q. Zheng (1984), A Numerical Experiment on the Interactions of Radiation, Clouds and Dynamic Processes in a General Circulation ModelJ. Atmos. Sci., 41(9), 1513–1536, doi:10.1175/1520-0469(1984)041<1513:ANEOTI>2.0.CO;2.
  68. Liou, K. N. (1992), Radiation and Cloud Processes in the Atmosphere: Theory, Observation and Modeling, Oxford University Press, ISBN 978-0195049107.
  69. Liu, F., G. J. Smallwood, and O. L. Guelder (2001), Application of the statistical narrow-band correlated-k method to non-grey gas radiation in CO2-H2O mixtures: approximate treatments of overlapping bandsJ. Quant. Spectrosc. Radiat. Transfer, 68, 401–417, doi:10.1016/S0022-4073(00)00033-9.
  70. Liu, Q., F. Weng, and Y. Han (2008), Conversion issues between microwave radiance and brightness temperatureJ. Quant. Spectrosc. Radiat. Transfer, 109, 1943–1950, doi:10.1016/j.jqsrt.2008.03.001.
  71. Liu, C. C. and R. L. Dougherty (1999), Development of Radiative Transfer Equations for the Scattering of Polarized Light in a Plane-Parallel MediumJ. Quant. Spectrosc. Radiat. Transfer, 61(1), 1–18.
  72. Loeb, N. G., S. Kato, and B. A. Wielicki (2002), Defining Top-of-the-Atmosphere Flux Reference Level for Earth Radiation Budget StudiesJ. Climate, 15, 3301–3309.
  73. Loeb, N. G., S. Kato N. Manalo-Smith, and D. R. Doelling (2005), Angular Distribution Models for Top-of-Atmosphere Radiative Flux Estimation from the Clouds and the Earth's Radiant Energy System Instrument on the Terra Satellite. Part II: ValidationJ. Atmos. Oceanic Technol.
  74. Loeb, N. G., S. Kato, K. Loukachine, and N. Manalo-Smith (2005), Angular Distribution Models for Top-of-Atmosphere Radiative Flux Estimation from the Clouds and the Earth's Radiant Energy System Instrument on the Terra Satellite. Part I: MethodologyJ. Atmos. Oceanic Technol., 22, 338–35.
  75. Mapes, B. E. (2016), Gregarious convection and radiative feedbacks in idealized worldsJ. Adv. Model. Earth Syst., 8(2), 1029–1033, doi:10.1002/2016MS000651.
  76. Marion, J. B. and M. A. Heald (1980), Classical Electromagnetic Radiation, University of Maryland, Swarthmore College.
  77. Markov, V. N., Y. Xu, and W. Jaeger (1998), Microwave-submillimeter wave double-resonance spectrometer for the investigation of van der Waals complexesRev. Sci. Inst., 69(12), 4061–4067.
  78. Miller, P. F. and H. A. Gebbie (1993), Stimulated Emission of Atmospheric Water Vapour between 2cm-1 and 30cm-1 Photoinduced by Infrared RadiationInfrared Phys., 34(1), 23–31.
  79. Miller, P. F. and H. A. Gebbie (1993), Temporal Effects in Millimetre Wave Aerosol Spectra and the Influence of Infrared RadiationInfrared Phys., 34(2), 143–152.
  80. Morcrette, J.-J., L. Illari, E. Klinker, H. Le Treut, M. Miller, P. Rasch, and M. Tiedtke (1991), Clouds and radiation, European Centre for Medium-Range Weather Forecasts.
  81. Muehler, D. and R. Weiss (1973), Balloon Measurements of the Far-Infrared Background RadiationPhys. Rev., 7(2), 326–344.
  82. Mugnai, A., P. Coppo, N. Grant, A. Slingo, L. Vial, P. Zimmermann, R. Bordi, A. Sutera, S. Tibaldi, J. Harries, M. Debois, and K. Kuenzi (1999), Report of the Pre-Phase A Industrial Study for a Cloud and Radiation Monitoring Satellite (Clouds), xxxx.
  83. Neshyba, S.P., T. C. Grenfell, and S. G. Warren (2003), Representation of a nonspherical ice particle by a collection of independent spheres for scattering and absorption of radiation: 2. Hexagonal columns and platesJ. Geophys. Res., 108(D15), doi:10.1029/2002JD003302.
  84. Oreopoulos, L., E. Mlawer, J. Delamere, T. Shippert, J. Cole, B. Fomin, M. Iacono, Z. Jin, J. Li, J. Manners, P. Räisänen, F. Rose, Y. Zhang, M. J. Wilson, and W. B. Rossow (2012), The Continual Intercomparison of Radiation Codes: Results from Phase IJ. Geophys. Res., 117(D06118), doi:10.1029/2011JD016821.
  85. Ou, S. C. and K. N. Liou (1984), A two-dimensional radiation turbulence climate model:I Sensitivity to cirrus radiative propertiesJ. Atmos. Sci., 41, 2289–2309.
  86. Parol, F., J. C. Buriez, C. Vanbauce, P. Couvert, S. Seze, P. Goloub, and S. Cheinet (1999), First Results of the POLDER "Earth Radiation Budget and Clouds" Operational AlgorithmIEEE T. Geosci. Remote, 37, 1597–1613.
  87. Petrushin, A. G. and T. B. Zhuavleva (2001), Modeling of Brightness Fields of Ice-Crystal Broken Clouds, Institute of Experimental Meteorology, Institute of Atmospheric Optics, Eleventh ARM Science Team Meeting Proceedings.
  88. Pierrehumbert, R. T. (2011), Infrared radiation and planetary temperaturePhys. Today, January, 33–38.
  89. Pierrehumbert, R. T. (1995), Thermostats, Radiator Fins, and the Local Runaway GreenhouseJ. Atmos. Sci., 52(10), 1784–1806, doi:10.1175/1520-0469(1995)052<1784:TRFATL>2.0.CO;2.
  90. Pincus, R. and B. Stevens (2013), Paths to accuracy for radiation parametrizations in atmospheric modelsJ. Adv. Model. Earth Syst., 5(2), 225–233, doi:10.1002/jame.20027.
  91. Pujol, T. and G. R. North (2003), Analytical investigation of the atmospheric radiation limits in semigray atmospheres in radiative equilibriumTellus, 55A, 328–337.
  92. Racette, P. and E. Westwater (1111), Millimeter-Wave Radiometeric Measurements of Atmospheric Water Vapor at the Department of Energy's North Slope of Alaska Cloud and Radiation Test Site, Pacific Northwest National Laboratory.
  93. Rädel, G., T. Mauritsen, B. Stevens, D. Dommenget, D. Matei, K. Bellomo, and A. Clement (2016), Amplification of El Niño by cloud longwave coupling to atmospheric circulationNature Geosci., 9(2), 106–110, doi:10.1038/NGEO2630.
  94. Ramanathan, V. and J. A. Coakley (1978), Climate modeling through radiative-convective modelsReviews of Geophysics and Space Physics, 16(4), 465–489.
  95. Ramanathan, V., R. D. Cess, E. F. Harrison, P. Minnis, B. R. Barkstrom, E. Ahmad, and D. Hartmann (1989), Cloud-Radiative Forcing and Climate: Results from the Earth Radiation Budget ExperimentScience, 243, 57–63.
  96. Raschke, E., A. Ohmura, W. B. Rossow, B. E. Carlson, Y.-C. Zhang, C. Stubenrauch, M. Kottek, and M. Wild (2005), Cloud effects on the radiation budget based on ISCCP data (1991 to 1995)Int. J. Climatol., 25, 1103–1125.
  97. Raschke, E., P. Flamant, Y. Fouquart, P. Hignett, H. Isaka, P. R. Jonas, H. Sundquist, and P. Wendling (1998), Cloud-Radiation Studies during the European Cloud and Radiation Experiment EUCREXSurvey in Geophysics, 19(2), 89–138, doi:10.1023/A:1006544220339.
  98. Read, W. R., K. W. Hillig II., E. A. Cohen, and H. M. Pickett (1988), The Measurement of Absolute Absorption of Millimeter Radiation in Gases: The Absorption of CO and O2IEEE Trans. Antennas Propag., 36(8), 1136–1143.
  99. Rieck, M., L. Nuijens, and B. Stevens (2012), Marine Boundary Layer Cloud Feedbacks in a Constant Relative Humidity AtmosphereJ. Atmos. Sci., 69(8), 2538–2550, doi:10.1175/JAS-D-11-0203.1.
  100. Riviere, P., A. Soufiani, and J. Taine (1995), Correlated-k Fictious Gas Model for H2O Infrared Radiation in the Voight RegimeJ. Quant. Spectrosc. Radiat. Transfer, 53(3), 335–346.
  101. Roberti, L. and C. Kummerow (1999), Monte Carlo calculations of polarized microwave radiation emerging from cloud structuresJ. Geophys. Res., 104(D2), 2093–2104.
  102. Royer, A. (1971), Expansion of the Spectrum in Powers of the Density in the Adiabatic Theory of Pressure BroadeningPhys. Rev., 3(6), 2044–2049.
  103. Schlesinger, M. E. (1986), Equilibrium and transient climatic warming induced by increased atmospheric CO2Climate Dynamics, 1(1), 35–51, doi:10.1007/BF01277045.
  104. Schneider, Stephen H. (1975), On the Carbon Dioxide?Climate ConfusionJ. Atmos. Sci., 32(11), 2060–2066, doi:10.1175/1520-0469(1975)032<2060:OTCDC>2.0.CO;2.
  105. Shine, K. P. (2000), Radiation forcing of Climate ChangeSpace Science Reviews, 94, 363–373.
  106. Sinha, A. and K. P. Shine (1995), Simulated sensitivity of the earth's radiation budget to 'change in cloud propertiesJ. Quant. Spectrosc. Radiat. Transfer, 121, 797–819.
  107. Sioris, C. E. and W. E. J. Evans (2002), Modelling higher order radiation fields using iterated integrals of phase functionJ. Quant. Spectrosc. Radiat. Transfer, 72, 227–236.
  108. Slingo, A., K. I. Hodges, and G. J. Robinson (2004), Simulation of the diurnal cycle in a climate model and its evaluation using data from Meteosat 7Q. J. R. Meteorol. Soc., 130, 1449–1467, doi:10.1256/qj.03.165.
  109. Smith, E. A., A. Mugnau, H. J. Cooper, G. J. Tripoli, and X. Xiang (1992), Foundations for Statistical-Physical Precipitation Retrieval from Passive Microwave Satellite Measurements. Part I.: Brightness-Temperature Properties of a Time-dependent Cloud-Radiation ModelJ. Appl. Meteorol., 31, 506–531.
  110. Smith, G. L. (1999), Critical Overview of Radiation Budget estimates from SatelliteAdv. Space. Res., 24(7), 887–895.
  111. Smoot, G. F., G. de Amici, S. D. Friedman, C. Witebsky, G. Sironi, G. Bonelli, N. Mandolesi, S. Cortiglioni, G. Morigi, P. B. Partridge, L. Danese, and G. de Zotti (1985), Low-Frequency Measurements of the Cosmic Background Radiation SpectrumAstrophys. J., 291, 23–27.
  112. Smoot, G. F., M. Bensadoun, M. Bersanelli, G. De Amici, A. Kogut, S. Levin, and C. Witebsky (1987), Long-Wavelength Measurements of the Cosmic Microwave Background Radiation SpectrumAstrophys. J., 317, L45–L49.
  113. Stephens, G. L. (2003), The Useful Pursuit of ShadowsAm. Sci., 91, 442–449.
  114. Stephens, G. L. (1978), Radiation Profiles in Extended Water Clouds. I: TheoryJ. Atmos. Sci., 35, 2111–2122.
  115. Stephens, G. L. (1978), Radiation Profiles in Extended Water Clouds. II: Parameterization SchemesJ. Atmos. Sci., 35, 2123–2132.
  116. Stephens, G. (1984), The Parametrization of Radiation for Numerical Weather Prediction and Climate ModelsMon. Weather Rev., 112, 826–867.
  117. Stephens, G. L. and T. J. Greenwald (1991), The Earth's Radiation Budget and Its Relation to Atmospheric Hydrology I. Observations of the Clear Sky Greenhouse EffectJ. Geophys. Res., 96(D8), 15,311–15,324.
  118. Stephens, G. L. and T. J. Greenwald (1991), The Earth's Radiation Budget and Its Relation to Atmospheric Hydrology II. Observations of Cloud EffectsJ. Geophys. Res., 96(D8), 15,325–15,340.
  119. Stokes, G. M. and S. E. Schwartz (1994), The Atmospheric Radiation Measurement (ARM) Program: Programmatic Background and Design of the Cloud and Radiation Test BedBull. Amer. Met. Soc., 75(7), 1201–1221.
  120. Stubenrauch, C. (2004), Cirrus microphysical properties and their effect on Radiation: survey and integration into climate Models using combined Satellite observations, Laboratoire de Meteorologie Dynamique, Meteorological Office, Institute for Marine Research at Kiel, Laboratoire d'Optique Atmospherique, Final Report on the Environment project EVK2-CT-2000-00063, available at http://www.lmd.polytechnique.fr/CIRAMOSA/Welcome.html.
  121. Stubenrauch, C. J., F. Eddounia, J. M. Edwards, and A. Macke (2007), Evaluation of cirrus parameterizations for radiative flux computations in climate models using TOVS–ScaRaB satellite observationsJ. Climate, 20(17), 4459–4475.
  122. Suzuki, M., H. Kobayashi, R. Imascu, H. Shimoda, and T. Ogawa (1999), ATRAS, Atmospheric Radiation Spectrometer, results after phase A study, Society of the Photo-Optical Instrumentation Engineers, EUROPTO Conference on Sensors, Systems, and Next-Generation Satellites V.
  123. Thies, B. and J. Bendix (2011), Satellite based remote sensing of weather and climate: recent achievements and future perspectivesMet. Appl., 18, 262–295, doi:10.1002/met.288.
  124. Timofeyev, Y. M., V. S. Kostov, and H. Grassl (1995), Numerical Investigations of the Accuracy of the Remote Sensing of Non-LTE Atmosphere by Space-Borne Spectral Measurements of Limb i.r. by Radiation: 15 μm CO2 Bands, 9.6 μm O3 Bands and 10 μm CO2 Laser BandsJ. Quant. Spectrosc. Radiat. Transfer, 53(6), 613–632.
  125. Tobin, I., S. Bony, and R. Roca (2012), Observational Evidence for Relationships between the Degree of Aggregation of Deep Convection, Water Vapor, Surface Fluxes, and RadiationJ. Climate, 25(20), 6885–6904, doi:10.1175/JCLI-D-11-00258.1.
  126. Trenberth, K. E., J. T. Fasullo, and J. Kiehl (2009), Earth's Global Energy BudgetBull. Amer. Met. Soc., 90(3), 311–323, doi:10.1175/2008BAMS2634.1.
  127. Trenberth, Kevin E. and John T. Fasullo (2012), Tracking Earth's Energy: From El Niño to Global WarmingSur. Geophy., 34(3–4), 413–426, doi:10.1007/s10712-011-9150-2.
  128. Tselioudis, G., Y. Zhang, and W. B. Rossow (2000), Cloud and Radiation Variations Associated with Northern Midlatitude Low and High Sea Level Pressure RegimesJ. Climate, 13(2), 312–327.
  129. Tso, H. C. W., D. J. W. Geldart, and P. Chylek (1998), Anharmonicity and cross section for absortion of radiation by water dimerJ. Chem. Phys., 108(13), 5319–5329.
  130. Van Vleck, J. H. (1934), Magnetic Dipole Radiation and the Atmospheric Absorption Bands of OxygenAstrophys. J., 80(3), 161–170.
  131. Voigt, A., S. Bony, J.-L. Dufresne, and B. Stevens (2014), The radiative impact of clouds on the shift of the Intertropical Convergence ZoneGeophys. Res. Lett., 41(12), 4308–4315, doi:10.1002/2014GL060354.
  132. Voigt, A. and T. A. Shaw (2015), Circulation response to warming shaped by radiative changes of clouds and water vapourNature Geosci., 8(2), 102–106, doi:10.1038/ngeo2345.
  133. Weiss, R. (1980), Measurements of the Cosmic Background RadiationAnn. Rev. Astron. Astrophys., 18, 489–535.
  134. Wielicki, B. A., R. D. Cess, M. D. King, D. A. Randall, and E. F. Harrison (1995), Mission to Planet Earth: Role of Clouds and Radiation in ClimateBull. Amer. Met. Soc., 76(11), 2125–2153.
  135. Wielicki, B. A. (1996), Clouds and the Earth's Radiant Energy System (CERES): An Earth observing experimentBull. Amer. Met. Soc., 77, 853–872.
  136. Wiscombe, W. J. (1977), The Delta-M Method: Rapid Yet Accurate Radiative Flux Calculations for Strongly Asymmetric Phase FunctionsJ. Atmos. Sci., 34, 1408–1422.
  137. Wiscombe, W. J. and V. Ramanathan (1985), The Role of Radiation and Other Renascent Subfields in Atmospheric ScienceBull. Amer. Met. Soc., 66(10), 1278–1287.
  138. Yeh, S. and P. R. Berman (1979), Theory of collisionally aided radiative excitationPhys. Rev., 19(3), 1106–1116.
  139. Yu, B. and G. J. Boer (2002), The role of radiation and dynamical processes in the El Nino-like response to global warmingClimate Dynamics, 19, 539–553, doi:10.1007/s00382-002-0244-x.
  140. Zeldes, H., B. H. Ketelle, and A. R. Brost (1952), Half-Life and Mass Assignment of Argon 39Phys. Rev., 811–812.
  141. Zelinka, M. D. and D. L. Hartmann (2011), The observed sensitivity of high clouds to mean surface temperature anomalies in the tropicsJ. Geophys. Res., 116(D23), D23103, doi:10.1029/2011JD016459,.
  142. Zhang, Y., A. Macke, and F. Albers (1999), Effect of crystal size spectrum and crystal shape on stratiform cirrus radiative forcingAtmos. Res., 52, 59–75.
  143. Zhang, G. and J. Vivekanandan (1999), Microwave Radiation from Mixed Phase Cloud and Parameter Retrievals, National Center for Atmospheric Research.
  144. Zhou, Y. P. and R. D. Cess (2000), Validation of longwave atmospheric radiation models using Atmospheric Radiation Measurement dataJ. Geophys. Res., 105(D24), 29,703–29,716.
  145. Zipf, E. C. and S. S. Prasad (2001), O2 N2 photochemistry in the present and Precambrian atmosphereJ. Chem. Phys., 115(13), 5703–5706.