Show tag cloud

Filter by author:
Filter by year:
Filter by bibtex key:
Filter by type:
Filter by keyword:
and
and
 

Filtered by keyword:water vapor

There is currently a filter applied. To see the complete list of publications, clear the filter.
  1. Aghedo, A. M., K. W. Bowman, D. T. Shindell, and G. Faluvegi (2011), The impact of orbital sampling, monthly averaging and vertical resolution on climate chemistry model evaluation with satellite observationsAtmos. Chem. Phys. Discuss., 11, 9705–9742, doi:10.5194/acpd-11-9705-2011.
  2. Allan, R. P., M. A. Ringer, and A. Slingo (2003), Evaluation of moisture in the Hadley Centre climate model using simulations of HIRS water-vapour channel radiancesQ. J. R. Meteorol. Soc., 129, 3371–3389, doi:10.1256/qj.02.217.
  3. Asheko, A. A. and K. E. Nemchenko (2003), Relaxation Parameters in the Main Dispersion Range of WaterJ. Molec. Liqu., 105(2–3), 295–298.
  4. Baranov, Y. I. and W. J. Lafferty (2011), The water-vapor continuum and selective absorption in the 3–5 μm spectral region at temperatures from 311 to 363 KJ. Quant. Spectrosc. Radiat. Transfer, 112(8), 1304–1313, doi:10.1016/j.jqsrt.2011.01.024.
  5. Barton, I. J. (1991), Infrared continuum water vapor absorption coefficients derived from satellite dataAppl. Opt., 30(21), 2929–2934.
  6. Bates, J. J., X. Wu, and D. L. Jackson (1996), Interannual Variability of Upper-Troposphere Water Vapor Band Brightness TemperatureJ. Climate, 9, 427–438.
  7. Bates, J. J. and D. L. Jackson (1997), A comparison of water vapor observations with AMIP I simulationsJ. Geophys. Res., 102(D18), 21,837–21,852.
  8. Bauer, A., B. Duterage, and M. Godon (1986), Temperature dependence of water-vapor absorption in the wing of the 183 GHz lineJ. Quant. Spectrosc. Radiat. Transfer, 36(4), 307–318.
  9. Bauer, A., M. Gogon, M. Kheddar, J. M. Hartmann, J. Bonamy, and D. Robert (1987), Temperature and Perturber Dependences of Water-Vapor 380 GHz-Line BroadeningJ. Quant. Spectrosc. Radiat. Transfer, 37(6), 531–539.
  10. Bauer, A., M. Godon, M. Kheddar, and J. M. Hartmann (1989), Temperature and perturber dependences of water vapor line-broadening. Experiments at 183 GHz; Calculations below 1000 GHzJ. Quant. Spectrosc. Radiat. Transfer, 41(1), 49–54.
  11. Bauer, A. and M. Godon (1991), Temperature dependence of water-vapor absorption in linewings at 190 GHzJ. Quant. Spectrosc. Radiat. Transfer, 46(3), 211–220.
  12. Bauer, A., M. Godon, and Q. Ma (1995), Water vapor absorption in the atmospheric window at 239 GHzJ. Quant. Spectrosc. Radiat. Transfer, 53(4), 411–423.
  13. Bauer, A., M. Godon, J. Carlier, and R. R. Gamache (1998), Continuum in the Windows of the Water Vapor Spectrum. Absorption of H2O-Ar at 239 GHz and Linewidth CalculationsJ. Quant. Spectrosc. Radiat. Transfer, 59(3–5), 273–285.
  14. Becker, G. E. and S. H. Autler (1946), Water Vapor Absorption of Electromagnetic Radiation in the Centimeter Wave-Length RangePhys. Rev., 70(5–6), 300–307.
  15. Belmiloud, D., R. Schermaul, K. S. Smith, N. F. Zobov, J. W. BRault an R. C. M. Learner, D. A. Newnham, and J. Tennyson (2000), New Studies of the Visible and Near-Infrared Absorption by Water Vapour and Some Problems with the HITRAN databaseGeophys. Res. Lett., 27(22), 3703–3706.
  16. Belov, S. P., I. N. Kozin, O. L. Polyansky, M. Y. Tret'yakov, and N. F. Zobov (1987), Rotational Spectrum of the H216O Molecule in the (010) Excited Vibrational StateJ. Molec. Spectro., 126, 113–117.
  17. Bennartz, R. and U. Lohmann (2001), Impact of improved near infrared water vapor line data on absorption of solar radiation in GCMsGeophys. Res. Lett., 28(24), 4591–4594.
  18. Berg, W., J. J. Bates, and D. L. Jackson (1999), Analysis of Upper-Tropospheric Water Vapor Brightness Temperatures from SSM/T2, HIRS, and GMS-5 VISSRJ. Appl. Meteorol., 38, 580–595.
  19. Bevilacqua, R. M., D. L. Kriebel, T. A. Pauls, C. P. Aellig, D. E. Siskind, M. Daehler, J. J. Olivero, S. E. Puliafito, G. K. Hartmann, N. Kämpfer, A. Berg, and C. L. Croskey (1996), MAS measurements of the latitudinal distribution of water vapor and ozone in the mesosphere and lower thermosphereGeophys. Res. Lett., 23(17), 2317–2320.
  20. Bevis, M., S. Businger, T. A. Herring, C. Rocken, R. A. Anthes, and R. H. Ware (1992), GPS Meteorology: Remote Sensing of Atmospheric Water Vapor Using the Global Positioning SystemJ. Geophys. Res., 97(D14), 15,787–15,801.
  21. Bézard, B., A. Fedorova, J.-L. Bertaux, A. Rodin, and O. Korablev (2011), The 1.10- and 1.18-μm nightside windows of Venus observed by SPICAV-IR aboard Venus ExpressIcarus, 216(1), 173–183, doi:10.1016/j.icarus.2011.08.025.
  22. Bhawar, R., P. Di Girolamo, D. Summa, C. Flamant, D. Althausen, A. Behrendt, C. Kiemle, P. Bosser, M. Cacciani, C. Champollion, T. Di Iorio, R. Engelmann, C. Herold, D. Müller, S. Pal, M. Wirth, and V. Wulfmeyer (2011), The water vapour intercomparison effort in the framework of the Convective and Orographically-induced Precipitation Study: airborne-to-ground-based and airborne-to-airborne lidar systemsQ. J. R. Meteorol. Soc., 137, 325–348, doi:10.1002/qj.697.
  23. Biver, N., A. Lecacheux, T. Encrenaz, E. Lellouch, P. Baron, J. Crovisier, U. Frisk, Å. Hjalmarson, M. Olberg, Aa. Sandqvist, and S. Kwok (2005), Wide-band observations of the 557 GHz water line in Mars with OdinA&A, 435(2), 765–772, doi:10.1051/0004-6361:20042247.
  24. Blankenship, C. B. and T. T. Wilheit (2001), SSM/T-2 measurements of regional changes in three-dimensional water vapor fields during ENSO eventsJ. Geophys. Res., 106(D6), 5239–5254, doi:10.1029/2000JD900706.
  25. Bock, O., M.-N. Bouin, A. Walpersdorf, J. P. Lafore, S. Janicot, F. Guichard, and A. Agusti-Panareda (2007), Comparison of ground-based GPS precipitable water vapour to independent observations and NWP model reanalyses over AfricaQ. J. R. Meteorol. Soc., 133, 2011–2027, doi:10.1002/qj.185.
  26. Bokoye, A. I., A. Royer, N. T. O'Neill, P. Cliche, L. J. B. McArthur, P. M. Teillet, G. Fedosejevs, and J.-M. Thériault (2003), Multisensor analysis of integrated atmospheric water vapor over Canada and AlaskaJ. Geophys. Res., 108(D15), 4480, doi:10.1029/2002JD002721.
  27. Brogniez, H., R. Roca, and L. Picon (2005), Evaluation of the distribution of subtropical free tropospheric humidity in AMIP-2 simulations using METEOSAT water vapor channel dataGeophys. Res. Lett., 32, doi:10.1029/2005GL024341.
  28. Brzoska, B., A. Jaczewski, and Z. Litynska (1111), Homogenisation of water vapour data from RS-80A and RS-90 radiosondes, Institute of Meterology and Water Management.
  29. Cadeddu, M. P., J. C. Liljegren, and A. L. Pazmany (2007), Measurements and Retrievals From a New 183-GHz Water-vapor Radiometer in the ArcticIEEE Geosci. Remote Sens., 45, 2207–2215, doi:10.1109/TGRS.2006.888970.
  30. Carlon, H. R. (1981), Infrared water vapor continuum absorption: equilibria of ions and neutral water clustersAppl. Opt., 20(8), 1316–1322.
  31. Carlon, H. R. (1978), Molecular Interpretation of the ir water vapor continuum: commentsAppl. Opt., 17(20).
  32. Cess, R. D. (2005), Water Vapor Feedback in Climate ModelsScience, 310, 795–796.
  33. Chae, J. H., D. L. Wu, W. G. Read, and S. C. Sherwood (2011), The role of tropical deep convective clouds on temperature, water vapor, and dehydration in the tropical tropopause layer (TTL)Atmos. Chem. Phys., 11, 3811–3821, doi:10.5194/acp-11-3811-2011.
  34. Chen, C.-T. and E. Roeckner (1996), A Comparison of Satellite Observations and Model Simulations of Column-Integrated Moisture and Upper-Tropospheric HumidityJ. Climate, 9, 1561–1584.
  35. Chiou, E. W., M. P. McCormick, and W. P. Chu (1997), Global water vapor distributions in the stratosphere and upper troposphere derived from 5.5 years of SAGE II observations 1986–1991J. Geophys. Res., 102(D15), 19,105–19,118.
  36. Choy, S., K. Zhang, C.-S. Wang, Y. Li, and Y. Kuleshov (2010), Remote Sensing of the Earth's Lower Atmosphere During Severe Weather Events using GPS Technology: a Study in Victoria, Australia, In: Proceedings of the 24th International Technical Meeting of The Satellite Division of the Institute of Navigation (ION GNSS 2011), September 20 - 23, 2010 Oregon Convention Center, Portland, Oregon Portland, OR.
  37. Chylek, P. and D. J. W. Geldart (1997), Water vapor dimers and atmospheric absorption of electromagnetic radiationGeophys. Res. Lett., 24(16), 2015–2018.
  38. Chylek, P., Q. Fu, H. C. W. Tso, and D. J. W. Geldart (1999), Contribution of water vapor dimers to clear sky absorption of solar radiationTellus, 51, 304–313.
  39. Cimini, D., F. Nasir, E. R. Westwater, V. H. Payne, D. D. Turner, E. J. Mlawer, M. L. Exner, and M. P. Cadeddu (2009), Comparison of Ground-Based Millimeter-Wave Observations and Simulations in the Arctic WinterIEEE T. Geosci. Remote, 47(9), 3098–3106, doi:10.1109/TGRS.2009.2020743.
  40. Clark, H. L., R. S. Harwood, A. Billingham, and H. C. Pumphrey (2003), Cirrus and water vapor in the tropical tropopause layer observed by Upper Atmosphere Research Satellite (UARS)J. Geophys. Res., 108(D24), doi:10.1029/2003JD003748.
  41. Clark, H. L. and R. S. Harwood (2003), Upper-Tropospheric Humidity from MLS and ECMWF ReanalysesMon. Weather Rev., 131, 542–555.
  42. Clough, S. A., M. W. Shephard, E. J. Mlawer, J. S. Delamere, M. Iacono, K. Cady-Pereira, S. Boukabara, and P. D. Brown (2005), Atmospheric radiative transfer modeling: a summary of the AER codesJ. Quant. Spectrosc. Radiat. Transfer, 91(2), 233–244, doi:10.1016/j.jqsrt.2004.05.058.
  43. Clough, S. A., F. X. Kneizys, and R. W. Davies (1989), Line Shape and the Water Vapor ContinuumAtmos. Res., 23, 229–241, doi:10.1016/0169-8095(89)90020-3.
  44. Clough, S. A., M. J. Iacono, and J.-L. Moncet (1992), Line-by-Line Calculations of Atmospheric Fluxes and Cooling Rates: Application to Water VaporJ. Geophys. Res., 97(D14), 15761–15785.
  45. Clough, S. A. and P. D. Brown (1997), Status Of the CKD Water Vapor Continuum Model, Atmospheric and Enviromental Reseach.
  46. Clough, S. A., P. D. Brown, D. D. Turner, T. R. Shippert, J. C. Liljegren, D. C. Tobin, H. E. Revercomb, and R. O. Knuteson (1999), Effect on the Calculated Spectral Surface Radiances Due to MWR Scaling of Sonde Water Vapor Profiles, Ninth ARM Science Team Meeting Proceedings, San Antonio, Texas.
  47. Collins, W. D., J. K. Hackney, and D. P. Edwards (2002), An updated parameterization for infrared emission and absorption by water vapor in the National Center for Atmospheric Research Community Atmosphere ModelJ. Geophys. Res., 107(D22), doi:10.1029/2001JD001365.
  48. Colmont, J.-M., D. Priem, G. Wlodarczak, and R. R. Gamache (1999), Measurements and Calculations of the Halfwidth of Two Rotational Transitions of Water Vapor Perturbed by N2, O2, and AirJ. Molec. Spectro., 193, 233–243.
  49. Costales, J. B., G. F. Smoot, C. Witebsky, and G. De Amici (1986), Simultaneous measurements of atmospheric emissions at 10, 33, and 90 GHzRadio Sci., 21(1), 47–55.
  50. Cuccoli, F., L. Facheris, S. Tanelli, and D. Giuli (2001), Microwave Attenuation Measurement in Satellite-Ground Links: The Potential of Spectral Analysis for Water Vapor Profiles RetrievalIEEE Geosci. Remote Sens., 39(3), 645–654.
  51. Cuccoli, F. and L. Facheris (2002), Estimate of the Tropospherical Water Vapor Through Microwave Attenuation Measurements in AtmosphereIEEE Geosci. Remote Sens., 40(4), 735–741.
  52. Curry, J. A. and P. J. Webster (1999), Thermodynamics of Atmospheres and Oceans, University of Colorado.
  53. Dai, A., J. Wang, R. H. Ware, and T. Van Hove (2002), Diurnal variation in water vapor over North America and its implications for sampling errors in radiosonde humidityJ. Geophys. Res., 107(D10), doi:10.1029/2001JD000642.
  54. Davis, G. R. (1993), The far infrared continuum absorption of water vaporJ. Quant. Spectrosc. Radiat. Transfer, 50(6), 673–694.
  55. Decker, M. T., E. R. Westwater, and F. O. Guiraud (1978), Experimental Evaluation of Ground-Based Microwave Radiometric Sensing of Atmospheric Temperature and Water Vapor ProfilesJ. Appl. Meteorol., 17(12), 1788–1795.
  56. Delamere, J. S., S. A. Clough, V. H. Payne, E. J. Mlawer, D. D. Turner, and R. R. Gamache (2010), A far-infrared radiative closure study in the Arctic: Application to water vaporJ. Geophys. Res., 115, D17106, doi:10.1029/2009JD012968.
  57. Desbois, M., L. Picon, and R. Roca (xx), The Role of Atmospheric Water Vapour on Climate, Laboratoire de Meterologie Dynamique, Ecole Polytechnique-CNRS, France.
  58. Dessler, A. E. and E. M. Weinstock (2003), Comment on "Balloon-borne observations of water vapor and ozone in the tropical upper troposhere and lower stratosphere" by H. Voemel et al.J. Geophys. Res., 108(D4), doi:10.1029/2002JD002811.
  59. Dessler, A. E., Z. Zhang, and P. Yang (2008), Water-vapor climate feedback inferred from climate fluctuations, 2003-2008Geophys. Res. Lett., 35, L20704, doi:10.1029/2008GL035333.
  60. Deuber, B., J. Morland, L. Martin, and N. Kämpfer (2005), Deriving the tropospheric integrated water vapor from tipping curve-derived opacity near 22 GHzRadio Sci., 40, RS5011, doi:10.1029/2007RG000233.
  61. Divakarla, M. G., C. D. Barnet, M. D. Goldberg, L. M. McMillin, E. Maddy, W. Wolf, L. Zhou, and X. Liu (2006), Validation of Atmospheric Infrared Sounder temperature and water vapor retrievals with matched radiosonde measurements and forecastsJ. Geophys. Res., 111, D09S15, doi:10.1029/2005006116.
  62. Eguchi, N. and M. Shiotani (2004), Intraseasonal variations of water vapor and cirrus clouds in the tropical upper troposphereJ. Geophys. Res., 109, D12106, doi:10.1029/2003JD004314.
  63. Eguchi, N. and M. Shiotani (2004), Intraseasonal variations of water vapor and cirrus clouds in the tropical upper troposphereJ. Geophys. Res., 109(D18), doi:10.1029/2003JD004314.
  64. Ekström, M. and P. Eriksson (2008), Altitude resolved ice-fraction in the uppermost tropical troposphereGeophys. Res. Lett., 35, L13822, doi:10.1029/2008GL034305.
  65. Elgered, G., B. O. Roennaeng, and J. I. H. Askne (1982), Measurements of atmospheric water vapor with microwave radiometryRadio Sci., 17(5), 1258–1264.
  66. Elgered, G., J. M. Johansson, B. O. Roennaeng, and J. L. Davis (1997), Measuring regional atmospheric water vapor using the Swedish permanent GPS networkGeophys. Res. Lett., 24(21), 2663–2666.
  67. Elsasser, W. M. (1938), Far Infrared Absorption of Atmospheric Water VaporAstrophys. J., 87(5), 497–507.
  68. Emardson, T. R. and J. M. Johansson (1998), Spatial interpolation of the atmospheric water vapor content between sites in a ground-based GPS networkGeophys. Res. Lett., 25(17), 3347–3350.
  69. Emmons, L. K. and R. L. de Zafra (1990), Observation of a Strong Inverse Temperature Dependence for the Opacity of Atmospheric Water Vapor in the mm Continuum near 280 GHzInt. J. Inf. Millim. Waves, 11(4), 469–489.
  70. Engelen, R. J. and G. L. Stephens (1999), Characterization of water-vapour retrievals from TOVS/HIRS and SSM/T-2 measurementsQ. J. R. Meteorol. Soc., 125, 331–351.
  71. English, S. J., C. Guillou, C. Prigent, and D. C. Jones (1994), Aircraft measurements of water vapour continuum absorption millimetre wavelengthsQ. J. R. Meteorol. Soc., 120, 603–625.
  72. English, S. J., D. C. Jones, P. J. Rayer, T. J. Hewison, R. W. Saunders, C. Guillou, C. Prigent, J. Wang, and G. Anderson (1995), Observations of water vapour absorption using airborne microwave radiometers at 89 and 157 GhzIEEE, 1395–1404.
  73. Eymard, L., M. Gheudin, P. Laborie, F. Sirou, C. Le Gac, J. P. Vinson, S. Franquet, M. Desbois, R. Roca, N. Scott, and P. Waldteufel (2001), The SAPHIR humidity sounder, CETP, Observatoire de Paris, Ecole Polytechnique, MEGHA-TROPIQUES 2nd Scientific Workshop.
  74. Fasullo, J. and D.-Z. Sun (2001), Radiative Sensitivity to Water Vapor under All-Sky ConditionsJ. Climate, 14, 2798–2807.
  75. Ferraro, R. R., N. C. Grody, F. Weng, and A. Basist (1996), An Eight-Year (1987–1994) Time Series of Rainfall, Clouds, Water Vapor, Snow Cover, and Sea Ice Derived from SSM/I MeasurementsBull. Amer. Met. Soc., 77, 891–906.
  76. Folkins, I., K. K. Kelly, and E. M. Weinstock (2002), A simple explanation for the increase in relative humidity between 11 and 14 km in the tropicsJ. Geophys. Res., 107(D23), 4736, doi:10.1029/2002JD002185.
  77. Folkins, I. and R. V. Martin (2005), The Vertical Structure of Tropical Convection and Its Impact on the Budget of Water Vapor and OzoneJ. Atmos. Sci., 62, 1560–1573.
  78. Folkins, I., P. Bernath, C. Boone, L. J. Donner, A. Eldering, G. Lesins, R. V. Martin, B.-M. Sinnhuber, and K. Walker (2006), Testing convective parameterizations with tropical measurements of HNO3, CO, H2O, and O3: Implications for the water vapor budgetJ. Geophys. Res., 111, D23304, doi:10.1029/2006JD007325.
  79. de F. Forster, P. M. and M. Collins (2003), Quantifying the water vapour feedback associated with post-Pinatubo global coolingClimate Dynamics, 25(2), 207–214.
  80. Franquet, S., N. Scott, A. Chedin, R. Armante, and L. Eymard (1111), Simulations of radiative transfer in the SAPHIR and AMSU channels in the perspective of water vapor profiles retrievals, ARA/LMD Ecole Polytechnique, CETP.
  81. Frey, R. A., S. A. Ackerman, and B. J. Soden (1996), Climate Parameters from Satellite Spectral Measurements. Part I: Collocated AVHRR and HIRS/2 Observations of Spectral Greenhouse ParameterJ. Climate, 9, 327–344.
  82. Fu, Q., M. Baker, and D. L. Hartmann (2002), Tropical cirrus and water vapor: an effective Earth infrared iris feedback?Atmos. Chem. Phys., 2, 31–37, doi:10.5194/acp-2-31-2002.
  83. Fusina, F., P. Spichtinger, and U. Lohmann (2007), Impact of ice supersaturated regions and thin cirrus on radiation in the midlatitudesJ. Geophys. Res., 112, D24S14, doi:10.1029/2007JD008449.
  84. Galm, J. M., F. L. Merat, and P. C. Claspy (1990), Estimates of Atmospheric Attenuation Sensitivity with Respect to Absolute Humidity at 337 GHzIEEE Trans. Antennas Propag., 38(7), 982–986.
  85. Gamache, R. R. and J. Fischer (2002), Half-widths of H216O, H218O, H217O, HD16O, and D216O: I. Comparison between isotopomersJ. Quant. Spectrosc. Radiat. Transfer.
  86. Gamache, R. R. and J. Fischer (2002), Half-widths of H216O, H218O, H217O, HD16O, and D216O: II. Comparison with measurementJ. Quant. Spectrosc. Radiat. Transfer.
  87. Gamache, R. R. and J.-M. Hartmann (2004), An intercomparison of measured pressure-broadening and pressure-shifting parameters of water vaporCan. J. Chem., 82(6), 1013–1027.
  88. Gamache, R. R. and J.-M. Hartmann (2004), An intercomparison of measured pressure-broadening and pressure-shifting parameters of water vaporCan. J. Chem., 82(6), 1013–1027, doi:10.1139/v04-069.
  89. Gamache, R. R. and R. W. Davies (1983), Theoretical calculations of N2-broadenend halfwidths of H2O using quantum Fourier transform theoryAppl. Opt., 22(24), 4013–4019.
  90. Gamache, R. R. and L. S. Rothman (1988), Temperature Dependence of N2-Broadenend Halfwidths of Water Vapor: The Pure Rotation and ν2 BandsJ. Molec. Spectro., 128, 360–369.
  91. Gamache, R. R., J.-M. Hartmann, and L. Rosenmann (1994), Collisional broadening of water vapour lines - I. A survey of experimental resultsJ. Quant. Spectrosc. Radiat. Transfer, 52(3/4), 481–499, doi:10.1016/0022-4073(94)90175-9.
  92. Gamache, R. R., R. Lynch, and L. R. Brown (1996), Theoretical Calculations of Pressure Broadening Coefficients for H2O Perturbed by Hydrogen or Helium GasJ. Quant. Spectrosc. Radiat. Transfer, 56(4), 471–487.
  93. Gamache, R. R., F. R. Lynch, J. J. Plateaux, and A. Barbe (1997), Halfwidths and line shifts of water vapour broadened by CO2: measurements and complex Robert-Bonamy formalism calculationsJ. Quant. Spectrosc. Radiat. Transfer, 57(4), 485–496, doi:10.1016/S0022-4073(96)00148-3.
  94. Gao, R. S., P. J. Popp, D. W. Fahey, T. P. Marcy, R. L. Herman, E. M. Weinstock, D. G. Baumgardner, T. J. Garrett, K. H. Rosenlof, T. L. Thompson, P. T. Bui, B. A. Ridley, S. C. Wofsy, O. B. Toon, M. A. Tolbert, B. Kärcher, Th. Peter, P. K. Hudson, A. J. Weinheimer, and A. J. Heymsfield (2004), Evidence that nitric acid increases relative humidity in low-temperature cirrus cloudsScience, 303, 516–520.
  95. Gao, B.-C., K. Meyer, and P. Yang (2004), A new concept on remote sensing of cirrus optical depth and effective ice particle size using strong water vapor absorption channels near 1.38 and 1.88 micrometerIEEE T. Geosci. Remote, 42(9), 1891–1899.
  96. Gao, B.-C., P. K. Chan, and R.-R. Li (2004), A global water vapor data set obtained by merging the SSMI and MODIS dataGeophys. Res. Lett., 31, doi:10.1029/2004GL020656.
  97. Gasiewski, A. J. (1992), Numerical Sensitivity Analysis of Passive EHF and SMMW Channels to Tropospheric Water Vapor, Clouds, and PrecipitationIEEE T. Geosci. Remote, 30(5), 859–870, doi:10.1109/36.175320.
  98. Gasster, S. D., C. H. Townes, D. Goorvitch, and F. P. J. Valero (1988), Foreign-gas collision broadening of the far-infrared spectrum of water vaporJ. Optical Soc. o. Am., 5(3), 593–601.
  99. Gebbie, H. A. (1991), Comment on: Water vapor continuum in the millimeter spectral regionJ. Chem. Phys., 95(2), 1427–1428.
  100. Geer, A. J., J. E. Harries, and H. E. Brindley (1999), Spatial Patterns of Climate Variability in Upper-Tropospheric Water Vapor Radiances from Satellite Data and Climate Model SimulationsJ. Climate, 12, 1940–1955.
  101. Gerard, E., D. G. H. Tan, L. Garand, V. Wulfmeyer, G. Ehret, and P Di Girolame (2004), Major Advances Foressen in Humidity Profiling from the Water Vapour Lidar Experiment in Space (Wales)Bull. Amer. Met. Soc., 237–251.
  102. Gettelman, A., J. E. Harries, and P. W. Mote (2000), SPARC Assessment of Upper Tropospheric and Stratospheric Water Vapour, chap. Distribution and variability of water vapour in the upper troposphere and lower stratosphere, pp. 197–263, WCRP-113, WMO/TD -No. 1043, SPARC Report No. 2, WCRP: SPARC water vapour working group.
  103. Gettelman, A., J. R. Holton, and A. R. Douglas (2000), Simulations of water vapor in the lower stratosphere and upper troposphereJ. Geophys. Res., 105(D7), 9003–9023.
  104. Gettelman, A., W. J. Randel, F. Wu, and S. T. Massie (2001), Transport of Water Vapor in the Tropical Tropopause LayerGeophys. Res. Lett.
  105. Gettelman, A. and D. E. Kinnison (2007), The global impact of supersaturation in a coupled chemistry-climate modelAtmos. Chem. Phys., 7, 1629–1643, doi:10.5194/acp-7-1629-2007.
  106. Gettelman, A. and Q. Fu (2008), Observed and Simulated Upper-Tropospheric Water Vapor FeedbackJ. Climate, 21, 3282–3289, doi:10.1175/2007JCLI2142.1.
  107. Giorgetta, M. and M. Wild (1995), The Water Vapour Continuum and its Representation in ECHAM4, Max-Planck-Institut fuer Meteorologie.
  108. Godon, M., A. Bauer, and R. R. Gamache (2000), The Continuum of Water Vapor Mixed with Methane: Absolute Absorption at 239 GHz and Linewidth CalculationsJ. Molec. Spectro., 202, 293–202.
  109. Godon, M. and A. Bauer (1988), Helium-Broadened widths of the 183 and 380 GHz lines of water vaporChem. Phys. Lett., 147(2,3), 189–191.
  110. Godon, M., J. Carlier, and A. Bauer (1992), Laboratory studies of water vapor absorption in the atmospheric window at 213 GHzJ. Quant. Spectrosc. Radiat. Transfer, 47(4), 275–285.
  111. Golovko, V. F. (2000), Dispersion formula and continuous absorption of water vaporJ. Quant. Spectrosc. Radiat. Transfer, 65, 621–644.
  112. Golovko, V. F. (2001), Continuous absorption of water vapor and a problem of the absorption enhancement in the humid atmosphereJ. Quant. Spectrosc. Radiat. Transfer, 69, 431–446.
  113. Goss-Custrad, M., J. J. Remedios, A. Lambert, F. W. Taylor, C. D. Rodgers, M. Lopez-Puertas, G. Zaragoza, M. R. Gunson, M. R. Suttie, J. E. Harries, and J. M. Russel III (1996), Measurements of water vapor distributions by the improved stratospheric and mesospheric sounder: Retrieval and validationJ. Geophys. Res., 101(D6), 9907–9928.
  114. Goyette, T. M. and F. C. De Lucia (1990), The Pressure Broadening of the 31,3-22,0 Transition of Water between 80 and 600 KJ. Molec. Spectro., 143, 346–358.
  115. Goyette, T. M., F. C. DeLucia, J. M. Dutta, and C. R. Jones (1993), Variable Temperature pressure Broadening of the 41,4-32,1 Transition of H2O by O2 and N2J. Quant. Spectrosc. Radiat. Transfer, 49(5), 482–489.
  116. Grant, W. B. (1990), Water vapor absorption coefficients in the 8–13 μm spectral region: a critical reviewAppl. Opt., 29(4), 451–463.
  117. Gueldner, J. and D. Spaenkuch (1999), Results of Year-Round Remotely Sensed Integrated Water Vapor by Ground-Based Microwave RadiometryJ. Appl. Meteorol., 38, 981–988.
  118. Guillot, B. (2002), A Reappraisal of what we have learnt during three decades of Computer Simulations on WaterJ. Molec. Liqu., 101(1–3), 219–260.
  119. Gurwell, M. A., E. A. Bergin, G. J. Melnick, M. L. N. Ashby, G. Chin, N. R. Erickson, P. F. Goldsmith, M. Harwit, J. E. Howe, S. C. Kleiner, D. G. Koch, D. A. Neufeld, B. M. Patten, R. Plume, R. Schieder, R. L. Snell, J. R. Stauffer, V. Tolls, Z. Wang, G. Winnewisser, and Y. F. Zhang (2000), Submillimeter wave astronomy satellite observations of the Martian atmosphere: Temperature and vertical distribution of water vaporAstrophys. J. Lett., 539, L143–L146.
  120. Gurwell, M. A., E. A. Bergin, G. J. Melnick, and V. Tolls (2005), Mars surface and atmospheric temperature during the 2001 global dust stormIcarus, 175, 23–31, doi:10.1016/j.icarus.2004.10.009.
  121. Hall, A. and S. Manabe (2000), Effect of water vapor feedback on internal and anthropogenic variations of the global hydrologic cycleJ. Geophys. Res., 105(D5), 6935–6944.
  122. Hall, A. and S. Manabe (2000), Suppression of ENSO in a coupled model without water vapor feedbackClimate Dynamics, 16, 393–403.
  123. Hall, A. and S. Manabe (1998), The Role of Water Vapor Feedback in Unperturbed Climate Variability and Global WarmingJ. Climate, 12(8), 2327–2346.
  124. Han, Y., E. R. Westwater, M. Klein, P. E. Racette, W. Manning, A. Gasiewski, and B. M. Lesht (2000), Radiometric Observations of Water Vapor During the 1999 Arctic Winter Experiment, National Oceanic and Atmospheric Adminstration, National Aeronautics and Space Administration, University of Maryland Baltimore Country, Argonne National Laboratory, Tenth ARM Science Team Meeting Proceedings.
  125. Hanssen, R. F., A. J. Feijt, and R. Klees (2001), Comparison of Precipitable Water Vapor Observations by Spaceborne Radar Interferometry and Meteosat 6.7-μm RadiometryJ. Atmos. Oceanic Technol., 18(5), 756–764, doi:10.1175/1520-0426(2001)058<0756:COPWVO>2.0.CO;2.
  126. Hanssen, R. F., T. M. Weckwerth, H. A. Zebker, and R. Klees (1999), High-Resolution Water Vapor Mapping from Interferometric Radar MeasurementsScience, 283(5406), 1297–1299, doi:10.1126/science.283.5406.1297.
  127. Harries, J., B. Carli, R. Rizzi, C. Serio, M. Mlynczak, L. Palchetti, T. Maestri, H. Brindley, and G. Masiello (2008), The Far-infrared EarthRev. Geophys., 46(4), 1–34, doi:10.1029/2007RG000233.
  128. Harries, J. E. (1996), The greenhouse Earth: A view from SpaceJ. Quant. Spectrosc. Radiat. Transfer, 122(532), 799–818.
  129. Harrop, B. E. and D. L. Hartmann (2015), The Relationship between Atmospheric Convective Radiative Effect and Net Energy Transport in the Tropical Warm PoolJ. Climate, 28(21), 8620–8633, doi:10.1175/JCLI-D-15-0151.1.
  130. Hartmann, J. M., M. Y. Perrin, Q. Ma, and R. H. Tipping (1993), The Infrared Continuum of Pure Water Vapor: Calculations and High-Temperature MeasurementsJ. Quant. Spectrosc. Radiat. Transfer, 49(6), 675–691.
  131. Harvey, L. D. D. (2000), An assessment of the potential impact of a downward shift of tropospheric water vapor on climate sensitivityClimate Dynamics, 16, 491–500.
  132. Hashimoto, S. (1992), A New Simplified Water Vapor Measurement Using a Multifrequency Microwave Radiometer with Two-Different-Beamwidth AntennasIEEE Geosci. Remote Sens., 30(4), 832–836.
  133. Haus, R. and G. Arnold (2010), Radiative transfer in the atmosphere of Venus and application to surface emissivity retrieval from VIRTIS/VEX measurementsPlanet. Space Sci., 58(12), 1578–1598, doi:10.1016/j.pss.2010.08.001.
  134. Held, I. M. and B. J. Soden (2000), Water Vapor Feedback and Global WarmingAnnu. Rev. Energy Environ., 25, 441–475.
  135. Hill, R. J. (1986), Water vapor-absorption line shape comparison using 22-GHz line: The Van Vleck-Weisskopf shape affirmedRadio Sci., 21(3), 447–451.
  136. Hill, R. J. (1988), Dispersion by Atmospheric Water Vapor at Frequencies Less Than 1 THzIEEE Trans. Antennas Propag., 36(3), 423–430.
  137. Hinderling, J., M. W. Sigrist, and F. K. Kneubuehl (1987), Laser-photoacoustic spectroscopy of water-vapor continuum and line absorption in the 8 to 14 μm atmospheric windowInfrared Phys., 27(2), 63–120.
  138. Hoffmann, L. and M. J. Alexander (2009), Retrieval of stratospheric temperatures from Atmospheric Infrared Sounder radiance measurements for gravity wave studiesJ. Geophys. Res., 114, D07105, doi:10.1029/2008JD011241.
  139. Holton, J. R., P. H. Haynes, M. E. McIntyre, A. R. Douglass, R. B. Rood, and L. Pfister (1995), Stratosphere-troposphere exchangeRev. Geophys., 33, 403–439.
  140. Hong, G., G. Heygster, J. Miao, and K. Kunzi (2005), Detection of tropical deep convective clouds from AMSU-B water vapor channels measurementsJ. Geophys. Res., 110(D9), D05205, doi:10.1029/2004JD004949.
  141. Hu, H., R. J. Oglesby, and B. Saltzman (2000), The relationship between atmospheric water vapor and temperature in simulations of climate changeGeophys. Res. Lett., 27(21), 3513–3516.
  142. Hu, H. and W. T. Liu (1998), The impact of upper tropospheric humidity from Microwave Limd Sounder on the midlatitude greenhouse effectGeophys. Res. Lett., 25(16), 3151–3154.
  143. Hudis, E., Y. Ben-Aryeh, and U. P. Oppenheim (1992), The Contribution of Third Order Linear Absorption to the Water Vapor ContinuumJ. Quant. Spectrosc. Radiat. Transfer, 47(5), 319–323.
  144. Iacono, M. J., J. S. Delamere, E. J. Mlawer, and S. A. Clough (2003), Evaluation of upper tropospheric water vapor in the NCAR Community Climate Model (CCM3) using modeled and observed HIRS radiancesJ. Geophys. Res., 108, 1–19, doi:10.1029/2002JD002539.
  145. Inamdar, A. K., V. Ramanathan, and N. G. Loeb (2004), Satellite observations of the water vapor greenhouse effect and column longwave colling rates: Relative roles of the continuum and vibration-rotation to pure rotation bandsJ. Geophys. Res., 109, doi:10.1029/2003JD003980.
  146. Inamdar, A. K. and V. Ramanathan (1998), Tropical and global scale interactions among water vapor, atmospheric greenhouse effect, and surface temperatureJ. Geophys. Res., 103(D24), 32,177–32,194.
  147. Ingram, W. (2010), A very simple model for the water vapour feedback on climate changeQ. J. R. Meteorol. Soc., 136(646), 30–40, doi:10.1002/qj.546.
  148. Jackson, D. R., S. J. Driscoll, E. J. Highwood, J. E. Harries, and J. M. Russel III (1998), Troposphere to stratosphere transport at low latitutes at studies using HALOE observations of water vapour 1992–1997Q. J. R. Meteorol. Soc., 124, 169–192.
  149. Jarlemark, P. and G. Elgered (2003), Retrieval of atmospheric water vapour using a ground-based single-channel microwave radiometerInt. J. Remote Sensing, 24(19), 3821–3837.
  150. Jenkins, J. M., M. A. Kolodner, B. J. Butler, S. H. Suleimann, and P. G. Steffes (2002), Microwave Remote Sensing of the Temperature and Distribution of Sulfur Compounds in the Lower Atmosphere of VenusIcarus, 158(2), 312–328, doi:10.1006/icar.2002.6894.
  151. Jensen, E. J., O. W. Toon, S. A. Vay, J. Ovarlez, R. May, T. P. Bui, C. H. Twohy, B. W. Gandrud, R. F. Pueschel, and U. Schumann (2001), Prevalence of ice-supersaturated regions in the upper troposphere: Implications for optically thin ice cloud formationJ. Geophys. Res., 106(D15), 17,253–17,266.
  152. Jensen, E. and L. Pfister (2005), Implications of persistent ice superaturation in clod cirrus for stratosphere water vaporGeophys. Res. Lett., 32, L01808, doi:10.1029/2004GL021125.
  153. Jiang, J. H., H. Su, C. Zhai, V. S. Perun, A. Del Genio, L. S. Nazarenko, L. J. Donner, L. Horowitz, C. Seman, J. Cole, A. Gettelman, M. A. Ringer, L. Rotstayn, S. Jeffrey, T. Wu, F. Brient, J.-L. Dufresne, H. Kawai, T. Koshiro, M. Watanabe, T. S. L'Ecuyer, E. M. Volodin, T. Iversen, H. Drange, M. D. S. Mesquita, W. G. Read, J. W. Waters, B. Tian, J. Teixeira, and G. L. Stephens (2012), Evaluation of cloud and water vapor simulations in CMIP5 climate models using NASA "A-Train" satellite observationsJ. Geophys. Res., 117, D14105, doi:10.1029/2011JD017237.
  154. Johnsen, K.-P. and S. Q. Kidder (2002), Water vapor over Europe obtained from remote sensors and compared with a hydrostatic NWP modelPhys. Chem. Earth, 27, 371–375.
  155. Johnsen, K.-P., J. Miao, and S. Q. Kidder (2004), Comparison of atmospheric water vapor over Antarctica derived from CHAMP/GPS and AMSU-B dataPhys. Chem. Earth, 29, 251–255, doi:10.1016/j.pce.2004.01.005.
  156. Jones, D. T. Llewellyn, R. J. Knight, and H. A. Gebbie (1978), Absorption by water vapour at 7.1 cm-1 and its temperature dependenceNature, 247, 876–878.
  157. de la Torre Juárez, M. and M. Nilsson (2002), On the detection of water vapor profiles and thin moisture layers from atmospheric radio occultationsJ. Geophys. Res., 1–25.
  158. Kahn, B. H., K. Nan Liou, S.-Y. Lee, E. F. Fishbein, S. DeSouza-Machado, A. Eldering, E. J. Fetzer, S. E. Hannon, and L. Larrabee Strow (2005), Nighttime cirrus detection using Atmospheric Infrared Sounder window channels and total column water vaporJ. Geophys. Res., 110, D07203, doi:10.1029/2004JD005430.
  159. Kahn, B. H. and J. Teixeira (2009), A Global Climatology of Temperature and Water Vapor Variance Scaling from the Atmospheric Infrared SounderJ. Climate, 22(20), 5558–5576, doi:10.1175/2009JCLI2934.1.
  160. Kalmykov, Y. P. and S. V. Titov (1993), Molecular absorption by water vapor in the millimeter and submillimeter rangesOpt. Spectro., 75(3), 361–364.
  161. Karmakar, P. K., M. Maiti, S. Chattopadhyay, and M. Rahaman (2002), Effects of Water Vapor and Liquid Water on Microwave Absorption, and their ApplicationRadio Sci., 32–36.
  162. Karmakar, P. K., S. Chattopadhyay, and A. K. Sen (1999), Estimates of water vapour absorption over Calcutte at 22.235 GHzInt. J. Remote Sensing, 20(13), 2637–2651.
  163. Karpowicz, B. M. and P. G. Steffes (2011), In search of water vapor on Jupiter: Laboratory measurements of the microwave properties of water vapor under simulated jovian conditionsIcarus, 212(1), 210–223, doi:10.1016/j.icarus.2010.11.035.
  164. Katkov, V. Y. (1997), A Semiempirical Model of Millimeter and Submillimeter Radio Wave Absorption by Atmospheric Water VaporJournal of Communications and Electronics, 42(12), 1344–1349.
  165. Kaye, J. A. (1990), Analysis of the Origins and Implications of the 18O Content of Stratospheric Water VaporJ. Atmos. Chem., 10, 39–57.
  166. Keihm, S. J., Y. Bar-Sever, and J. Liljegren (2001), Water Vapor Radiometer-Global Positioning System Comparison Measurements and Calibration of the 20 to 32 Gigahertz Tropospheric Water Vapor Absorption Model, California Institite of Technology, TMO Progress Report.
  167. Keihm, S. J., Y. Bar-Sever, and J. C. Liljegren (2002), WVR-GPS Comparison Measurements and Calibration of the 20–32 GHz Tropospheric Water Vapor Absorption ModelIEEE Geosci. Remote Sens., 40(6), 1199–1210.
  168. Kempkens, H., R. Mann, and J. Uhlenbusch (1979), Measruements of absorption coefficient of water vapor by means of an H2O laser in the far-infraredInfrared Phys., 19, 585–592.
  169. Kiedron, P., J. Michalsky, B. Schmid, D. Slater, J. Berndt, L. Harrison, P. Racette, E. Westwater, and Y. Han (2001), A Robust Retrieval of Water Vapor Column in Dry Arctic Conditions Using the Rotating Shadowband SpectroratiometerJ. Geophys. Res.
  170. Kilsby, C. G., D. P. Edwards, R. W. Saunders, and J. S. Foot (1992), Water-vapour continuum absorption in the tropics: Aircraft measurements and model comparisonsQ. J. R. Meteorol. Soc., 118, 715–748.
  171. King, M. D., W. P. Menzel, Y. J. Kaufman, D. Tanre, B.-C. Gao, S. Platnick, S. S. Ackerman, L. A. Remer, R. Pincus, and P. A. Hubanks (2003), Cloud and Aerosol Properties, Precipitable Water, and Profiles of Temperature and Water Vapor from MODISIEEE T. Geosci. Remote, 41(2), 442–458.
  172. King, M. D., W. P. Menzel, P. S. Grant, J. S. Myers, G. T. Arnold, S. E. Platnick, L. E. Gumley, S.-C. Tsay, C. C. Moeller, M. Fitzgerald, K. S. Brown, and F. G. Osterwisch (1996), Airborne Scanning Spectormeter for Remote Sensong of Cloud, Aerosol, Water Vapor, and Surface PropertiesJ. Atmos. Oceanic Technol., 13(4), 777–794.
  173. Kleespies, T. J. (2007), Relative Information Content of the Advanced Technology Microwave Sounder and the Combination of the Advanced Microwave Sounding Unit and the Microwave Humidity SounderIEEE T. Geosci. Remote, 45, 2224–2227, doi:10.1109/TGRS.2007.898088.
  174. Klein, M. and A. J. Gasiewski (2000), Nadir sensitivity of passive millimeter and submillimeter wave channels to clear air temperature and water vapor variationsJ. Geophys. Res., 105(D13), 17,481–17,511.
  175. Klein, M. and A. J. Gasiewski (1998), The Sensitivity of Millimeter and Sub-millimeter Frequencies to Atmospheric Temperature and Water Vapor Variations, , pp. 568–571, This paper appears in Geoscience and Remote Sensing Symposium Proceedings, 1998. IGARSS '98. 1998 IEEE International.
  176. Knapp, K. R. (2012), Intersatellite bias of the high-resolution infrared radiation sounder water vapor channel determined using ISCCP B1 dataJ. Appl. Rem. Sens., 6(1), 1–19, doi:10.1117/1.JRS.6.063523.
  177. Koukouli, M. E., P. G. J. Irwin, and F. W. Taylor (2005), Water vapor abundance in Venus' middle atmosphere from Pioneer Venus OIR and Venera 15 FTS measurementsIcarus, 173(1), 84–99, doi:10.1016/j.icarus.2004.08.023.
  178. Kuenzi, K., G. Heygster, and J. Miao (1111), Ice Cloud and Background Water Vapour by Sub-mm and Very-High Frequency MW Radiometry, University Bremen.
  179. Kuz'menko, V. A. (2002), Problem of water vapor absorption continuum in atmospheric windows. Return of dimer hypothesis, Troitsk Institute for Fusion Research.
  180. Lacis, A., Q. Ma, and R. Tipping (1998), Theoretical Calculation of Water Vapor Continuum Absorption, Biological and Environmental Research.
  181. Learner, R. C. M., W. Zhong, J. D. Haigh, D. Belmiloud, and J. Clarke (1999), The Contribution of Unknown Weak Water Vapor Lines to the Absorption of Solar RadiationGeophys. Res. Lett., 26(24), 3609–3612, doi:10.1029/1999GL003681.
  182. Lesht, B. M. and J. C. Liljegren (1996), Comparison of Precipitable Water Vapor Measurements Obtained by Microwave Radiometry and Radiosondes at the Southern Great Plains Cloud and Radiation Testbed Site, Argonne National Laboratory, Pacific Northwest National Laboratory.
  183. Lesht, B. M. (1997), An Internal Analysis of SGP/CART Radiosonde Performance During the September 1996 Water Vapor Intensive Observation Period, Argonne National Laboratory.
  184. Lesht, B. M. (1999), Reanalysis of Radiosonde Data from the 1996 and 1997 Water Vapor Intensive Observation Periods: Application of the Vaisala RS-80H Contamination Correction Algorithm to Dual-Sonde Sounding, Argonne National Laboratory, Ninth ARM Science Team Meeting Proceedings.
  185. Li, Z., J.-P. Muller, and P. Cross (2003), Comparison of precipitable water vapor derived from radiosonde, GPS, and Moderate-Resolution Imaging Spectroradiometer measurementsJ. Geophys. Res., 108(D20), 4651, doi:10.1029/2003JD003372.
  186. Li, L., J. Vivekanandan, C. H. Chan, and L. Tsang (1997), Microwave Radiometric Technique to Retrieve Vapor, Liquid and Ice, Part I- Development of a Neural Network-Based Inversion MethodIEEE Geosci. Remote Sens., 35(2), 224–235.
  187. Liang, C. K., A. Eldering, F. W. Irion, W. G. Read, E. J. Fetzer, B. H. Kahn, and K.-N. Liou (2010), Characterization of merged AIRS and MLS water vapor sensitivity through integration of averaging kernels and retrievalsAtmos. Meas. Tech. Discuss., 3, 2833–2859, doi:10.5194/amtd-3-2833-2010.
  188. Liao, X. and D. Rind (1997), Local upper tropospheric/lower stratospheric clear-sky water vapor and tropospheric deep convectionJ. Geophys. Res., 102(D16), 19,543–19,557.
  189. Liebe, H. J. (1969), Calculated Troposheric Dispersion and Absorption Due to the 22-GHz Water Vapor LineIEEE Trans. Antennas Propag., AP-17(5), 621–627.
  190. Liebe, H. J. (1984), The Atmospheric Water Vapor Continuum Below 300 GHzInt. J. Inf. Millim. Waves, 5(2), 207–227.
  191. Lieberman, R. S., D. A. Ortland, and E. S. Yarosh (2003), Climatology and interannual variability of diurnal water vapor heatingJ. Geophys. Res., 108(D3), doi:10.1029/2002JD002308.
  192. Liljegren, J. C., B. M. Lesht, S. Kato, and E. E. Clothiaux (2001), Evaluation of Profiles of Temperature, Water Vapor, and Cloud Liquid Water from a New Microwave Radiometer, Argonne National Laboratory, Hampton University, Pennsylvania State University, Eleventh ARM Science Team Meeting Proceedings.
  193. Liljegren, J. C., E. R. Westwater, and Y. Han (1997), A Comparison of Integrated Water Vapor Sensors: WVIOP-96, Pacific Northwest National Laboratory, University of Colorado.
  194. Liu, Q. and F. Weng (2005), One-dimensional variational retrieval algorithm of temperature, water vapor, and cloud water profiles from advanced microwave sounding unit (AMSU)IEEE T. Geosci. Remote, 43(5), 1087–1095.
  195. Liu, C., E. Zipser, T. Garrett, J. H. Jiang, and H. Su (2007), How do the water vapor and carbon monoxide "tape recorders" start near the tropical tropopause?Geophys. Res. Lett., 34, L09804, doi:10.1029/2006GL029234.
  196. Luo, Z. and W. B. Rossow (2004), Characterizing Tropical Cirrus Life Cycle, Evlolution, and Interaction with Upper-Tropospheric Water Vapor Using Lagrangian Trajectory Analysis of Satellite ObservationsJ. Climate, 17, 4541–4563.
  197. Lutz, R., T. T. Wilheit, J. R. Wang, and R. K. Kakar (1991), Retrieval of Atmospheric Water Vapor Profiles Using Radiometric Measurements at 183 and 90 GHzIEEE Geosci. Remote Sens. Let., 29(4), 603–609.
  198. Lynch, R., R. R. Gamache, and S. P. Neshyba (1996), Fully complex implementation of the Robert-Bonamy formalism: Half widths and line shifts of H2O broadenend by N2J. Chem. Phys., 105(14), 5711–5721.
  199. Lynch, R., R. R. Gamache, and S. P. Neshyba (1998), N2 and O2 induced Halfwidths and Line Shifts of Water Vapor Transitions in the (301)←(000) and (221)← (000) BandsJ. Quant. Spectrosc. Radiat. Transfer, 59(6), 595–613.
  200. Lynch, R., R. R. Gamache, and S. P. Neshyba (1998), Pressure Broadening of H2O in the (301) ← (000) Band: Effects of Angular Momentum and Close Intermolecular InteractionsJ. Quant. Spectrosc. Radiat. Transfer, 59(6), 615–626.
  201. Ma, Q. and R. H. Tipping (2002), Water vapor millimeter wave foreign continuum: A Lanczos calculation in the coordinate representationJ. Chem. Phys., 117(23), 10581–10596.
  202. Ma, Q. and R. H. Tipping (2003), A simple analytical parameterization for the water vapor millimeter wave foreign continuumJ. Quant. Spectrosc. Radiat. Transfer, 82, 517–531.
  203. Ma, Q., R. H. Tipping, and R. R. Gamache (2010), Uncertainties associated with theoretically calculated N2-broadened half-widths of H2O linesMol. Phys., 108(17), 2225–2252, doi:10.1080/00268976.2010.505209.
  204. Ma, Q. and R. H. Tipping (1990), The atmospheric water continuum in the infrared: Extension of the statistical theory of RosenkranzJ. Chem. Phys., 93(10), 7066–7075.
  205. Ma, Q. and R. H. Tipping (1990), Water vapor continuum in the millimeter spectral regionJ. Chem. Phys., 93(3), 6127–6139.
  206. Maltagliati, Luca, Dmitrij V. Titov, Thérèse Encrenaz, Riccardo Melchiorri, Francois Forget, Horst U. Keller, and Jean-Pierre Bibring (2011), Annual survey of water vapor behavior from the OMEGA mapping spectrometer onboard Mars ExpressIcarus, 213(2), 480–495, doi:10.1016/j.icarus.2011.03.030.
  207. Manabe, T., Y. Furuhama, T. Ihara, S. Saito, H. Tanaka, and A. Ono (1985), Measurements of attenuation and refractive dispersion due to atmospheric water vapor at 80 and 240 GHzInt. J. Inf. Millim. Waves, 6(4), 313–322.
  208. Marchand, R. T. and T. P. Ackerman (2001), An Evaluation of MWR Retrievals of Liquid Water Path and Precipitable Water Vapor, Pacific Northwest National Laboratory, Eleventh ARM Science Team Meeting Proceedings.
  209. Markov, V. N. (1994), Temperature Dependence of Self-Induced Pressure Broadening and Shift of the 643-550 Line of the Water MoleculeJ. Molec. Spectro., 164, 233–238.
  210. Martin, L., C. Maetzler, and N. Kämpfer (2000), Tropospheric Transmission Measurement at 94 GHz to Validate the Liebe Model, Institute of Applied Physics.
  211. Martin, L., C. Mätzler, T. J. Hewison, and D. Ruffieux (2006), Intercomparison of integrated water vapour measurementsMet. Zeit., 15(1), 57–64, doi:10.1127/0941-2948/2006/0098.
  212. Masiello, G. and C. Serio (2005), An effective water vapor self-broadening scheme for look-up-table based radiative transferProc. of SPIE, 4882, 52–61, Remote Sensing of Clouds and the Atmosphere VII; Agia Pelagia, Crete; 24 September 2002 through 27 September 2002; Code 61344, doi:10.1117/12.462580.
  213. Masunaga, H. and C. D. Kummerow (2005), Combined Radar and Radiometer Analysis of Precipitation Profiles for a Parametric Retrieval AlgorithmJ. Atmos. Oceanic Technol., 22, 909–929, doi:10.1175/JTECH1751.1.
  214. McMillan, R. W., J. J. Gallagher, and A. M. Cook (1977), Calculations of Antenna Temperature, Horizontal Path Attenuation, and Zenith Attenuation Due to Water Vapor in the Freuqency Band 150–700 GHzIEEE T. Microw. Theory, MT-25(6), 484–488.
  215. Melsheimer, C. and G. Heygster (2008), Improved Retrieval of Total Water Vapor Over Polar Regions From AMSU-B Microwave Radiometer DataIEEE T. Geosci. Remote, 46, 2307–2322, doi:10.1109/TGRS.2008.918013.
  216. Memmo, A., E. Fionda, T. Paolucci, D. Cimini, R. Ferretti, S. Bonafoni, and P. Ciotti (2005), Comparison of MM5 Integrated Water Vapor With Microwave Radiometer, GPS, and Radiosonde MeasurementsIEEE T. Geosci. Remote, 43(5), 1050–1058.
  217. Menten, K. M. and K. Young (1995), Discovery of strong vibrationally excited water masers at 658 GHz toward evolved starsAstrophys. J., 450, L67–L70.
  218. Mertens, C. J., M. G. Mlynczak, M. Lopez-Puertas, and E. E. Remsberg (2002), Impact of non-LTE process on middle atmospheric water vapor retrievals from simulated measurements of 6.8 μm Earth limb emissionGeophys. Res. Lett., 29(9), doi:10.1029/2001GL014590.
  219. Miao, J., K. Kunzi, G. Heygster, T.A. Lachlan-Cope, and J. Turner (2001), Atmospheric water vapor over Antarctica derived from Special Sensor Microwave/Temperature 2 dataJ. Geophys. Res., 106(D10), 10187–10203.
  220. Michelsen, H. A., et al. (2002), ATMOS version 3 water vapor measurements: Comparisons with observations from two ER-2 Lyman-α hygrometers, MkIV, HALOE, SAGE II, MAS, and MLSJ. Geophys. Res., 107(D3), doi:10.1029/2001JD000587.
  221. Minschwaner, K. and A. E. Dessler (2004), Water Vapor Feedback in the Tropical Upper Troposphere: Model Results and ObservationsJ. Climate, 17, 1272–1282, doi:10.1175/1520-0442(2004)017<1272:WVFITT>2.0.CO;2.
  222. Mlawer, E. J., V. H. Payne, J.-L. Moncet, J. S. Delamere, M. J. Alvarado1, and D. C. Tobin (2012), Development and recent evaluation of the MT_CKD model of continuum absorptionPhil. Trans. R. Soc. A, 370(1968), 2520–2556, doi:10.1098/rsta.2011.0295.
  223. Mlawer, E. J., S. A. Clough, P. D. Brown, and D. C. Tobin (1998), Collision-Induced Effects and the Water Vapor Continuum, Atmospheric and Environmental Research and the University of Wisconsin.
  224. Mlawer, E. J., S. A. Clough, P. D. Brown, and D. C. Tobin (1999), Recent Developments in the Water Vapor Continuum, Atmospheric and Environmental Research, Inc., and University of Wisconsin.
  225. Montoux, N., A. Hauchecorne, J.-P. Pommereau, F. Lefèvre, G. Durry, R. L. Jones, A. Rozanov, S. Dhomse, J. P. Burrows, B. Morel, and H. Bencherif (2009), Evaluation of balloon and satellite water vapour measurements in the Southern tropical and subtropical UTLS during the HIBISCUS campaignAtmos. Chem. Phys., 9, 5299–5319, doi:10.5194/acp-9-5299-2009.
  226. Morland, J., B. Deuber, D. G. Feist, L. Martin, S. Nyeki, N. Kämpfer, C. Maetzler, P. Jeannet, and L. Vuilleumier (2006), The STARTWAVE atmospheric water databaseAtmos. Chem. Phys., 6, 2039–2056, doi:10.5194/acp-6-2039-2006.
  227. Morrey, M. W. and R. S. Harwood (1998), Interhemispheric differences in stratospheric water vapor during late winter, in version 4 MLS measurementsGeophys. Res. Lett., 25(2), 147–150.
  228. Mote, P. W., K. H. Rosenlof, M. E. McIntyre, E. S. Carr, J. C. Gille, J. R. Holden, J. S. Kinnersley, H. C. Pumphrey, J. M. Russel III, and J. W. Waters (1996), An atmospheric tape recorder: The imprint of tropical tropopause temperatures on stratospheric water vaporJ. Geophys. Res., 101(D2), 3989–4006, doi:10.1029/95JD03422.
  229. Muller, B. M., H. E. Fuelberg, and X. Xiang (1994), Simulations of the Effects of Water Vapor, Cloud Liquid Water, and Ice on AMSU Moisture Channel Brightness TemperaturesJ. Appl. Meteorol., 33, 1133–1154.
  230. Murphy, D. M. and T. Koop (2005), Review of the vapour pressures of ice and supercooled water for atmospheric applicationsQ. J. R. Meteorol. Soc., 131(608), doi:10.1256/qj.04.94.
  231. Nawrath, S. (2002), Water Vapor in the Tropical Upper Troposphere: On the Influence of Deep Convection, Universitaet Koeln.
  232. Nedoluha, G. E., M. Kiefer, S. Lossow, R. M. Gomez, N. Kämpfer, M. Lainer, P. Forkman, O. M. Christensen, J. J. Oh, P. Hartogh, J. Anderson, K. Bramstedt, B. M. Dinelli, M. Garcia-Comas, M. Hervig, D. Murtagh, P. Raspollini, W. G. Read, K. Rosenlof, G. P. Stiller, and K. A. Walker (2017), The SPARC water vapor assessment II: intercomparison of satellite and ground-based microwave measurementsAtmos. Chem. Phys., 17(23), 14543–14558, doi:10.5194/acp-17-14543-2017.
  233. Newell, R. E., Y. Zhu, E. V. Browell, S. Ismail, W. G. Read, J. W. Waters, K. K. Kelly, and S. C. Liu (1996), Upper tropospheric water vapor and cirrus: Comparison of DC-8 observations, preliminary UARS microwave limb sounder measurements and meteorological analysesJ. Geophys. Res., 101(D1), 1931–1942.
  234. Niell, A. E., A. J. Coster, F. S. Solheim, V. B. Mendes, P. C. Toor, R. B. Langley, and C. A. Upham (2001), Comparison of measurements of atmospheric wet delay by radiosonde, water vapor radiometer, GPS, and VLBIJ. Atmos. Oceanic Technol., 80, 830–850, doi:10.1175/1520-0426(2001)018<0830:COMOAW>2.0.CO;2.
  235. Niell, A. E., A. J. Coster, F. S. Solheim, V. B. Mendes, P. C. Toor, R. B. Langley, and C. A. Ruggles (1996), Measurements of Water Vapor by GPS, WVR, and Radiosonde, Haystack Observatory, Lincoln Laboratory, Radiometrics Corp., University of New Brunswick.
  236. Nilsson, T. and G. Elgered (2008), Long-term trends in the atmospheric water vapor content estimated from ground-based GPS dataJ. Geophys. Res., 113, D19101, doi:10.1029/2008JD010110.
  237. Ning, T., G. Elgered, and J.M. Johansson (2011), The impact of microwave absorber and radome geometries on GNSS measurements of station coordinates and atmospheric water vapourAdv. Space. Res., 47(2), 186–196, doi:10.1016/j.asr.2010.06.023.
  238. Nitsche, H. (2000), Water Vapour in the Atmosphere, Deutscher Wetterdienst (DWD).
  239. Nitsche, H., H. Steinhagen, and U. Leiterer (1111), Validation of satellite-derived water vapour data in the CM-SAF, Deutscher Wetterdienst.
  240. Offermann, D., B. Schaeler, M. Riese, M. Langfermann, M. Jarisch, G. Eidmann, C. Schiller, H. G. J. Smit, and W. G. Read (2002), Water vapor at the tropopause during the CRISTA 2 missionJ. Geophys. Res., 107(D23), doi:10.1029/2001JD000700.
  241. Ohtani, R. and I. Naito (2000), Comparisons of GPS-derived precipitable water vapors with radiosonde observations in JapanJ. Geophys. Res., 105(D22), 26917–26929, doi:10.1029/2000JD900362.
  242. Oltmans, S. J., H. Vömel, D. J. Hofmann, K. H. Rosenlof, and D. Kley (2000), The increase in stratospheric water vapor from balloonborne, frostpoint hygrometer measurements at Washington, D.C., and Boulder, ColoradoGeophys. Res. Lett., 27(21), 3453–3456, doi:10.1029/2000GL012133.
  243. Orr, B. W. and T. Uttal (2001), Microwave Radiometer Observations of Integrated Atmospheric Water Vapor and Cloud Liquid Water at Sheba and ARM'sNSA Site using new Absorption ModelsJ. Geophys. Res., 106(D6).
  244. Ovarlez, J., P. van Velthoven, G. Sachse, S. Vay, H. Schlager, and H. Ovarlezg (2000), Compariosn of water vapor measurements from POLINAT 2 with ECMWF analyses in high-humidity conditionsJ. Geophys. Res., 105(D3), 3737–3744.
  245. Ovarlez, J., J.-F. Gayet, K. Gierens, J. Ström, H. Ovarlez, F. Auriol, R. Busen, and U. Schumann (2002), Water vapour measurements inside cirrus clouds in Northern and Southern hemispheres during INCAGeophys. Res. Lett., 29(16), 1813, doi:10.1029/2001GL014440.
  246. Ovarlez, J., H. Ovarlez, and H. Teitelbaum (1996), In situ water vapor measurements, and a case study of the drying mechanism of the tropical lower stratosphereQ. J. R. Meteorol. Soc., 122, 1447–1458.
  247. Palm, M., C. Melsheimer, S. Noël, S. Heise, J. Notholt, J. Burrows, and O. Schrems (2010), Integrated water vapor above Ny Ålesund, Spitsbergen: a multisensor intercomparisonAtmos. Chem. Phys., 10, 1215–1226, doi:10.5194/acp-10-1215-2010.
  248. Pardo, J. R., J. Cernicharo, E. Lellouch, T. Encrenaz, and G. Paubert (1995), Ground-based measurements of middle atmospheric water vapor at 183 GHz during very dry tropospheric conditionsUnknown IEEE journal, 1401–1403.
  249. Pardo, J. R., J. Cernicharo, and G. Paubert (1996), Ground-based measurements of middle atmospheric water vapor at 183 GHzJ. Geophys. Res., 101, 28,723–28,730.
  250. Pawson, S., L. Takacs, A. Molod, S. Nebuda, M. Chen, R. Rood, W. L. Read, and M. Fiorino (2001), The tropical upper Troposphere and lower Stratosphere in the GEOS-2 GCMAdv. Space. Res., 27(8), 1457–1465.
  251. Payne, V. H., J. S. Delamere, K. E. Cady-Pereira, R. R. Gamache, J.-L. Moncet, E. J. Mlawer, and S. A. Clough (2008), Air-Broadened Half-Widths of the 22- and 183-GHz Water-Vapor LinesIEEE T. Geosci. Remote, 46(11), 3601–3617, doi:10.1109/TGRS.2008.2002435.
  252. Payne, V. H., E. J. Mlawer, K. E. Cady-Pereira, and J.-L. Moncet (2011), Water Vapor Continuum Absorption in the MicrowaveIEEE Geosci. Remote Sens., 49(6), 2194–2208, doi:10.1109/TGRS.2010.2091416.
  253. Paynter, D. J. and V. Ramaswamy (2011), An assessment of recent water vapor continuum measurements upon longwave and shortwave radiative transferJ. Geophys. Res., 116, D20302, doi:10.1029/2010JD015505.
  254. Paynter, D. and V. Ramaswamy (2012), Variations in water vapor continuum radiative transfer with atmospheric conditionsJ. Geophys. Res., 117, D16310, doi:10.1029/2012JD017504.
  255. Peters, O., J. D. Neelin, and S. W. Nesbitt (2009), Mesoscale Convective Systems and Critical ClustersJ. Atmos. Sci., 66(9), 2913-2924, doi:10.1175/2008JAS2761.1.
  256. Philipona, R., B. Duerr, A. Ohmura, and C. Ruckstuhl (2005), Anthropogenic greenhouse forcing and strong water vapor feedback increase temperature in EuropeGeophys. Res. Lett., 32, doi:10.1029/2006GL023624.
  257. Picon, L., R. Roca, S. Serrar, J. L. Monge, and M. Desbois (2003), A new METEOSAT "water vapor" archive for climate studiesJ. Geophys. Res., 108(D10), doi:10.1029/2002JD002640.
  258. Pierce, D. W., T. P. Barnett, E. J. Fetzer, and P. J. Gleckler (2006), Three-dimensional tropospheric water vapor in coupled climate models compared with observations from the AIRS satellite systemGeophys. Res. Lett., 33, L21701, doi:10.1029/2006GL027060.
  259. Pierrehumbert, R. T., H. Brogniez, and R. Roca (2007), On the Relative Humidity of the Atmosphere, In: The Global Circulation of the Atmosphere, chap. 6, pp. 143–184, Edited by Schneider, T. and A. H. Sobel, Princeton University Press, ISBN 978-0-691-12181-9.
  260. Pierrehumbert, R. T. (1998), Lateral mixing as a source of subtropical water vaporGeophys. Res. Lett., 25(2), 151–154.
  261. Podobedov, V. B., D. F. Plusquellic, and G. T. Fraser (2005), Investigation of the water-vapor continuum in the THz region using a multipass cellJ. Quant. Spectrosc. Radiat. Transfer, 91, 287–295.
  262. Podobedov, V.B., D.F. Plusquellic, K.E. Siegrist, G.T. Fraser, Q. Ma, and R.H. Tipping (2008), New measurements of the water vapor continuum in the region from 0.3 to 2.7 THzJ. Quant. Spectrosc. Radiat. Transfer, 109(3), 458–467, doi:10.1016/j.jqsrt.2007.07.005.
  263. Podobedov, V.B., D.F. Plusquellic, K.M. Siegrist, G.T. Fraser, Q. Ma, and R.H. Tipping (2008), Continuum and magnetic dipole absorption of the water vapor-oxygen mixtures from 0.3 to 3.6 THzJ. Molec. Spectro., 251(1–2), 203–209, doi:10.1016/j.jms.2008.02.021.
  264. Pope, V. D., J. A. Pamment, D. R. Jackson, and A. Slingo (2001), The Representation of Water Vapor and Its Dependence on Vertical Resolution in the Hadley Centre Climate ModelJ. Climate, 14, 3065–3085.
  265. Pougatchev, N., T. August, X. Calbet, T. Hultberg, O. Oduleye, P. Schlüssel, B. Stiller, K. St. Germain, and G. Bingham (2009), IASI temperature and water vapor retrievals — error assessment and validationAtmos. Chem. Phys., 9, 6453–6458, doi:10.5194/acp-9-6453-2009.
  266. Pramualsakdikul, S., R. Haas, G. Elgered, and H.-G. Scherneck (2007), Sensing of diurnal and semi-diurnal variability in the water vapour content in the tropics using GPS measurementsMet. Appl., 14, 403–412, doi:10.1002/met.39.
  267. Pumphrey, H. C. (1999), Validation of a new prototype water vapor retrieval for the UARS Microwave Limb SounderJ. Geophys. Res., 104(D8), 9399–9412.
  268. Racette, P. E., E. R. Westwater, Y. Han, W. Manning, A. Gasiewski, and D. Jones (2000), Millimeter-Wave Radiometric Measurements of Low Amounts of Precipitable Water Vapor, National Aeronautics and Space Administration, University of Colorado, University of Maryland, The Met Office, Tenth ARM Science Team Meeting Proceedings.
  269. Racette, P., R. F. Adler, J. R. Wang, A. J. Gasiewski, D. M. Jakson, and D. S. Zacharias (1996), An Airborne Millimeter-Wave Imaging Radiometer for Cloud, Precipitation, and Atmospheric Water Vapor StudiesJ. Atmos. Oceanic Technol., 13, 610–619.
  270. Racette, P. and E. Westwater (1111), Millimeter-Wave Radiometeric Measurements of Atmospheric Water Vapor at the Department of Energy's North Slope of Alaska Cloud and Radiation Test Site, Pacific Northwest National Laboratory.
  271. Randel, W. J., F. Wu, S. J. Oltmans, K. Rosenlof, and G. E. Nedoluha (2004), Interannual Changes of Stratospheric Water Vapor and Correlations with Tropical Tropopause TemperaturesJ. Atmos. Sci., 61, 2133–2148.
  272. Randel, W. J., F. Wu, H. Vömel, G. E. Nedoluha, and P. Forster (2006), Decreases in stratospheric water vapor after 2001: Links to changes in the tropical tropopause and the Brewer-Dobson circulationJ. Geophys. Res., 111, D12312, doi:10.1029/2005JD006744.
  273. Randel, D. L., T. H. Vonder Haar, M. A. Ringerud G. L. Stephens, T. J. Greenwald, and C. L. Combs (1996), A New Global Water Vapor DatasetBull. Amer. Met. Soc., 1233–1246.
  274. Raval, A. and V. Ramanathan (1989), Observational determination of the greenhouse effectNature, 342, 758–761.
  275. Read, W. G., J. W. Waters, D. L. Wu, E. M. Stone, Z. Shippony, A. C. Smedley, C. C. Smallcomb, S. Oltmans, D. Kley, H. G. J. Smit, J. L. Mergenthaler, and M. K. Karki (2001), UARS Microwave Limb Sounder upper tropospheric humidity measurement: Method and validationJ. Geophys. Res., 106(D23), 32207–32258, doi:10.1029/2000JD000122.
  276. Read, W. G., A. Lambert, J. Bacmeister, R. E. Cofield, L. E. Christensen, D. T. Cuddy, W. H. Daffer, B. J. Drouin, E. Fetzer, L. Froidevaux, R. Fuller, R. Herman, R. F. Jarnot, J. H. Jiang, Y. B. Jiang, K. Kelly, B. W. Knosp, J. J. Kovalenko nd N. J. Livesey, H.-C. Liu, G. L. Manney, H. M. Pickett, H. C. Pumphrey, K. H. Rosenlof, X. Sabounchi, M. L. Santee, M. J. Schwartz, W. V. Snyder, P. C. Stek, H. Su, L. L. Takacs, R. P. Thurstans, H. Vömel, P. A. Wagner, J. W. Waters, C. R. Webster, E. M. Weinstock, and D. L. Wu (2007), Aura Microwave Limb Sounder upper tropospheric and lower stratospheric H[2]O and relative humidity with respect to ice validationJ. Geophys. Res., 112, D24S35, doi:10.1029/2007JD008752.
  277. Read, W. G., J. W. Waters, D. A. Flower, L. Froidevaux, R. F. Jarnot, D. L. Hartmann, R. S. Harwood, and R. B. Rood (1995), Upper-Tropospheric Water Vapor from UARS MLSBull. Amer. Met. Soc., 76(12), 2381–2389, doi:10.1175/1520-0477(1995)076<2381:UTWVFM>2.0.CO;2.
  278. Rieder, M. J. and G. Kirchengast (1999), Physical-statisical retrieval of water vapor profiles using SSM/T-2 sounder dataGeophys. Res. Lett., 26(10), 1397–1400.
  279. Rieder, M. J. and G. Kirchengast (1999), Physical-statistical retrieval of water vapor profiles using SSM/T-2 sounder dataGeophys. Res. Lett., 26(10), 1397–1400, doi:10.1029/1999GL900244.
  280. Robinson, S. E. (1988), The profile algorithm for microwave delay estimation from water vapor radiometer dataRadio Sci., 23(3), 401–408.
  281. Roca, R., S. Louvet, L. Picon, and M. Desbois (2005), A study of convective systems, water vapor and top of the atmosphere cloud radiative forcing over the Indian Ocean using INSAT-1B and ERBE dataMet. Atm. Phys., doi:10.1007/s00703-004-0098-3.
  282. Rocken, C., T. van Hove, and R. Ware (1997), Near real-time GPS sensing of atmospheric water vaporGeophys. Res. Lett., 24(24), 3221–3224.
  283. Rosenkranz, P. W. (1987), Pressure broadening of rotational bands. II. Water vapor from 300 to 1100 cm-1J. Chem. Phys., 87(1), 163–170.
  284. Rosenkranz, P. W. (1995), A Rapid Atmospheric Transmittance Algorithm for Microwave Sounding ChannelsIEEE Geosci. Remote Sens., 33(5), 1135–1140.
  285. Rosenkranz, P. W. (1998), Water vapor microwave continuum absorption: A comparison of measurements and modelsRadio Sci., 33(4), 919–928, (correction in 34, 1025, 1999).
  286. Rozanov, A., K. Weigel, H. Bovensmann, S. Dhomse K.-U. Eichmann, R. Kivi, V. Rozanov, H. Voemel, M. Weber, and J. P. Burrows (2011), Retrieval of water vapor vertical distributions in the upper troposphere and the lower stratosphere from SCIAMACHY limb measurementsAtmos. Meas. Tech., 4, 933–954, doi:10.5194/amt-4-933-2011.
  287. Rudman, S. D., R. W. Saunders, C. G. Kilsby, and P. J. Minnett (1994), Water vapour continuum absorption in mid-latitudes: Aircraft measurements and model comparisonsQ. J. R. Meteorol. Soc., 120, 795–807.
  288. Sajith, V., K. R. Santosh, and H. S. Ram Mohan (2003), Intraseasonal oscillation of total precipitable water over North Indian Ocean and its application in the diagnostic study of coastal rainfallGeophys. Res. Lett., 30(20), doi:10.1029/2003GL017635.
  289. Salby, M., F. Sassi, P. Callaghan, W. Read, and H. Pumphrey (2003), Fluctuations of Cloud, Humidity, and Thermal Structure near the Tropical TropopauseJ. Climate, 16, 3428–3446.
  290. Sapucci, L. F., L. A. T. Machado, J. F. G. Monico, and A. Plana-Fattori (2007), Intercomparison of integrated water vapor estimates from multisensors in the Amazonian regionJ. Atmos. Oceanic Technol., 24, 1880–1894, doi:10.1175/JTECH2090.1.
  291. Sassi, F., M. Salby, H. C. Pumphrey, and W. G. Read (2002), Influence of the Madden-Julian Oscillation on upper tropospheric humidityJ. Geophys. Res., 107(D23), doi:10.1029/2001JD001331.
  292. Savijärvi, H. and A. Määttänen (2010), Boundary-layer simulations for the Mars Phoenix lander siteQ. J. R. Meteorol. Soc., 136, 1497–1505, doi:10.1002/qj.650.
  293. Saykally, R. J. (2013), Viewpoint: Simplest Water Cluster Leaves Behind its Spectral FingerprintPhysics, 6(22), doi:10.1103/Physics.6.22.
  294. Scheve, T. M. and C. T. Swift (1999), Profiling Atmospheric Water Vapor with a K-Band Spectral RadiometerIEEE Geosci. Remote Sens., 37(3), 1719–1729.
  295. Schneider, M. and F. Hase (2009), Ground-based FTIR water vapour profile analysesAtmos. Meas. Tech., 2, 609–619, doi:10.5194/amt-2-609-2009.
  296. Schneider, M., P. M. Romero, F. Hase, T. Blumenstock, E. Cuevas, and R. Ramos (2010), Continuous quality assessment of atmospheric water vapour measurement techniques: FTIR, Cimel, MFRSR, GPS, and Vaisala RS92Atmos. Meas. Tech., 3, 323–338, doi:10.5194/amt-3-323-2010.
  297. Schneider, T., P. A. O'Gorman, and X. J. Levine (2010), Water vapor and the dynamics of climate changesRev. Geophys., 48, RG3001, doi:10.1029/2009RG000302.
  298. Schneider, E. K., B. P. Kirtman, and R. S. Lindzen (1999), Tropospheric Water Vapor and Climate SensitivityJ. Atmos. Sci., 56, 1649–1658.
  299. Schroedter-Homscheidt, M., A. Drews, and S. Heise (2008), Total water vapor column retrieval from MSG-SEVIRI split window measurements exploiting the daily cycle of land surface temperaturesRem. Sen. Env., 112(1), 249–258, doi:10.1016/j.rse.2007.05.006.
  300. Schumann, U. (2002), Aircraft Emissions, Institute fuer Physik der Atmosphaere.
  301. Schwab, J. J., E. W. Weinstock, J. B. Nee, and J. G. Anderson (1990), In Situ Measurement of Water Vapor in the Stratosphere with a Cryogenically Cooled Lyman-Alpha HygrometerJ. Geophys. Res., 95(D9), 13,781–13,798.
  302. Selbach, N., T. J. Hewison, G. Heygster, J. Miao, A. J. McGrath, and J. P. Taylor (2001), Validation of total water vapor retrieval with an airborne millimeter-wave radiometer over Arctic sea ice, xxxx.
  303. Serabyn, E., E. W. Weisstein, D. C. Lis, and J. R. Pardo (1998), Submillimeter Fourier-transform spectrometer measurements of atmospheric opacity above Mauna KeaAppl. Opt., 37(12), 2185–2198.
  304. Shephard, M. W., R. L. Herman, B. M. Fisher, K. E. Cady-Pereira, S. A. Clough, V. H. Payne, D. N. Whiteman, J. P. Comer, H. Vömel, L. M. Miloshevich, R. Forno, M. Adam, G. B. Osterman, A. Eldering, J. R. Worden, L. R. Brown, H. M. Worden, S. S. Kulawik, D. M. Rider, A. Goldman, R. Beer, K. W. Bowman, C. D. Rodgers, M. Luo, C. P. Rinsland, M. Lampel, and M. R. Gunson (2008), Comparison of Tropospheric Emission Spectrometer nadir water vapor retrievals with in situ measurementsJ. Geophys. Res., 113(D15), doi:10.1029/2007JD008822.
  305. Sherwood, S. C., R. Roca, T. M. Weckwerth, and N. G. Andronova (2010), Tropospheric water vapor, convection, and climateRev. Geophys., 48(2), RG2001, doi:10.1029/2009RG000301.
  306. Shi, L. and J. J. Bates (2011), Three decades of intersatellite-calibrated High-Resolution Infrared Radiation Sounder upper tropospheric water vaporJ. Geophys. Res., 116, D04108, doi:10.1029/2010JD014847.
  307. Siegenthaler, A., O. Lezeaux, D. G. Feist, and N. Kämpfer (2001), First Water Vapor Measurements at 183 GHz From the High Alpine Station JungfraujochIEEE Geosci. Remote Sens., 39(9), 2084–2086.
  308. Sierk, B., B. Bürki, H. Becker-Ross, R. Neubert, L. P. Kruse, and H.-G. Kahle (1997), Tropospheric water vapor derived from solar spectrometer, radiometer, and GPS measurementsJ. Geophys. Res., 102(B10), 22411–22424.
  309. Simmer, C. (1993), Kieler Strahlungstranportmodell. Grundlagen und Programmbeschreibung, Institute fuer Meereskunde Kiel, Handbuch zu MWMod.
  310. Simmer, C. (1994), Satellitenfernerkundung hydrologischer Parameter der Atmosphaere mit Mikrowellen, Studien zur Agraroekologie, Schriftenreihe, Band 13.
  311. Simmer, S. (1999), Contributions of Microwave Remote Sensing from Satellite to Studies on the Earth Energy Budget and the Hydrological CycleAdv. Space. Res., 24(7), 897–905.
  312. Simmons, A. J., A. Untch, C. Jakob, P. Kallberg, and P. Unden (1999), Stratospheric water vapour and tropical tropopause temperatures in ECMWF analyses and multi-year simulationsQ. J. R. Meteorol. Soc., 125, 353–386.
  313. Singh, R. P., S. Dey, A. K. Sahoo, and M. Kafatos (2004), Retrieval of water vapor using SSM/I and its relation with the onset of monsoonAnn. Geophys., 3097–3083.
  314. Slanina, Z. (1988), A Theoretical Evaluation of Water Oligomer Populations in the Earth's AtmosphereJ. Atmos. Chem., 6, 185–190.
  315. Slingo, A., J. A. Pamment, R. P. Allan, and P. S. Wilson (2000), Water Vapor Feedbacks in the ECMWF Reanalyses and Hadley Centre Climate ModelJ. Climate, 13, 3080–3098.
  316. Smith, G. J., D. A. Naylor, and P. A. Feldman (2001), Measurements of Atmospheric Water Vapor above Mauna Kea using an infrared RadiometerInt. J. Inf. Millim. Waves, 22(5), 661–678.
  317. Smith, K. M., I. Ptashnik, D. A. Newnham, and K. P. Shine (2004), Absorption by water vapour in the 1 to 2 μm regionJ. Quant. Spectrosc. Radiat. Transfer, 83, 735–749.
  318. Soden, B. J. and S. R. Schroeder (2000), Decadal Variations in Tropical Water Vapor: A Comparison of Observations and a Model SimulationJ. Climate, 13, 3337–3341.
  319. Soden, B. J. (2000), The diurnal cycle of convection, clouds, and water vapor in the tropical upper troposphereGeophys. Res. Lett., 27(15), 2173–2176.
  320. Soden, B. J., R. T. Wetherald, G. L. Stenchikov, and A. Robock (2002), Global Cooling After the Eruption of Mount Pinatubo: A Test of Climate Feedback by Water VaporScience, 296, 727–730.
  321. Soden, B. J., D. D. Turner, B. M. Lesht, and L. M. Miloshevich (2004), An analysis of satellite, radiosonde, and lidar observations of upper tropospheric water vapor from the Atmospheric Radiation Measurement ProgramJ. Geophys. Res.: Atm., 109, D04105, doi:10.1029/2003JD003828.
  322. Soden, B. J., S. A. Ackerman, D. O'C. Starr, S. H. Melfi, and R. A. Ferrare (1994), Comparison of upper tropospheric water vapor from GOES, Raman lidar, and cross-chain loran atmospheric sounding system measurementsJ. Geophys. Res., 99(D10), 21,005–21,016.
  323. Soden, B. J. and R. Fu (1995), A Satellite Analysis of Deep Convection, Upper-Tropospheric Humidity, and the Greenhouse EffectJ. Climate, 8, 2333–2351.
  324. Soden, B. J. and J. R. Lanzante (1996), An Assessment of Satellite and Radiosonde Climatologies of Upper-Tropospheric Water VaporJ. Climate, 9, 1235–1250.
  325. Soden, B. J. and F. P. Bretherton (1996), Interpretation of TOVS water vapor radiances in terms of layer-average relative humidities: Method and climatology for the upper, middle, and lower troposphereJ. Geophys. Res., 101(D5), 9333–9343, doi:10.1029/96JD00280.
  326. Soden, B. J. (1998), Tracking upper tropospheric water vapor radiances: A satellite perspectiveJ. Geophys. Res., 103(D14), 17,069–17,081.
  327. Sohn, B.-J., E.-S. Chung, J. Schmetz, and E. A. Smith (2003), Estimating upper-tropospheric water vapor from SSM/T-2 satellite measurementsJ. Appl. Meteorol., 42(4), 488–504, doi:10.1175/1520-0450(2003)042<0488:EUTWVF>2.0.CO;2.
  328. Sohn, B.-J., E. A. Smith, F. R. Robertson, and S.-C. Park (2004), Derived Over-Ocean Water Vapor Transports from Satellite-Retrieved E - P DatasetsJ. Climate, 17, 1352–1365.
  329. Sohn, B.-J. and J. Schmetz (2004), Water Vapor-Induced OLR Variations Associated with High Cloud Changes over the Tropics: A Study from Meteosat-5 ObservationsJ. Climate, 18, 1987–1996.
  330. Sohn, B.-J., J. Schmetz, R. Stuhlmann, and J.-Y. Lee (2006), Dry Bias in Satellite-Derived Clear-Sky Water Vapor and Its Contribution to Longwave Cloud Radiative ForcingJ. Climate, 19(21), 5570–5580, doi:10.1175/JCLI3948.1.
  331. Sohn, B.-J. and R. Bennartz (2008), Contribution of water vapor to observational estimates of longwave cloud radiative forcingJ. Geophys. Res., 113(D20107), doi:10.1029/2008JD010053.
  332. Sohn, B. J. and S.-C. Park (2010), Strengthened tropical circulations in past three decades inferred from water vapor transportJ. Geophys. Res., 115, D15112, doi:10.1029/2009JD013713.
  333. Solheim, F., J. Godwin, and R. Ware (1998), Passive ground-based remote sensing of atmospheric temperature, water vapor, and cloud liquid water profiles by a frequency synthesized microwave radiometerMet. Zeit.
  334. Solheim, F., J. R. Godwin, E. R. Westwater, Y. Han, S. J. Keihm, K. Marsh, and R. Ware (1998), Radiometric profiling of temperature, water vapor and cloud liquid water using various inversion methodsRadio Sci., 33, 393–404.
  335. Solomon, S., R. W. Portmann, R. W. Sanders, and J. S. Daniel (1998), Absorption of solar radiation by water vapor, oxygen, and related collision pairs in the Earth's atmosphereJ. Geophys. Res., 103(D4), 3847–3858.
  336. Spangenberg, D. A., G. G. Mace, T. P. Ackerman, N. L. Seaman, and B. J. Soden (1997), Evaluation of model-simulated upper troposphere humidity using 6.7 μm satellite observationsJ. Geophys. Res., 102(D22), 25737–25749.
  337. Stevens, B., H. Brogniez, Ch. Kiemle, J. L. Lacour, C. Crevoisier, and J. Kiliani (2017), Structure and Dynamical Influence of Water Vapor in the Lower Tropical TroposphereSur. Geophy., 38(6), 1371–1397, doi:10.1007/s10712-017-9420-8.
  338. Stone, E. M., L. Pan, B. J. Sandor, W. R. Read, and J. W. Waters (2000), Spatial distributions of upper tropospheric water vapor measurements from the UARS Microwave Limb SounderJ. Geophys. Res., 105(D10), 12149–12162, doi:10.1029/2000JD900125.
  339. Straiton, A. W. (1975), Tutorial Papers and ReviewsIEEE Trans. Antennas Propag., 595–597.
  340. Strow, L. L., D. C. Tobin, W. W. McMillan, S. E. Hannon, W. L. Smith, H. E. Revercomb, and R. O. Knuteson (1998), Impact of a new Water Vapor Continuum and Line Shape Model on Observed High Resolution Infrared RadiancesJ. Quant. Spectrosc. Radiat. Transfer, 59(3–5), 303–317.
  341. Su, H., R. W. Read, J. H. Jiang, J. W. Waters, D. L. Wu, and E. J. Fetzer (2006), Enhanced positive water vapor feedback associated with tropical deep convection: New evidence from Aura MLSGeophys. Res. Lett., 33, L05709, doi:10.1029/2005GL025505.
  342. Sutton, E. C. and R. M. Hueckstaedt (1996), Radiometric monitoring of atmospheric water vapor as it pertains to phase correction in millimeter interferometryAstron. Astrosphys. Suppl. Ser., 119, 559–567.
  343. Taylor, J. P., S. M. Newman, T. J. Hewison, and A. McGrath (2003), Water vapour line and continuum absorption in the thermal infrared-reconciling models and observationsQ. J. R. Meteorol. Soc., 129, 2949–2696, doi:10.1256/qj.03.08.
  344. Thies, B. and J. Bendix (2011), Satellite based remote sensing of weather and climate: recent achievements and future perspectivesMet. Appl., 18, 262–295, doi:10.1002/met.288.
  345. Thomas, M. E. and R. J. Nordstrom (1982), The N2-broadened water vapor absorption line shape and infrared continuum absorption- I. Theoretical developmentJ. Quant. Spectrosc. Radiat. Transfer, 28(2), 81–101.
  346. Thomas, M. E. and R. J. Nordstrom (1982), The N2-broadened water vapor absorption line shape and infrared continuum absorption- II. Implementation of the line shapeJ. Quant. Spectrosc. Radiat. Transfer, 28(2), 102–112.
  347. Thomas, M. E. and R. J. Nordstrom (1985), Line shape model for describing infrared absorption by water vaporAppl. Opt., 24(21), 3526–3530.
  348. Tian, B., B. J. Soden, and X. Wu (2004), Diurnal cycle of convection, clouds, and water vapor in the tropical upper troposphere: Satellites versus a general circulation modelJ. Geophys. Res., 109, D10101, doi:10.1029/2003JD004117.
  349. Tian, B., I. M. Held, N-C. Lau, and B. J. Soden (2005), Diurnal cycle of summertime deep convection over North America: A satellite perspectiveJ. Geophys. Res., 110, D08108.
  350. Tipping, R. H. and Q. Ma (1995), Theory of the water vapor continuum and validationsAtmos. Res., 36, 69–94.
  351. Tobin, D. C., H. E. Revercomb, R. O. Knuteson, B. M. Lesht, L. L. Strow, S. E. Hannon, W. F.Feltz, L. A. Moy, E. J. fetzer, and T. S. Cress (2006), Atmospheric Radiation Measurement site atmospheric state best estimates for Atmospheric Infrared Sounder temperature and water vapor retrieval validationJ. Geophys. Res., 111, D09S14, doi:10.1029/2005JD006103.
  352. Tobin, D. C., L. L. Strow, W. J. Lafferty, and W. B. Olson (1996), Experimental investigation of the self- and N2-broadened continuum within the ν2 band of water vaporAppl. Opt., 35(24), 4724–4734.
  353. Tobin, D. C. (1996), Infrared Spectral Lineshapes of Water Vapor and Carbon Dioxid, University of Maryland, PhD Thesis.
  354. Tomasi, C., R. Guzzi, and O. Vittori (1974), A Search for the e-Effect in the Atmospheric Water Vapor ContinuumJ. Atmos. Sci., 31, 255–260.
  355. Townes, C. H. and F. R. Merritt (1946), Water Spectrum Near One-Centimeter Wave-LengthPhys. Rev., 558–559.
  356. Trenberth, K. E., J. Fasullo, and L. Smith (2005), Trends and variability in column-integrated atmospheric water vaporClimate Dynamics, 24, 741–758.
  357. Tretyakov, M.Yu., A.F. Krupnov, M.A. Koshelev, D.S. Makarov, E.A. Serov, and V.V. Parshin (2009), Resonator spectrometer for precise broadband investigations of atmospheric absorption in discrete lines and water vapor related continuum in millimeter wave rangeRev. Sci. Inst., 80(9), 093106.
  358. Tretyakov, M. Y. (2016), Spectroscopy underlying microwave remote sensing of atmospheric water vaporJ. Molec. Spectro., doi:10.1016/j.jms.2016.06.006.
  359. Turner, D. D., W. F. Feltz, and W. L. Smith (1999), Characterizing the Water Vapor Profiling Measurements at the ARM SGP CART Site, Pacific Northwest National Laboratory, University of Wisconsin, National Aeronautics and Space Administration.
  360. Valentin, A., F. Rachet, A. D. Bykov, N. N. Lavrentieva, V. N. Saveliev, and L. N. Sinitsa (1998), J-Dependence of the Lineshift Coeffiecient in the ν2 Water Vapor BandJ. Quant. Spectrosc. Radiat. Transfer, 57(3–5), 165–170.
  361. Valero, F. P. J., W. D. Collins, P. Pilewskie, A. Bucholtz, and P. J. Flatau (1997), Direct Radiometric Observations of the Water Vapor Greenhouse Effect Over the Equatorial Pacific OceanScience, 275, 1773–1776.
  362. van Exter, M., C. Fattinger, and D. Grischkowsky (1989), Terahertz time-domain spectroscopy of water vaporOptics Letters, 14(20), 1128–1130.
  363. Van Vleck, J. H. (1947), The Absorption of Microwaves by Uncondensed Water VaporPhys. Rev., 71(7), 425–433.
  364. Vey, S., R. Dietrich, K.-P. Johnsen, J. Miao, and G. Heygster (2004), Comparison of Tropospheric Water Vapour over Antarctica Derived from AMSU-B Data, Ground-Based GPS Data and the NCEP/NCAR ReanalysisJ. Meteorol. Soc. Jpn., 82(1B), 259–267.
  365. Vigasin, A. A. (2000), Water vapor continuous absorption in various mixtures: possible role of weakly bound complexesJ. Quant. Spectrosc. Radiat. Transfer, 64, 25–40.
  366. Voemel, H., S. J. Oltmans, B. J. Johnson, F. Hasebe, M. Shiotani, M. Fujiwara, N. Nishi, M. Agama, J. Cornejo, F. Paredes, and H. Enriquez (2002), Balloon-borne observations of water vapor and ozone in the tropical upper troposhere and lower stratosphereJ. Geophys. Res., 107(D14), doi:10.1029/2001JD000707.
  367. Wang, J. H., H. L. Cole, D. J. Carlson, E. R. Miller, K. Beierle, A. Paukkunen, and T. K. Laine (2002), Corrections of humidity measurement errors from the Vaisala RS80 radiosonde - Application to TOGA COARE dataJ. Atmos. Oceanic Technol., 19(7), 981–1002, doi:10.1175/1520-0426(2002)019<0981:COHMEF>2.0.CO;2.
  368. Wang, J. R. and W. Manning (2003), Retrieval of Low Integrated Water Vapor Using MIR and SSM/T-2 MeasurementsIEEE T. Geosci. Remote.
  369. Wang, J. R. and W. Manning (2003), Retrievals of Low Integrated Water Vapor Using MIR and SSM/T-2 MeasurementsIEEE Geosci. Remote Sens., 41(3), 630–639, doi:10.1109/TGRS.2003.809933.
  370. Ware, R., C. Alber, C. Rocken, and F. Solheim (1997), Sensing integrated water vapor along GPS ray pathsGeophys. Res. Lett., 24, 417–420.
  371. Waugh, D. W. (2005), Impact of potential vorticity on subtropical upper tropospheric humidityJ. Geophys. Res., 110, D11305, doi:10.1029/2004JD005664.
  372. SPARC water vapour working group (2000), SPARC Assessment of Upper Tropospheric and Stratospheric Water Vapour, WMO/ICSU/IOC World Climate Research Programme.
  373. Weckwerth, T. M., V. Wulfmeyer, R. M. Wakimoto, R. M. Hardesty, J. W. Wilson, and R. M. Banta (1999), NCAR-NOAA Lower-Tropospheric Water Vapor WorkhopBull. Amer. Met. Soc., 80(11), 2339–2357.
  374. Westwater, E. R., Y. Han, A. Gasiewski, M. Klein, P. E. Racette, W. Manning, and B. M. Lesht (2000), A Comparison of Clear-Sky Emission Models with Data Taken During the 1999 Millimeter-Wave Radiometric Arctic Water Vapor Experiment, National Oceanic and Atmospheric Adminstration, National Aeronautics and Space Administration, University of Maryland Baltimore County, Argonne National Laboratory, Tenth ARM Science Team Meeting Proceedings.
  375. Westwater, E. R. and F. O. Guiraud (1980), Ground-based microwave radiometric retrieval of precipitable water vapor in the prescence of clouds with high liquid contentRadio Sci., 15(5), 947–957.
  376. Wilheit, T. T. and K. D. Hutchison (1997), Water vapour profile retrievals from SSM/T-2 data constrained by infrared-based cloud parametersInt. J. Remote Sensing, 18(15), 3263–3277, doi:10.1080/014311697217071.
  377. Wilheit, T. T. (1997), Water vapour profile retrieval from SSMT-2 data constrained by infrared-based cloud parametersInt. J. Remote Sensing, 18(15), 3263–3277.
  378. Wimmers, A. J. and J. L Moody (2001), A fixed-layer estimation of upper tropospheric specific humidity from the GOES water vapor channel: Parameterization and validation of the altered brightness temperature productJ. Geophys. Res., 106(D15), 17,115–17,132.
  379. Wrixon, G. T. (1978), Measurements of Earth-Space Attenuation at 230 GHzIEEE T. Microw. Theory, 26(6), 434–439.
  380. Wu, X., J. J. Bates, and S. J. S. Khalsa (1993), A Climatology of the Water Vapor Band Brightness Temperatures from NOAA Operational SatellitesJ. Climate, 6, 1282–1300.
  381. Wulfmeyer, V., et al. (2003), Lidar Research Network Water Vapor and WindMet. Zeit., 12(1), 5–24.
  382. xxxx (1995), WATER VAPOR in the CLIMATE SYSTEM Special Report. Dezember 1995, American Geophysical Union.
  383. Yasmin, K. and R. L. Armstrong (1990), Theoretical modeling of microwave absorption by water vaporAppl. Opt., 29(13), 1979–1983.
  384. Yasunaga, K., H. Kida, and T. Satomura (2004), The 600–750 hPa relative humidity minimum observed during PEM-Tropics BGeophys. Res. Lett., 30(24), doi:10.1029/2003GL018739.
  385. Zahn, A., V. Barth, K. Pfeilsticker, and U. Platt (1998), Deuterium, Oxygen-18, and Tritium as Tracers for Water Vapour Transport in the Lower Stratosphere and Tropopause RegionJ. Atmos. Chem., 30, 25–47.
  386. Zhang, C., B. E. Mapes, and B. J. Soden (2003), Bimodality in tropical water vapourQ. J. R. Meteorol. Soc., 129, 2847–2866, doi:10.1256/qj.02.166.
  387. Zhu, Z., I. P. Matthews, and A. H. Samuel (1996), Quantitative measurement of analyte gases in a microwave spectrometer using a dynamic sampling methodRev. Sci. Inst., 67(7), 2496–2501.
  388. Zinicheva, M. B. and A. P. Naumov (2002), Rotation Part of the Dielectric Permittivity of Water Vapor for Different Spectral Line ProfilesRadiophys. Quant. Elec., 45(1), 1–6.
  389. Zou, Q. and P. Varanasi (2003), Laboratory measurements of the spectroscopic line parameters of water vapor in the 610–2100 and 3000–4050 cm-1 regions at lower-tropospheric temperaturesJ. Quant. Spectrosc. Radiat. Transfer.