There is currently a filter applied. To see the complete list of publications, clear the filter.
Group references
In the Pipeline
Articles
2002
Kuhn, T., A. Bauer, M. Godon, S. A. Buehler, and K. Kuenzi (2002), Water vapor continuum: Absorption measurements at 350 GHz and model calculations, J. Quant. Spectrosc. Radiat. Transfer, 74(5), 545–562, doi:10.1016/S0022-4073(01)00271-0.
Afsar, M. N., X. Li, and H. Chi (1990), An Automated 60 GHz Open Resonator System for Precision Dielectric Measurement, IEEE T. Microw. Theory, 38(12), 1845–1853.
Allen, K. C. and H. J. Liebe (1983), Tropospheric Absorption and Dispersion of Millimeter and Submillimeter Waves, IEEE Trans. Antennas Propag., AP-31(1), 221–223.
Bauer, A. and M. Godon (2001), Continuum for H2O-X mixtures in the H2O spectral window at 239 GHz; X=C2H4, C2H6 Are collision-induced absorption processes involved?, J. Quant. Spectrosc. Radiat. Transfer, 69, 277–290.
Bauer, A., B. Duterage, and M. Godon (1986), Temperature dependence of water-vapor absorption in the wing of the 183 GHz line, J. Quant. Spectrosc. Radiat. Transfer, 36(4), 307–318.
Bauer, A. and M. Godon (1991), Temperature dependence of water-vapor absorption in linewings at 190 GHz, J. Quant. Spectrosc. Radiat. Transfer, 46(3), 211–220.
Bauer, A., M. Godon, J. Carlier, Q. Ma, and R. H. Tipping (1993), Absorption by H2O and H2O-N2 Mixtures at 153 GHz, J. Quant. Spectrosc. Radiat. Transfer, 50(5), 463–475.
Bauer, A., M. Godon, and Q. Ma (1995), Water vapor absorption in the atmospheric window at 239 GHz, J. Quant. Spectrosc. Radiat. Transfer, 53(4), 411–423.
Bauer, A., M. Godon, J. Carlier, and R. R. Gamache (1996), Absorption of a H2O-CO2 Mixture in the Atmospheric Windows at 239 GHz; H2O-CO2 Linewidths and Continuum, J. Molec. Spectro., 45–57.
Bauer, A., M. Godon, J. Carlier, and R. R. Gamache (1998), Continuum in the Windows of the Water Vapor Spectrum. Absorption of H2O-Ar at 239 GHz and Linewidth Calculations, J. Quant. Spectrosc. Radiat. Transfer, 59(3–5), 273–285.
Becker, G. E. and S. H. Autler (1946), Water Vapor Absorption of Electromagnetic Radiation in the Centimeter Wave-Length Range, Phys. Rev., 70(5–6), 300–307.
Belmiloud, D., R. Schermaul, K. S. Smith, N. F. Zobov, J. W. BRault an R. C. M. Learner, D. A. Newnham, and J. Tennyson (2000), New Studies of the Visible and Near-Infrared Absorption by Water Vapour and Some Problems with the HITRAN database, Geophys. Res. Lett., 27(22), 3703–3706.
Bennartz, R. and U. Lohmann (2001), Impact of improved near infrared water vapor line data on absorption of solar radiation in GCMs, Geophys. Res. Lett., 28(24), 4591–4594.
Bernath, P., M. Carleer, S. Fally, A. Jenouvrier, A. C. Vandaele, C. Hermans, M.-F. Merienne, and R. Colin (1998), The Wulf bands of oxygen, Chem. Phys. Lett., 297, 293–299.
Birnbaum, G. and A. A. Maryott (1962), Collision-Induced Microwave Absorption in Compressed Gases. II. Molecular Electric Quadrupole Moments, J. Chem. Phys., 36(8), 2032–2036.
Birnbaum, G., A. Borysow, and A. Buechele (1993), Collision-induced absorption in mixtures of symmetrical linear and tetrahedral molecules: Methane-nitrogen, J. Chem. Phys., 99(5), 3234–3243.
Birnbaum, G., A. Borysow, and G. S. Orton (1996), Collision-Induced Absorption of H2-H2 and H2-He in the Rotational and Fundamental Bands for Planetary Applications, Icarus, 123, 4–22.
Birnbaum, G. (1111), Collision Induced Spectroscopy: Absorption and Light Scattering, Gaithersburg MD, University of Texas at Austin, University of Manitoba.
Boissoles, J., C. Boulet, R. H. Tipping, A. Brown, and Q. Ma (2003), Theoretical calculation of the translation-rotation collision-induced absorption in N2-N2, O2-O2, and N2-O2 pairs, J. Quant. Spectrosc. Radiat. Transfer, 82, 505–516.
Boissoles, J., R. H. Tipping, and C. Boulet (1994), Theoretical Study of the Collision-Induced Fundamental Absorption Spectra of N2-N2 Pairs for Temperatures between 77 and 297 K, J. Quant. Spectrosc. Radiat. Transfer, 51(4), 615–627.
Borysow, A. (2002), Collision-induced absorption in the infrared: A data base for modelling planetary and stellar atmospheres, University of Copenhagen.
Borysow, A. and L. Frommhold (1986), Collision-Induced Rototranslational Absorption Spectra of N2-N2 Pairs for Temperatures from 50 to 300 K, Astrophys. J., 311, 1043–1057.
Borysow, A. and L. Frommhold (1986), Theoretical Collision-Induced Rototranslational Absorption Spectra for the outer Planets: H2-CH4 Pairs, Astrophys. J., 304, 849–865.
Borysow, A. and M. Moraldi (1992), Effects of Anisotropic Interaction on Collision-Induced Absorption by Pairs of Linear Molecules, Phys. Rev. L, 68(25), 3686–3689.
Bosisio, A. V. and G. Drufuca (2003), Retrieval of two-dimensional absorption coefficient structure from a scanning radiometer at 23.8 GHz, Radio Sci., 38(3), doi:10.1029/2002RS002628.
Boulet, C. and D. Robert (1982), Short time behavior of the dipole autocorrelation function and molecular gases absorption spectrum, J. Chem. Phys., 77(8), 4288–4299.
Brindley, H. E. and J. E. Harries (1998), The Impact of Far I.R. Absorption on clear sky greenhouse forcing: sensitivity studies at high spectral resolution, J. Quant. Spectrosc. Radiat. Transfer, 60(2), 151–180.
Buffey, I. P., W. B. Brown, and H. A. Gebbie (1990), A Theoretical Study of the Infrared Absorption Spectra of Large Water Clusters, J. Chem. Soc. Far. Trans., 86(13), 2357–2360.
Buontempo, U., S. Cunsolo, and G. Jacucci (1975), The far infrared absorption spectrum of N2 in the gas and liquid phases, J. Chem. Phys., 63(6), 2570–2576.
Burch, D. E. (1968), Absorption of Infrared Radiant Energy by CO2 and H2O. III. Absorption by H2O between 0.5 and 36 cm-1 ( 287 μ – 2 cm), J. Optical Soc. o. Am., 58(10), 1383–1394.
Burkhalter, J. H., R. S. Anderson, W. V. Smith, and W. Gordy (1949), A Preliminary Report on the Fine Structue of the Microwave Absoprtion Spectrum of Oxygen, Duke University.
Burkhalter, J. H., R. S. Anderson, W. V. Smith, and W. Gordy (1950), The Fine Structur of the Microwave Absorption Spectrum of Oxygen, Phys. Rev., 79(4), 651–655.
Carlon, H. R. (1978), Phase transition changes in the molecular absorption coefficient of water in the infrared: evidence for clusters, Appl. Opt., 17(20), 3192–3193.
Cavalieri, S., E. Arimondo, and M. Matera (1992), Modification of the far-wing absorption profile due to collisional coherence, Phys. Rev., 45(11), 8005–8010.
Cheruy, F. and N. A. Scott (1995), Contribution to the development of radiative transfer models for high spectral resolution observations in infrared, J. Quant. Spectrosc. Radiat. Transfer, 53(6), 597–611.
Chylek, P. and D. J. W. Geldart (1997), Water vapor dimers and atmospheric absorption of electromagnetic radiation, Geophys. Res. Lett., 24(16), 2015–2018.
Chylek, P., Q. Fu, H. C. W. Tso, and D. J. W. Geldart (1999), Contribution of water vapor dimers to clear sky absorption of solar radiation, Tellus, 51, 304–313.
Clough, S. A., M. W. Shephard, E. J. Mlawer, J. S. Delamere, M. Iacono, K. Cady-Pereira, S. Boukabara, and P. D. Brown (2005), Atmospheric radiative transfer modeling: a summary of the AER codes, J. Quant. Spectrosc. Radiat. Transfer, 91(2), 233–244, doi:10.1016/j.jqsrt.2004.05.058.
Clough, S. A., F. X. Kneizys, and R. W. Davies (1989), Line Shape and the Water Vapor Continuum, Atmos. Res., 23, 229–241, doi:10.1016/0169-8095(89)90020-3.
Collins, W. D., J. K. Hackney, and D. P. Edwards (2002), An updated parameterization for infrared emission and absorption by water vapor in the National Center for Atmospheric Research Community Atmosphere Model, J. Geophys. Res., 107(D22), doi:10.1029/2001JD001365.
Crawford, M. F., H. L. Welsh, and J. L. Locke (1949), Infra-Red Absorption of Oxygen and Nitrogen Induced by Intermolecular Forces, University of Toronto.
Dagg, I. R., G. E. Reesor, and M. Wong (1978), A microwave cavity measurement of collision-induced absorption in N2 and CO2 at 4.6 cm-1, Can. J. Phys., 56, 1037–1045.
Dagg, I. R., A. Anderson an S. Yan, W. Smith, and L. A. A. Read (1985), Collision-induced absorption in nitrogen at low temperatures, Can. J. Phys., 63, 625–631.
Daniel, J. S., S. Solomon, R. W. Sanders, R. W. Portmann, D. C. Miller, and W. Madsen (1999), Implications for water monomer and dimer solar absorption from observations at Boulder, Colorado, J. Geophys. Res., 104(D14), 16,785–16,791.
de Pater, I. and S. T. Massie (1985), Models of the Millimeter-Centimeter Spectra of the Giant Planets, Icarus, 62(1), 143–171, doi:10.1016/0019-1035(85)90177-0.
Dudhia, A., P. E. Morris, and R. J. Wells (2002), Fast monochromatic radiative transfer calculations for limb sounding, J. Quant. Spectrosc. Radiat. Transfer, 74(6), 745–756, doi:10.1016/S0022-4073(01)00285-0.
Emery, R. J., P. Moffat, R. A. Bohlander, and H. A. Gebbie (1975), Measurements of anomalous atmospheric absorption in the wavenumber range 4 cm-1–15cm-1, J. Atm. Terr. Phys., 37, 587–594.
Emery, R. J., A. M. Zavody, and H. A. Gebbie (1980), Measurements of atmospheric absorption in the range 5-17 cm-1 and its temperature dependence, J. Atm. Terr. Phys., 42, 801–807.
English, S. J., C. Guillou, C. Prigent, and D. C. Jones (1994), Aircraft measurements of water vapour continuum absorption millimetre wavelengths, Q. J. R. Meteorol. Soc., 120, 603–625.
English, S. J., D. C. Jones, P. J. Rayer, T. J. Hewison, R. W. Saunders, C. Guillou, C. Prigent, J. Wang, and G. Anderson (1995), Observations of water vapour absorption using airborne microwave radiometers at 89 and 157 Ghz, IEEE, 1395–1404.
Erukhimova, T. L. and E. V. Suvorov (2001), Retrieval of Ozone-Denisty and Atmospheric-Temperature Profiles using the Spectra of Microwave Absorption in two Rotational Ozone Lines, Radiophys. Quant. Elec., 44(1–2), 129–136.
Filippov, N. N., V. P. Ogibalov, and M. V. Tonkov (2002), Line mixing effect on the pure CO2 absorption in the 15 μm region, J. Quant. Spectrosc. Radiat. Transfer, 72, 315–325.
Fomin, B. A. (1995), Effective Interpolation Technique for Line-by-Line Calculations of Radiation Absorption in Gases, J. Quant. Spectrosc. Radiat. Transfer, 53(6), 663–669, doi:10.1016/0022-4073(95)00029-K.
Fowler, B. W. and C. C. Sung (1976), Inadequacy of the statistical many-body model for molecular infrared absorption in the far wings, Phys. Rev., 13(6), 2318–2321.
Gagliardi, G., G. Rusciano, and L. Gianfrani (2000), Narrow H218O lines and new absolute frequency references in the near-IR, J. Opt. A: Pure Appl. Opt., 2, 310–313.
Gamache, R.R., S. Kennedy, R. Hawkins, and L.S. Rothman (2000), Total internal partition sums for molecules in the terrestrial atmosphere, J. Molec. Struct., 407–425.
Gao, B.-C., K. Meyer, and P. Yang (2004), A new concept on remote sensing of cirrus optical depth and effective ice particle size using strong water vapor absorption channels near 1.38 and 1.88 micrometer, IEEE T. Geosci. Remote, 42(9), 1891–1899.
Godon, M., A. Bauer, and R. R. Gamache (2000), The Continuum of Water Vapor Mixed with Methane: Absolute Absorption at 239 GHz and Linewidth Calculations, J. Molec. Spectro., 202, 293–202.
Godon, M., J. Carlier, and A. Bauer (1992), Laboratory studies of water vapor absorption in the atmospheric window at 213 GHz, J. Quant. Spectrosc. Radiat. Transfer, 47(4), 275–285.
Golovko, V. F. (2001), Continuous absorption of water vapor and a problem of the absorption enhancement in the humid atmosphere, J. Quant. Spectrosc. Radiat. Transfer, 69, 431–446.
Golubiatnikov, G. Y., M. A. Koshelev, and A. F. Krupnov (2003), Reinvestigation of pressure broadening parameters at 60-GHz band and single 118.75 GHz oxygen lines at room temperature, J. Molec. Spectro., 222, 191–197.
Greenblatt, G. D., J. J. Orlando, J. B. Burkholder, and A. R. Ravishankara (1990), Absorption Measurements of Oxygen Between 330 and 1140 nm, J. Geophys. Res., 95(D11), 18,577–18,582.
Groenenboom, G. C., E. M. Mas, R. Bukowski, K. Szalewicz, P. E. S. Wormer, and A. van der Avoird (2000), Water Pair and Three-Body Potential of Spectroscopic Quality from Ab Initio Calculations, Phys. Rev. L, 84(18), 4072–4075.
Gruszka, M. and A. Borysow (1997), Roto-Translational Collision-Induced Absorption of CO2 for the Atmosphere of Venus at Frequencies from 0 to 250 cm-1, at Temperatures from 200 to 800 K, Icarus, 172–177.
Hannon, S., L. L. Strow, and W. W. McMillan (1996), Atmospheric Infrared Fast Transmittance Models: A Comparison of Two Approaches, University of Maryland Baltimore Country.
Hartmann, J. M., C. Brodbeck, P.-M. Flaud, R. H. Tipping, A. Brown, Q. Ma, and J. Lievin (2002), Collision-induced absorption in the ν2 fundamental band of CH4.II. Dependence on the perturber gas, J. Chem. Phys., 116(1), 123–127.
Hartmann, J. M. (1989), Measurements and calculations of CO2 room-temperature high-pressure spectra in the 4.3 μm region, J. Chem. Phys., 90, 2944–2950.
Hartmann, J.-M., J.-P. Bouanich, K. W. Jucks, G. Blanquet, J. Walrand, D. Bermejo, J.-L. Domenech, and N. Lacome (1999), Line-mixing effects in N2O Q branches: Model, laboratory, and atmospheric spectra, J. Chem. Phys., 110(4), 1959–1968.
Harvey, J. N., J. O. Jung, and R. B. Gerber (1998), Ultraviolet spectroscopy of water clusters: Excited electronic states and absorption line shape of (H2O)n, n=2-6, J. Chem. Phys., 109(20), 8747–8750.
Heastie, R. and D. H. Martin (1962), Collision-Induced Absorption of Submillimeter Radiation by Non-Polar Atmospheric Gases, Can. J. Phys., 40, 122–127.
Hill, R. J. (1986), Water vapor-absorption line shape comparison using 22-GHz line: The Van Vleck-Weisskopf shape affirmed, Radio Sci., 21(3), 447–451.
Hill, R. J. (1987), Absorption by the Tails of the Oxygen Microwave Resonances at Atmospheric Pressures, IEEE Trans. Antennas Propag., AP-35(2), 198–204.
Hinderling, J., M. W. Sigrist, and F. K. Kneubuehl (1987), Laser-photoacoustic spectroscopy of water-vapor continuum and line absorption in the 8 to 14 μm atmospheric window, Infrared Phys., 27(2), 63–120.
Ho, W., I. A. Kaufman, and P. Thaddeus (1966), Laboratory measurement of microwave absorption in models of the atmosphere of Venus, J. Geophys. Res., 71(21), 5091–5108.
Hong, G. (2007), Parameterization of scattering and absorption properties of nonspherical ice crystals at microwave frequencies, J. Geophys. Res., 112, D11208, doi:10.1029/2006JD008364.
Hudis, E., Y. Ben-Aryeh, and U. P. Oppenheim (1992), The Contribution of Third Order Linear Absorption to the Water Vapor Continuum, J. Quant. Spectrosc. Radiat. Transfer, 47(5), 319–323.
Jones, D. T. Llewellyn, R. J. Knight, and H. A. Gebbie (1978), Absorption by water vapour at 7.1 cm-1 and its temperature dependence, Nature, 247, 876–878.
Karmakar, P. K., M. Maiti, S. Chattopadhyay, and M. Rahaman (2002), Effects of Water Vapor and Liquid Water on Microwave Absorption, and their Application, Radio Sci., 32–36.
Karmakar, P. K., S. Chattopadhyay, and A. K. Sen (1999), Estimates of water vapour absorption over Calcutte at 22.235 GHz, Int. J. Remote Sensing, 20(13), 2637–2651.
Karman, T., I.E. Gordon, A. van der Avoird, Y. I. Baranov, C. Boulet, B. J. Drouin, G. C. Groenenboom, M. Gustafsson, J.-M. Hartmann, R. L. Kurucz, L. S. Rothman, K. Sun, K. Sung, R. Thalman, H. Tran, E. H. Whishnow, R. Wordsworth, A. A. Vigasin, R. Volkamer, and W. J. van der Zande (in press 2019), Update of the HITRAN collision-induced absorption section, Icarus, doi:10.1016/j.icarus.2019.02.034.
Katkov, V. Y. (1997), A Semiempirical Model of Millimeter and Submillimeter Radio Wave Absorption by Atmospheric Water Vapor, Journal of Communications and Electronics, 42(12), 1344–1349.
Keihm, S. J., Y. Bar-Sever, and J. C. Liljegren (2002), WVR-GPS Comparison Measurements and Calibration of the 20–32 GHz Tropospheric Water Vapor Absorption Model, IEEE Geosci. Remote Sens., 40(6), 1199–1210.
Kempkens, H., R. Mann, and J. Uhlenbusch (1979), Measruements of absorption coefficient of water vapor by means of an H2O laser in the far-infrared, Infrared Phys., 19, 585–592.
Kilsby, C. G., D. P. Edwards, R. W. Saunders, and J. S. Foot (1992), Water-vapour continuum absorption in the tropics: Aircraft measurements and model comparisons, Q. J. R. Meteorol. Soc., 118, 715–748.
Kitai, S. D., A. P. Naumov, and N. N. Osharina (2002), Structure of Thermal Radio Emission from the Atmosphere in the middle Part of the Submillimeter Wavelength Range, Radiophys. Quant. Elec., 45(2), 147–152.
Klein, M. and A. J. Gasiewski (2000), Nadir sensitivity of passive millimeter and submillimeter wave channels to clear air temperature and water vapor variations, J. Geophys. Res., 105(D13), 17,481–17,511.
Koshelev, M. A., I. N. Vilkov, D. S. Makarov, M. Yu. Tretyakov, B. Vispoel, R. R. Gamache, D. Cimini, F. Romano, and P.W. Rosenkranz (2021), Water vapor line profile at 183-GHz: Temperature dependence of broadening, shifting, and speed-dependent shape parameters, J. Quant. Spectrosc. Radiat. Transfer, 262, 107472, doi:10.1016/j.jqsrt.2020.107472.
Krupnov, A. F., V. N. Markov, G. Y. Golubyatnikov, I. I. Leonov, Y. N. Konoplev, and V. V. Parshin (1999), Ultra-Low Absorption Measurement in Dielectrics in Millimeter- and Submillimeter-Wave Range, IEEE T. Microw. Theory, 47(3), 284–289.
Kunde, V., R. Hanel, W. Maguire, D. Gautier, J. P. Baluteau, A. Marten, A. Chedin, N. Husson, and N. Scott (1982), The tropospheric gas composition of Jupiter's north equatorial belt (NH3, PH3, GeH4, H2O) and the Jovian D/H isotopic ratio, Astrophys. J., 263, 443–467.
Kuntz, M. and M. Höpfner (1999), Efficient line-by-line calculation of absorption coefficients, J. Quant. Spectrosc. Radiat. Transfer, 63(1), 97–114, doi:10.1016/S0022-4073(98)00140-X.
Kuz'menko, V. A. (2002), Problem of water vapor absorption continuum in atmospheric windows. Return of dimer hypothesis, Troitsk Institute for Fusion Research.
Latterty, W. L., A. M. Solodov, A. Weber, W. B. Olson, and J.-M. Hartmann (1996), Infrared collision-induced absorption by N2 near 4.3 μm for atmospheric applications: measurements and empirical modeling, Appl. Opt., 35(30), 59911–5917.
Learner, R. C. M., W. Zhong, J. D. Haigh, D. Belmiloud, and J. Clarke (1999), The Contribution of Unknown Weak Water Vapor Lines to the Absorption of Solar Radiation, Geophys. Res. Lett., 26(24), 3609–3612, doi:10.1029/1999GL003681.
Lewis, B. R., S. T. Gibson, and K. Yoshino (1999), Comment on "Ab initio dynamic dipole polarizabilities for CO2, its photoabsorption spectrum in the Schumann-Runge region, and long-range interaction coefficients for its dimer", J. Chem. Phys., 111(24), 11236–11237.
Li, W., T. W. Tong, D. Dobranich, and L. A. Gritzo (1995), A Combined Narrow- and Wide-Band Model for Computing the Spectral Absorption Coefficient of CO2,CO, H2O, CH4, C2H2, and NO, J. Quant. Spectrosc. Radiat. Transfer, 54(6), 961–970.
Liebe, H., T. Dillon, M. Vetter, and M. C. Thompson Jr. (1968), Dispersion Studies of Moist Air Near 1.35 cm Wavelength, Conference of Propospheric Wave Propagation.
Liebe, H. J. (1969), Calculated Troposheric Dispersion and Absorption Due to the 22-GHz Water Vapor Line, IEEE Trans. Antennas Propag., AP-17(5), 621–627.
Liebe, H. J., W. M. Welch, and R. Chandler (1973), Laboratory Measurements of Electromagnetic Properties of Atmospheric Gases at Millimeter Wavelengths, Electronics Division of the Institution of Electrical Engineers.
Liebe, H. J., G. G. Gimmestad, and J. D. Hopponen (1977), Atmospheric Oxygen Microwave Spectrum- Experiment versus Theory, IEEE Trans. Antennas Propag., AP-25(3), 327–335.
Liebe, H. J. (1977), Variability of EHF Air Refractivity with Respect to Temperature, Pressure, and Frequency, IEEE Trans. Antennas Propag., AP-25(3), 336–354.
Liebe, H. J., K. C. Allen, G. R. Hand, R. H. Espeland, and E. J. Violette (1985), Millimeter-Wave Propagation in Moist Air: Model Versusu Path Data, NTIA.
Liebe, H. J., T. Manabe, and G. A. Hufford (1989), Millimeter-Wave Attenuation and Delay Rates Due to Fog/Cloud Conditions, IEEE Trans. Antennas Propag., 37(12), 1617–1623.
Liebe, H. J., P. W. Rosenkranz, and G. A. Hufford (1992), Atmospheric 60-GHz Oxygen Spectrum: New Laboratory Measurements and Line Parameters, J. Quant. Spectrosc. Radiat. Transfer, 48(5/6), 629–643.
Liebe, H. J., G. A. Hufford, and M. G. Cotton (1993), Propagation modeling of moist air and suspended water/ice particles at frequencies below 1000 GHz, In: AGARD 52nd Specialists' Meeting of the Electromagnetic Wave Propagation Panel, pp. 3-1–3-10.
Low, G. R. and H. G. Kjaergaard (1999), Calculation of OH-stretching band intensities of the water dimer and trimer, J. Chem. Phys., 110(18), 9104–9115.
Ma, Q. and R. H. Tipping (2003), A simple analytical parameterization for the water vapor millimeter wave foreign continuum, J. Quant. Spectrosc. Radiat. Transfer, 82, 517–531.
Ma, Q. and R. H. Tipping (1991), A far wing line shape theory and its application to the water continuum absorption in the infrared region.I, J. Chem. Phys., 95(9), 6290–6301.
Ma, Q. and R. H. Tipping (1992), A far wing line shape theory and its application to the foreign-broadened water continuum absorption. III, J. Chem. Phys., 97(2), 818–828.
Ma, Q. and R. H. Tipping (1994), The Detailed Balance Requirement and General Empirical Formalisms for Continuum Absorption, J. Quant. Spectrosc. Radiat. Transfer, 51(5), 751–757.
Manabe, T., Y. Furuhama, T. Ihara, S. Saito, H. Tanaka, and A. Ono (1985), Measurements of attenuation and refractive dispersion due to atmospheric water vapor at 80 and 240 GHz, Int. J. Inf. Millim. Waves, 6(4), 313–322.
Manabe, T., R. O. Debolt, and H. J. Liebe (1989), Moist-Air Attenuation at 96 GHz Over 21-km Line-of-Sight-Path, IEEE Trans. Antennas Propag., 37(2), 262–266.
Marchand, R., T. Ackerman, E. R. Westwater, S. A. Clough, K. Cady-Pereira, and J. C. Liljegren (2003), An assessment of microwave absorption models and retrievals of cloud liquid water using clear-sky data, J. Geophys. Res., 108(D24), doi:10.1029/2003JD003843.
Maric, D. and J. P. Burrow (1996), Application of a Gaussian Distribution Function To Describe Molecular UV-Visible Absorption Continua. 1. Theory, J. Phys. Chem., 100(21), 8645–8659.
Maric, D. and J. P. Burrow (1999), Analysis of the UV absorption spectrum of Cl0:a comparative study of four methods for spectral computations, J. Quant. Spectrosc. Radiat. Transfer, 62, 345–369.
Maryott, A. A. and G. Birnbaum (1962), Collision-Induced Microwave Absorption in Compressed Gases. I. Dependence on Density, Temperature, and Frequency in CO2, J. Chem. Phys., 36(8), 2026–2036.
Mate, B., C. L. Lugez, A. M. Solodov, G. T. Fraser, and W. J. Latterty (2000), Investigation of the collision-induced absorption by O2 near 6.4 μm in pure O2 and O2/N2 mixtures, J. Geophys. Res., 105(D17), 22,225–22,230.
Mate, B., C Lugez, G. T. Fraser, and W. J. Latterty (1999), Absolute intensities for the O2 1.27 μm continuum absorption, J. Geophys. Res., 104(D23), 30,585–30,590.
Menoux, V., R. Le Doucen, C. Boulet, A. Roblin, and A. M. Bouchardy (1993), Collision-induced absorption in the fundamental band of N2: temperature dependence of the absorption for N2-N2 and N2-O2 pairs, Appl. Opt., 32(3), 263–268.
Miller, P. F. and H. A. Gebbie (1993), Stimulated Emission of Atmospheric Water Vapour between 2cm-1 and 30cm-1 Photoinduced by Infrared Radiation, Infrared Phys., 34(1), 23–31.
Mishchenko, M. I., L. D. Travis, and A. A. Lacis (2002), Scattering, Absorption, and Emission of Light by Small Particles, Cambridge University Press, ISBN 0-521-78252-X.
Mitsel, A. A., S. A. Tashkun, I. G. Okladnikov, and A. V. Milyakov (2001), Methodological problems of compiling the data bank of atmospheric gas absorption coefficients, Proc. of SPIE, 4341, 616–625, 7th International Symposium on Atmospheric and Ocean Optics; Tomsk; 19 July 2000 through 22 July 2000; Code 58035, doi:10.1117/12.412007.
Mlawer, E. J., V. H. Payne, J.-L. Moncet, J. S. Delamere, M. J. Alvarado1, and D. C. Tobin (2012), Development and recent evaluation of the MT_CKD model of continuum absorption, Phil. Trans. R. Soc. A, 370(1968), 2520–2556, doi:10.1098/rsta.2011.0295.
Mlawer, E. J., S. A. Clough, P. D. Brown, and D. C. Tobin (1998), Collision-Induced Effects and the Water Vapor Continuum, Atmospheric and Environmental Research and the University of Wisconsin.
Mlawer, E. J., S. A. Clough, P. D. Brown, T. M. Stephen, J. C. Landry, A. Goldman, and F. J. Murcray (1998), Oberserved atmospheric collision-induced absorption in near-infrared oxygen bands, J. Geophys. Res., 103(D4), 3859–3863.
Moreau, G., J. Boissoles, C. Boulet, R. H. Tipping, and Q. Ma (2000), Theoretical study of the collision-induced fundamental absorption spectra of O2-O2 pairs for temperatures between 193 and 273 K, J. Quant. Spectrosc. Radiat. Transfer, 64, 87–107.
Moreau, G., J. Boissoles, R. Le Doucen, C. Boulet, R. H. Tipping, and Q. Ma (2001), Experimental and theoretical study of the collision-induced fundamental absorption spectra of N2-O2 and O2-N2 pairs, J. Quant. Spectrosc. Radiat. Transfer, 69, 254–256.
Moreau, G., J. Boissoles, R. Le Doucen, C. Boulet, R. H. Tipping, and Q. Ma (2001), Metastable dimer contributions to the collision-induced fundamental absorption spectra of N2 and O2 pairs, J. Quant. Spectrosc. Radiat. Transfer, 70, 99–113.
Murphy, J. S. and J. E. Boggs (1969), Collision Broadening of Rotational Absorption Lines. V. Pressure Broadening of Microwave Absorption Spectra Involving Asymmetric-Top Molecules, J. Chem. Phys., 51(9), 3891–3901.
Neshyba, S.P., T. C. Grenfell, and S. G. Warren (2003), Representation of a nonspherical ice particle by a collection of independent spheres for scattering and absorption of radiation: 2. Hexagonal columns and plates, J. Geophys. Res., 108(D15), doi:10.1029/2002JD003302.
Newnham, D. A. and J. Ballard (1998), Visible absorption cross sections and intergrated absorption intensities of molecular oxygen (O2 and O4), J. Geophys. Res., 103(D22), 28,801–28,816.
Nguyen, A. V. (2000), Improved Approximation of Water Dielectric Permittivity for Calculation of Hamaker Constants, Journal of Colliod and Interface Science, 229(2), 648–651, doi:10.1006/jcis.2000.7010.
Occelli, R., H. Chaaban, J. M. Moynault, R. Coulon, and A. Balsamo (1991), Submillimetric and millimetric collision-induced absorption spectra in compressed gaseous nitrogen using very low-frequency optical source, Can. J. Phys., 69, 1264–1272.
Olsen, R., D. V. Rogers, and D. B. Hodge (1978), The aRbrelation in the calculation of rain attenuation, IEEE Trans. Antennas Propag., 26(2), 318–329, doi:10.1109/TAP.1978.1141845.
Orlando, J. J., G. S. Tyndall, K. E. Nickerson, and J. G. Calvert (1991), The Temperature Dependence of Collision-Induced Absorption by Oxygen Near 6 μm, J. Geophys. Res., 96(D11), 20,755–10,760.
Orr, B. W. and T. Uttal (2001), Microwave Radiometer Observations of Integrated Atmospheric Water Vapor and Cloud Liquid Water at Sheba and ARM'sNSA Site using new Absorption Models, J. Geophys. Res., 106(D6).
Palmer, I. J., W. B. Brown, and I. H. Hillier (1996), Simulation of the charge transfer absorption of the H2O/O2 van der Waals complex using high level ab initio calculations, J. Chem. Phys., 104(9), 3198–3204.
Pardo, J. R., J. Cernicharo, and E. Serabyn (2001), Atmospheric Transmission at Microwaves (ATM): An Improved Model for Millimeter/Submillimeter Applications, IEEE Trans. Antennas Propag., 49(12), 1683–1694.
Pardo, J. R., E. Serabyn, and J. Cernicharo (2001), Submillimeter atmospheric transmission measurements on Mauna Kea during extremely dry El Nino conditions: implications for broadband opacity contributions, J. Quant. Spectrosc. Radiat. Transfer, 68, 419–433.
Pardo, J. R., J. Cernicharo, E. Lellouch, T. Encrenaz, and G. Paubert (1995), Ground-based measurements of middle atmospheric water vapor at 183 GHz during very dry tropospheric conditions, Unknown IEEE journal, 1401–1403.
Parker, J. (2001), Practical inclusion CO2 line mixing effects in a line-by-line atmospheric retrieval system, J. Quant. Spectrosc. Radiat. Transfer, 69, 327–349.
Paul, J. B., L. Lapson, and J. G. Anderson (2001), Ultrasensitive absorption spectroscopy with a high-finesse optical cavity and off-axis alignment, Appl. Opt., 40(27), 4904–4910.
Paul, J. B., C. P. Collier, R. J. Saykally, J. J. Scherer, and A. O'Keefe (1997), Direct Measurement of Water Cluster Concentrations by Infrared Cavity Ringdown Laser Absorption Spectroscopy, J. Chem. Phys., 101, 5211–5214.
Payne, V. H., J. S. Delamere, K. E. Cady-Pereira, R. R. Gamache, J.-L. Moncet, E. J. Mlawer, and S. A. Clough (2008), Air-Broadened Half-Widths of the 22- and 183-GHz Water-Vapor Lines, IEEE T. Geosci. Remote, 46(11), 3601–3617, doi:10.1109/TGRS.2008.2002435.
Paynter, D. J. and V. Ramaswamy (2011), An assessment of recent water vapor continuum measurements upon longwave and shortwave radiative transfer, J. Geophys. Res., 116, D20302, doi:10.1029/2010JD015505.
Read, W. R., K. W. Hillig II., E. A. Cohen, and H. M. Pickett (1988), The Measurement of Absolute Absorption of Millimeter Radiation in Gases: The Absorption of CO and O2, IEEE Trans. Antennas Propag., 36(8), 1136–1143.
Reber, E. E., R. L. Mitchell, and C. J. Carter (1970), Attenuation to the 5-mm Wavelength Band in a Variable Atmosphere, IEEE Trans. Antennas Propag., AP-18(4), 472–490.
Richard, C., I. E. Gordon, L. S. Rothman, M. Abel, L. Frommhold, M. Gustafsson, J.-M. Hartmann, C. Hermans, W. J. Lafferty, G. S. Orton, K.M. Smith, and H. Tran (2012), New section of the HITRAN database: Collision-induced absorption (CIA), J. Quant. Spectrosc. Radiat. Transfer, 113, 1276–1285, doi:10.1016/j.jqsrt.2011.11.004.
Rosenkranz, P. W. (2002), Radiative Transfer Solution Using Initial Values in a Scattering and Absorbing Atmosphere With Surface Reflection, IEEE Geosci. Remote Sens., 40(8), 1889–1892.
Rosenkranz, P. W. (2005), Comment on "Uncertainties in the Temperature Dependence of the Line-Coupling Parameters of the Microwave Oxygen Band: Impact Study, IEEE Geosci. Remote Sens., 43(9), 2160–2161.
Rosenkranz, P. W. (1982), Comment on "Absorption and dispersion in the O2 microwave spectrum at atmospheric pressures", J. Chem. Phys., 72(4), 2216–2217.
Rosenkranz, P. W. (1993), Absorption of microwaves by atmospheric gases, In: Atmospheric remote sensing by microwave radiometry, pp. 37–90, Edited by Janssen, M. A., John Wiley and Sons, Inc., ISBN 0-471-62891-3.
Rosenkranz, P. W. (1998), Water vapor microwave continuum absorption: A comparison of measurements and models, Radio Sci., 33(4), 919–928, (correction in 34, 1025, 1999).
Rothman, L. S., I. E. Gordon, R. J. Barber, H. Dothe R. R. Gamache, A. Goldman, V. I. Perevalov, S. A. Tashkun, and J. Tennyson (2010), HITEMP, the high-temperature molecular spectroscopic database, J. Quant. Spectrosc. Radiat. Transfer, 111, 2139–2150, doi:10.1016/j.jqsrt.2010.05.001.
Rudman, S. D., R. W. Saunders, C. G. Kilsby, and P. J. Minnett (1994), Water vapour continuum absorption in mid-latitudes: Aircraft measurements and model comparisons, Q. J. R. Meteorol. Soc., 120, 795–807.
Scott, N. A. and A. Chedin (1981), A fast line-by-line method for atmospheric absorption computations: the automatized atmospheric absorption atlas, J. Appl. Meteorol., 20(7), 802–812.
Smith, K. M. and D. A. Newnham (2000), Near-infrared absorption cross sections and integrated absorption intensities of molecular oxygen (O2, O2-O2, and O2-N2), J. Geophys. Res., 105(D6), 7383–7396.
Smith, K. M., I. Ptashnik, D. A. Newnham, and K. P. Shine (2004), Absorption by water vapour in the 1 to 2 μm region, J. Quant. Spectrosc. Radiat. Transfer, 83, 735–749.
Smith, W. L., S. Ackerman, H. Revercomb, H. Huang, D. H. DeSlover, W. Feltz, L. Gumley, and A. Collard (1998), Infrared spectral absorption of nearly invisible cirrus clouds, Geophys. Res. Lett., 25(8), 1137–1140.
Solomon, S., R. W. Portmann, R. W. Sanders, and J. S. Daniel (1998), Absorption of solar radiation by water vapor, oxygen, and related collision pairs in the Earth's atmosphere, J. Geophys. Res., 103(D4), 3847–3858.
Sparks, L. (1997), Efficient line-by-line calculation of absorption coefficients to high numerical accuracy, J. Quant. Spectrosc. Radiat. Transfer, 57(7), 631–650.
Spelsberg, D. and W. Meyer (1998), Ab initio dynamic dipole polarizabilities for CO2, its photoabsorption spectrum in the Schumann-Runge region, and long-range interaction coefficients for its dimer, J. Chem. Phys., 109(22), 9802–9810.
Spelsberg, D. and W. Meyer (1999), Response to "Comment on 'Ab initio dynamic dipole polarizabilities for CO2, its photoabsorption spectrum in the Schumann-Runge region, and long-range interaction coefficients for its dimer'", J. Chem. Phys., 111(24), 11238–11239.
Stiller, G. P., M. Hoepfner, M. Kuntz, T. von Clarmann, G. Echle, H. Fischer, B. Funke, N. Glatthor, F. Hase, H. Kemnitzer, and S. Zorn (1998), Karlsruhe optimized and precise radiative transfer algorithm. Part I: requirements, justification, and model error estimation, In: Optical Remote Sensing of the Atmosphere and Clouds, pp. 257–256, Edited by Wang, Jinxue, Beiying Wu, Toshihiro Ogawa, and Zheng-hua Guan, SPIE, doi:10.1117/12.317754.
Stone, N. W. B., L. A. A. Read, A. Anderson, I. R. Dagg, and W. Smith (1984), Temperature dependent collision-induced absorption in nitrogen, Can. J. Phys., 62, 338–347.
Szudy, J. and W. E. Baylis (1996), Influence of atomic coherence induced by laser-assisted near-resonant collisions on the far-wing absorption profile, Phys. Rev., 53(4), 2539–2546.
Taylor, J. P., S. M. Newman, T. J. Hewison, and A. McGrath (2003), Water vapour line and continuum absorption in the thermal infrared-reconciling models and observations, Q. J. R. Meteorol. Soc., 129, 2949–2696, doi:10.1256/qj.03.08.
Thibault, F., V. Menoux, R. Le Doucen, L. Rosenmann, J.-M. Hartmann, and C. Boulet (1997), Infrared collision-induced absorption by O2 near 6.4 μm for atmospheric applications: measurements and empirical modeling, Appl. Opt., 36(3), 563–567.
Thomas, M. E. and R. J. Nordstrom (1982), The N2-broadened water vapor absorption line shape and infrared continuum absorption- I. Theoretical development, J. Quant. Spectrosc. Radiat. Transfer, 28(2), 81–101.
Thomas, M. E. and R. J. Nordstrom (1982), The N2-broadened water vapor absorption line shape and infrared continuum absorption- II. Implementation of the line shape, J. Quant. Spectrosc. Radiat. Transfer, 28(2), 102–112.
Thomas, M. E. (1990), Atmospheric absorption model from 0.01 to 10 wave numbers, In: Propagation Engineering: Third in a Series, pp. 355–363, Edited by Bissonnette, Luc R. and Walter B. Miller, SPIE, doi:10.1117/12.21892.
Thomas, M. E. (1990), Infrared- and millimeter-wavelength continuum absorption in the atmospheric windows: Measurements and models, Infrared Phys., 30(2), 161–174.
Tonkov, M. V., N. N. Filippov, V. V. Bertsev, J. P. Bouanich, N. Van-Thanh, C. Brodbeck, J. M. Hartmann, C. Boulet, F. Thibault, and R. Le Doucen (1996), Measurements and empirical modeling of pure CO2 absorption in the 2.3-μ region at room temperature: far wings, allowed and collision-induced bands, Appl. Opt., 35(24), 4863–4870.
Tretyakov, M. Y., G. Y. Golubiatnikov, V. V. Parshin, M. A. Koshelev, S. E. Myasnikova, A. F. Krupnov, and P. W. Rosenkranz (2004), Experimental study of the line mixing coefficient for 118.75 GHz oxygen line, J. Molec. Spectro., 223, 31–38.
Tso, H. C. W., D. J. W. Geldart, and P. Chylek (1998), Anharmonicity and cross section for absortion of radiation by water dimer, J. Chem. Phys., 108(13), 5319–5329.
Turner, D. S. (1995), Absorption Coefficient Estimation using a Two-Dimensional Interpolation Procedure, J. Quant. Spectrosc. Radiat. Transfer, 53(6), 633–637.
VanVleck, J. H. and D. L. Huber (1977), Absorption, emission, and linebreadths: A semihistorical perspective, Rev. Mod. Phys., 49(4), 939–959, doi:10.1103/RevModPhys.49.939.
Vigasin, A. A. (2000), Collision-Induced Absorption in the Region of the O2 Fundamental: Bandshapes and Dimeric Features, J. Molec. Spectro., 202, 59–66.
Vigasin, A. A. (2000), Water vapor continuous absorption in various mixtures: possible role of weakly bound complexes, J. Quant. Spectrosc. Radiat. Transfer, 64, 25–40.
Vigasin, A. A., Y. I. Baranov, and G. V. Chlenova (2002), Temperature Variations of the Interaction Induced Absorption of CO2 in the ν1, 2ν2 Region: FTIR Measurements and Dimer Contributions, J. Molec. Spectro., 213, 51–56, doi:10.1006/jmsp.2002.8529.
Vigasin, A. A., E. G. Tarakanova, and G. V. Tchlenova (1993), IR-spectra of (CO2)2 dimers and collision-induced absorption of carbon dioxide in the region of the Fermi doublet (ν1,2ν2), J. Quant. Spectrosc. Radiat. Transfer, 50(5), 695–703.
Vigasin, A. A., T. G. Adiks, E. G. Tarakanov, and G. V. Yukhnevich (1994), Simultaneous Infrared Absorption in a Mixture of CO2 and H2O: The Role of Hydrogen-Bonded Aggregates, J. Quant. Spectrosc. Radiat. Transfer, 52(3/4), 295–301.
Vigasin, A. A. (1996), On the nature of collision-induced absorption in gaseous homonuclear diatomics, J. Quant. Spectrosc. Radiat. Transfer, 56(3), 409–422.
Zender, C. S. and P. Chylek (1998), A Global Climatology of O2 O2, O2 N2, and (H2O)2 Abundance and Absorption, National Center for Atmospheric Research, Dalhouse University, Eight ARM Science Team Meeting Proceedings.
Zhou, P. and S. Swain (1998), Collisional-dephasing and Doppler-broadening effects on quantum interference in a Vee atomic system, J. Optical Soc. o. Am., 15(10), 2593–2598.
Zhu, Z., I. P. Matthews, and A. H. Samuel (1995), A microwave spectrometer with a frequency control system employing a frequency "scanning window" locked to the rotational absorption peak, Rev. Sci. Inst., 66(10), 4817–4823.
Zhu, Z., I. P. Matthews, and A. H. Samuel (1996), Quantitative measurement of analyte gases in a microwave spectrometer using a dynamic sampling method, Rev. Sci. Inst., 67(7), 2496–2501.
Zimmerer, P. W. and M. Mizushima (1961), Precise Measurements of the Microwave Absorption Frequencies of the Oxygen Molecule and the Velocity of Light, Phys. Rev., 121(1), 152–155.