All Publications

Below is the combined list of references from refs_sat.bib and refs_external.bib. It is intended for our group's internal use.

Show tag cloud

Filter by author:
Filter by year:
Filter by bibtex key:
Filter by type:
Filter by keyword:
and
and
 

Filtered by keyword:ice clouds

There is currently a filter applied. To see the complete list of publications, clear the filter.

Group references

In the Pipeline

    Articles

      Books and Book Contributions

        Theses

          2013 Back to top

        1. Holl, G. (2013), Remote sensing of ice clouds: synergistic measurements and radiative transfer simulations, Ph.D. thesis, Luleå University of Technology, Department of Computer Science, Electrical and Space Engineering Division of Space Technology.
        2. Eliasson, S. (2013), Ice clouds in satellite observations and climate models, Ph.D. thesis, Luleå University of Technology, Department of Computer Science, Electrical and Space Engineering Division of Space Technology, ISBN 978-91-7439-544-0 ISSN: 1402-1544.
        3. 2011 Back to top

        4. Eliasson, S. (2011), Ice clouds in satellite observations and climate models, Luleå University of Technology, Department of Computer Science, Electrical and Space Engineering Division of Space Technology, Licentiate thesis, ISSN: 1402-1757, ISBN: 978-91-7439-312-5.

        Technical Reports and Proposals

          Articles in Conference Proceedings and Newsletters

            Internal Reports

              External references

              1. Anderson, C. M. and R. E. Samuelson (2011), Titan's aerosol and stratospheric ice opacities between 18 and 500 μm: vertical and spectral characteristics from Cassini CIRSIcarus, 212, 762–778, doi:10.1016/j.icarus.2011.01.024.
              2. Bailey, M. P. and J. Hallett (2009), A Comprehensive Habit Diagram for Atmospheric Ice Crystals: Confirmation from the Laboratory, AIRS II, and Other Field StudiesJ. Atmos. Sci., 66(9), 2888–2899, doi:10.1175/2009JAS2883.1.
              3. Baker, B. and R. P. Lawson (2006), Improvement in determination of ice water content from two-dimensional particle imagery. Part I: Image-to-mass relationshipsJ. Appl. Meteorol. Clim., 45(9), 1282–1290.
              4. Baker, B. A. and R. P. Lawson (2006), In situ observations of the microphysical properties of wave, cirrus, and anvil clouds. Part I: Wave cloudsJ. Atmos. Sci., 63("12"), 3160–3185.
              5. Baran, A. J., S. Havemann, P. N. Francis, and P. D. Watts (2003), A consistent set of single-scattering properties for cirrus cloud: tests using radiance measurements from a dual-viewing multi-wavelength satellite-based instrumentJ. Quant. Spectrosc. Radiat. Transfer, 79–80, 549–567.
              6. Baran, A. J. (2003), Simulation of infrared scattering from ice aggregates using a size/shape distribution of ice cylindersAppl. Opt., 42, 2811–2818.
              7. Baran, A. J. (2005), The dependence of cirrus infrared radiative properties in ice crystal geometry and shape of the size-distribution functionQ. J. R. Meteorol. Soc., 131, 1129–1142.
              8. Baran, A. J. (2009), A review of the light scattering properties of cirrusJ. Quant. Spectrosc. Radiat. Transfer, 110, 1239–1260, doi:10.1016/j.jqsrt.2009.02.026.
              9. Baran, A. J., P. J. Connolly, and C. Lee (2009), Testing an ensemble model of cirrus ice crystals using midlatitude in situ estimates of Ice water content, volume extinction coefficient and the total solar optical depthJ. Quant. Spectrosc. Radiat. Transfer, 110, 1579–1598, doi:10.1016/j.jqsrt.2009.02.021.
              10. Baran, A. J., P. J. Connolly, A. J. Heymsfield, and A. Bansemer (2010), Using in situ estimates of ice water content, volume extinction coefficient, and the total solar optical depth obtained during the tropical ACTIVE campaign to test an ensemble model of cirrus ice crystalsQ. J. R. Meteorol. Soc., doi:10.1002/qj.731.
              11. Baran, Anthony J., Peter Hill, Kalli Furtado, Paul Field, and James Manners (2014), A Coupled Cloud Physics-Radiation Parameterization of the Bulk Optical Properties of Cirrus and its Impact on the Met Office Unified Model GlobalJ. Climate, in press, doi:10.1175/JCLI-D-13-00700.1.
              12. Baum, B. A., A. J. Heymsfield, P. Yang, and S. T. Bedka (2005), Bulk Scattering Properties for the Remote Sensing of Ice Clouds. Part I: Microphysical Data and ModelsJ. Appl. Meteorol., 44, 1885–1895.
              13. Baum, B. A., P. Yang, A. J. Heymsfield, C. G. Schmitt, Y. Xie, A. Bansemer, Y. X. Hu, and Z. Zhang (2011), Improvements in Shortwave Bulk Scattering and Absorption Models for the Remote Sensing of Ice CloudsJ. Appl. Meteorol. Clim., 50, 1037–1056, doi:10.1175/2010JAMC2608.1.
              14. Baum, B. A., P. Yang, A. J. Heymsfield, A. Bansemer, B. H. Cole, A. Merrelli, C. Schmitt, and C. Wang (2014), Ice cloud single-scattering property models with the full phase matrix at wavelengths from 0.2 to 100 μmJ. Quant. Spectrosc. Radiat. Transfer, 146, 123–139, doi:10.1016/j.jqsrt.2014.02.029.
              15. Benedetti, A., G. L. Stephens, and J. M. Haynes (2003), Ice cloud microphysics retrievals from millimeter radar and visible optical depth using an estimation theory approachJ. Geophys. Res., 108(D11), 4335, doi:10.1029/2002JD002693.
              16. Benson, J. L., D. M. Kass, and A. Kleinböhl (2011), Mars' north polar hood as observed by the Mars Climate SounderJ. Geophys. Res., 116, E03008, doi:10.1029/2010JE003693.
              17. Buras, R., T. Dowling, and C. Emde (2011), New secondary-scattering correction in DISORT with increased efficiency for forward scatteringJ. Quant. Spectrosc. Radiat. Transfer, 112, 2028–2034, doi:10.1016/j.jqsrt.2011.03.019.
              18. Cairo, F., G. D. Donfrancesco, M. Snels, F. Fierli, M. Viterbini, S. Borrmann, and W. Frey (2010), A comparison of light backscattering and particle size distribution measurements in tropical cirrus cloudsAtmos. Meas. Tech. Discuss., 3, 4059–4089, doi:10.5194/amtd-3-4059-2010.
              19. Comstock, J. M., R. D. Entremont, D. DeSlover, G. G. Mace, S. Y. Matrosov, S. A. McFarlane, P. Minnins, D. Mitchell, K. Sassen, M. D. Shupe, D. D. Turner, and Z. Wang (2007), An Intercomparison of Microphysical Retrieval Algorithms for Upper-Tropospheric Ice CloudsBull. Amer. Met. Soc., 191–204, doi:10.1175/BAMS-88-2-191.
              20. Comstock, J. M., R. F. Lin, D. O. Starr, and P. Yang (2008), Understanding ice supersaturation, particle growth, and number concentration in cirrus cloudsJ. Geophys. Res., 113, D23211, doi:10.1029/2008JD010332.
              21. Cooper, S. J., T. S. L'Ecuyer, P. Gabriel, A. J. Baran, and G. L. Stephens (2006), Objective Assessment of the Information Content of Visible and Infrared Radiance Measurements for Cloud Microphysical Property Retrievals over the Global Oceans. Part II: Ice CloudsJ. Appl. Meteorol. Clim., 45, 42–62, doi:10.1175/JAM2327.1.
              22. Cooper, S. J. and T. J. Garrett (2010), Identification of small ice cloud particles using passive radiometric observationsJ. Appl. Meteorol., 49, 2334–247.
              23. Cooper, S. J. and T. J. Garrett (2011), Application of infrared remote sensing to constrain in-situ estimates of ice crystal particle size during SPartICusAtmos. Meas. Tech., 4, 1593–1602, doi:10.5194/amt-4-1593-2011.
              24. Czekala, H. (1998), Effects of ice particle shape and orientation on polarized microwave radiation for off-nadir problemsGeophys. Res. Lett., 25(10), 1669–1672.
              25. Defer, E., V. S. Galligani, C. Prigent, and C. Jimenez (2014), First observations of polarized scattering over ice clouds at close-to-millimeter wavelengths (157 GHz) with MADRAS on board the Megha-Tropiques missionJ. Geophys. Res., 119(21), 12301–12316, doi:10.1002/2014JD022353.
              26. Di Michele, S. and P. Bauer (2006), Passive microwave radiometer channel selection based on cloud and precipitation information contentQ. J. R. Meteorol. Soc., 132(617), 1299–1323, doi:10.1256/qj.05.164.
              27. Edwards, J. M., S. Havemann, J.-C. Telen, and A. J. Baran (2007), A new parametrization for the radiative properties of ice crystals: Comparison with existing schemes and impact in a GCMAtmos. Res., 83, 19–35, doi:10.1016/j.atmosres.2006.03.002.
              28. Ekström, M. and P. Eriksson (2008), Altitude resolved ice-fraction in the uppermost tropical troposphereGeophys. Res. Lett., 35, L13822, doi:10.1029/2008GL034305.
              29. English, S. J. and P. Bauer (1998), Fast generic millimeter-wave emissivity modelProc. of SPIE, 3503, 288, doi:10.1117/12.319490.
              30. Eriksson, P., M. Ekström, B. Rydberg, and D. Murtagh (2007), First Odin sub-mm retrievals in the tropical upper troposphere: ice cloud propertiesAtmos. Chem. Phys., 7, 471–483, doi:10.5194/acp-7-471-2007.
              31. Eriksson, P., M. Ekström, B. Rydberg, D. L. Wu, R. T. Austin, and D. P. Murtagh (2008), Comparison between early Odin-SMR, Aura MLS and CloudSat retrievals of cloud ice mass in the upper tropical troposhereAtmos. Chem. Phys., 8(7), 1937–1948, doi:10.5194/acp-8-1937-2008.
              32. Evans, K. F. (2004), Submillimeter-wave Ice Cloud Radiometry Channel Selection Study, Univerity of Colorado, Boulder.
              33. Evans, K. F., J. R. Wang, D. O'C Starr, G. Heymsfield, L. Li, L. Tian, R. P. Lawson, A. J. Heymsfield, and A. Bansemer (2012), Ice hydrometeor profile retrieval algorithm for high-frequency microwave radiometers: application to the CoSSIR instrument during TC4Atmos. Meas. Tech., 5(9), 2277–2306, doi:10.5194/amt-5-2277-2012.
              34. Frey, W., S. Borrmann, D. Kunkel, R. Weigel, M. de Reus, H. Schlager, A. Roiger, C. Voigt, P. Hoor, J. Curtius, M. Krämer, C. Schiller, C. M. Volk, C. D. Homan, F. Fierli, G. Di Donfrancesco, A. Ulanovsky, F. Ravegnani, N. M. Sitnikov, S. Viciani, F. D'Amato, G. N. Shur, G. V. Belyaev, K. S. Law, and F. Cairo (2011), In-situ measurements of tropical cloud properties in the West African monsoon: upper tropospheric ice clouds, mesoscale convective system outflow, and subvisual cirrusAtmos. Chem. Phys., 11, 5569–5590, doi:10.5194/acp-11-5569-2011.
              35. Fusina, F. and P. Spichtinger (2010), Cirrus clouds triggered by radiation, a multiscale phenomenonAtmos. Chem. Phys., 10, 5179–5190, doi:10.5194/acp-10-5179-2010.
              36. Galligani, V. S., C. Prigent, E. Defer, C. Jimenez, and P. Eriksson (2013), The impact of the melting layer on the passive microwave cloud scattering signal observed from satellites: A study using TRMM microwave passive and active measurementsJ. Geophys. Res., 118(11), 5667–5678, doi:10.1002/jgrd.50431.
              37. Gao, R. S., P. J. Popp, D. W. Fahey, T. P. Marcy, R. L. Herman, E. M. Weinstock, D. G. Baumgardner, T. J. Garrett, K. H. Rosenlof, T. L. Thompson, P. T. Bui, B. A. Ridley, S. C. Wofsy, O. B. Toon, M. A. Tolbert, B. Kärcher, Th. Peter, P. K. Hudson, A. J. Weinheimer, and A. J. Heymsfield (2004), Evidence that nitric acid increases relative humidity in low-temperature cirrus cloudsScience, 303, 516–520.
              38. Gettelman, A., X. Liu, S. J. Ghan, H. Morrison, S. Park, A. J. Conley, S. A. Klein, J. Boyle, D. L. Mitchell, and J.-L. F. Li (2010), Global simulations of ice nucleation and ice supersaturation with an improved cloud scheme in the Community Atmosphere ModelJ. Geophys. Res., 115, D18216, doi:10.1029/2009JD013797.
              39. Havemann, S. and A. J. Baran (2001), Extension of T-matrix to scattering of electromagnetic plane waves by non-axisymmetric dielectric particles: application to hexagonal ice cylindersJ. Quant. Spectrosc. Radiat. Transfer, 70(2), 139–158, doi:10.1016/S0022-4073(00)00127-8.
              40. Heymsfield, A. J., A. Bansemer, and C. H. Twohy (2007), Refinements to Ice Particle Mass Dimensional and Terminal Velocity Relationships for Ice Clouds. Part I: Temperature DependenceJ. Atmos. Sci., 64, 1047–1067, doi:10.1175/JAS3890.1.
              41. Heymsfield, A. J., G.-J. van Zadelhoff, D. P. Donovan, F. Fabry, R. J. Hogan, and A. J. Illingworth (2007), Refinements to Ice Particle Mass Dimensional and Terminal Velocity Relationships for Ice Clouds. Part II: Evaluation and Parameterizations of Ensemble Ice Particle Sedimentation VelocitiesJ. Atmos. Sci., 64, 1068–1088, doi:10.1175/JAS3900.1.
              42. Heymsfield, A. J., A. Protat, R. Austin, D. Bouniol, R. Hogan, J. Delanoë, H. Okamoto, K. Sato, G.-J. van Zadelhoff, D. Donovan, and Z. Wang (2008), Testing IWC Retrieval Methods Using Radar and Ancillary Measurements with In Situ DataJ. Appl. Meteorol. Clim., 47(1), 135–163, doi:10.1175/2007JAMC1606.1.
              43. Heymsfield, A. J. and C. D. Westbrook (2010), Advances in the Estimation of Ice Particle Fall Speeds Using Laboratory and Field MeasurementsJ. Atmos. Sci., 67, 2469–2482, doi:10.1175/2010JAS3379.1.
              44. Heymsfield, A. J., C. Schmitt, A. Bansemer, and C. H. Twohy (2010), Improved Representation of Ice Particle Masses Based on Observations in Natural CloudsJ. Atmos. Sci., 67, 3303–3318, doi:10.1175/2010JAS3507.1.
              45. Heymsfield, A. J., C. Schmitt, and A. Bansemer (2013), Ice Cloud Particle Size Distributions and Pressure-Dependent Terminal Velocities from In Situ Observations at Temperatures from 0 to -86 degrees CJ. Atmos. Sci., 70(12), 4123–4154, doi:10.1175/JAS-D-12-0124.1.
              46. Heymsfield, A. J. and G. M. McFarquhar (1996), High Albedos of Cirrus in the Tropical Pacific Warm Pool: Microphysical Interpretations from CEPEX and from Kwajalein, Marshall IslandsJ. Atmos. Sci., 53(17), 2424–2451, doi:10.1175/1520-0469(1996)053<2424:HAOCIT>2.0.CO;2.
              47. Hong, G., P. Yang, B.-C. Gao, B. A. Baum, Y. X. Hu, M. D. King, and S. Platnick (2007), High Cloud Properties from Three Years of MODIS Terra and Aqua Collection-4 Data over the TropicsJ. Appl. Meteorol. Clim., 46, doi:10.1175/2007JAMC1583.1.
              48. Hong, G. (2007), Parameterization of scattering and absorption properties of nonspherical ice crystals at microwave frequenciesJ. Geophys. Res., 112, D11208, doi:10.1029/2006JD008364.
              49. Hong, G. (2007), Radar backscattering properties of nonspherical ice crystals at 94 GHzGeophys. Res. Lett., 112, D22203, doi:10.1029/2007JD008839.
              50. Hong, G., P. Yang, H.-L. Huang, B. A. Baum, Y. Hu, and S. Platnick (2007), The Sensitivity of Ice Cloud Optical and Microphysical Passive Satellite Retrievals to Cloud Geometrical ThicknessIEEE T. Geosci. Remote, 45(5), doi:10.1109/TGRS.2007.894549.
              51. Jiang, J. H., H. Su, C. Zhai, S. T. Massie, M. R. Schoeberl, P. R. Colarco, S. Platnick, Y. Gu, and K. N. Liou (2011), Influence of convection and aerosol pollution on ice cloud particle effective radiusAtmos. Chem. Phys., doi:10.5194/acp-11-457-2011.
              52. Kahnert, M., A. D. Sandvik, M. Biryulina, J. J. Stamnes, and K. Stamnes (2008), Impact of ice particle shape on short-wave radiative forcing: A case study for an arctic ice cloudJ. Quant. Spectrosc. Radiat. Transfer, 109("7"), 1196–1218, doi:10.1016/j.jqsrt.2007.10.016.
              53. Kim, M.-J., M. S. Kulie, C. O'Dell, and R. Bennartz (2007), Scattering of Ice Particles at Microwave Frequencies: A Physically Based ParameterizationJ. Appl. Meteorol. Clim., 46(5), 615–633, doi:10.1175/JAM2483.1.
              54. Kristjánsson, J. E., J. M. Edwards, and D. L. Mitchell (2000), Impact of a new scheme for optical properties of ice crystals on climates of two GCMsJ. Geophys. Res., 105(D8), 10063–10079, doi:10.1029/2000JD900015.
              55. Lawson, R. P. and B. A. Baker (2006), Improvement in determination of ice water content from two-dimensional particle imagery. Part II: Applications to collected dataJ. Appl. Meteorol. Clim., 45("9"), 1291–1303.
              56. Lawson, R. P., B. Baker, B. Pilson, and Q. X. Mo (2006), In situ observations of the microphysical properties of wave, cirrus, and anvil clouds. Part II: Cirrus cloudsJ. Atmos. Sci., 63("12"), 3186–3203.
              57. Lawson, R. P., B. Pilson, B. Baker, Q. Mo, E. Jensen, L. Pfister, and P. Bui (2008), Aircraft measurements of microphysical properties of subvisible cirrus in the tropical tropopause layerAtmos. Chem. Phys., 8(6), 1609–1620, doi:10.5194/acp-8-1609-2008.
              58. Liu, G. (2008), A Database of Microwave Single-Scattering Properties for Nonspherical Ice ParticlesBull. Amer. Met. Soc., 89(10), 1563–1570, doi:10.1175/2008BAMS2486.1.
              59. Liu, C., P. Minnis, N. Loeb, S. Kato, A. Heymsfield, and C. Schmitt (2014), A two-habit model for the microphysical and optical properties of ice cloudsAtmos. Chem. Phys., 14(24), 13719–13737, doi:10.5194/acp-14-13719-2014.
              60. Mace, G. G., Y. Zhang, S. Platnick, M. D. King, P. Minnis, and P. Yang (2005), Evaluation of Cirrus Cloud Properties Derived from MODIS Data Using Cloud Properties Derived from Ground-Based Observations Collected at the ARM SGP SiteJ. Appl. Meteorol., 44(2), 221–240, doi:10.1175/JAM2193.1.
              61. Macke, A., P. N. Francis, G. M. McFarquhar, and S. Kinne (1998), The Role of Ice Particle Shapes and Size Distributions in the Single Scattering Properties of Cirrus CloudsJ. Atmos. Sci., 55(17), 2874–2883, doi:10.1175/1520-0469(1998)055<2874:TROIPS>2.0.CO;2.
              62. McFarquhar, G. M. and A. J. Heymsfield (1996), Microphysical Characteristics of Three Anvils Sampled during the Central Equatorial Pacific ExperimentJ. Atmos. Sci., 53(17), 2401–2423, doi:10.1175/1520-0469(1996)053<2401:MCOTAS>2.0.CO;2.
              63. McFarquhar, G. M. and A. J. Heymsfield (1997), Parameterization of Tropical Cirrus Ice Crystal Size Distribution and Implications for Radiative Transfer: Results from CEPEXJ. Atmos. Sci., 54, 2187–2200, doi:10.1175/1520-0469(1997)054<2187:POTCIC>2.0.CO;2.
              64. Minnis, P., K.-N. Liou, and Y. Takano (1993), Inference of Cirrus Cloud Properties Using Satellite-observed Visible and Infrared Radiances. Part I: Parameterization of Radiance FieldsJ. Atmos. Sci., 50(9), 1279–1304, doi:10.1175/1520-0469(1993)050<1279:IOCCPU>2.0.CO;2.
              65. Minnis, P., P. W. Heck, and D. F. Young (1993), Inference of Cirrus Cloud Properties Using Satellite-observed Visible and Infrared Radiances. Part II: Verification of Theoretical Cirrus Radiative PropertiesJ. Atmos. Sci., 50(9), 1305–1322, doi:10.1175/1520-0469(1993)050<1305:IOCCPU>2.0.CO;2.
              66. Mitchell, D. L., R. P. Lawson, and B. Baker (2011), Understanding effective diameter and its application to terrestrial radiation in ice cloudsAtmos. Chem. Phys., 11, doi:10.5194/acp-11-3417-2011.
              67. Mohr, K. I. and E. J. Zipser (1996), Defining Mesoscale Convective Systems by Their 85-GHz Ice-Scattering SignaturesBull. Amer. Met. Soc., 77(6), 1179–1189.
              68. Noel, V., H. Chepfer, M. Haeffelin, and Y. Morille (2006), Classification of Ice Crystal Shapes in Midlatitude Ice Clouds from Three Years of Lidar Observations over the SIRTA ObservatoryJ. Atmos. Sci., 63(11), 2978–2991.
              69. Noel, V. and H. Chepfer (2010), A global view of horizontally oriented crystals in ice clouds from Cloud?Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO)J. Geophys. Res., 115, D00H23, doi:10.1029/2009JD012365.
              70. Peter, T., C. Marcolli, P. Spichtinger, T. Corti, M. B. Baker, and T. Koop (2006), When Dry Air Is Too HumidScience, 134, 1–3.
              71. Pitts, M. C., L. R. Poole, and L. W. Thomason (2009), CALIPSO polar stratospheric cloud observations: second-generation detection algorithm and composition discriminationAtmos. Chem. Phys., 9, 7577–7589, doi:10.5194/acp-9-7577-2009.
              72. Platt, C. M. R. (1979), Remote Sounding of High Clouds: I. Calculation of Visible and Infrared Optical Properties from Lidar and Radiometer MeasurementsJ. Appl. Meteorol., 18, 1130–1143.
              73. Posselt, D. J., T. S. L'Ecuyer, and G. L. Stephens (2008), Exploring the error characteristics of thin ice cloud property retrievals using a Markov chain Monte Carlo algorithmJ. Geophys. Res., 113, D24206, doi:10.1029/2008JD010832.
              74. Protat, A., J. Delanoe, P. T. May, J. Haynes, C. Jakob, E. O'Connor, M. Pope, and M. C. Wheeler (2011), The variability of tropical ice cloud properties as a function of the large-scale context from ground-based radar-lidar observations over Darwin, AustraliaAtmos. Chem. Phys., 11, 8363–8384, doi:10.5194/acp-11-8363-2011.
              75. Salzmann, M., Y. Ming, J.-C. Golaz, P. A. Ginoux, H. Morrison, A. Gettelman, M. Krämer, and L. J. Donner (2010), Two-moment bulk stratiform cloud microphysics in the GFDL AM3 GCM: description, evaluation, and sensitivity testsAtmos. Chem. Phys., 10, 8037–8064, doi:10.5194/acp-10-8037-2010.
              76. Savijärvi, H. and A. Määttänen (2010), Boundary-layer simulations for the Mars Phoenix lander siteQ. J. R. Meteorol. Soc., 136, 1497–1505, doi:10.1002/qj.650.
              77. Snyder Hale, A., L. K. Tamppari, D. S. Bass, and M. D. Smith (2011), Martian water ice clouds: A view from Mars Global Surveyor Thermal Emission SpectrometerJ. Geophys. Res., 115, E04004, doi:10.1029/2009JE003449.
              78. Sourdeval, O., L. C.-Labonnote, A. J. Baran, and G. Brogniez (2015), A methodology for simultaneous retrieval of ice and liquid water cloud properties. Part I: Information content and case studyQ. J. R. Meteorol. Soc., 141(688), 870–882, doi:10.1002/qj.2405.
              79. Storelvmo, T., C. Hoose, and P. Eriksson (2011), Global modeling of mixed-phase clouds: The albedo and lifetime effects of aerosolsJ. Geophys. Res., 116, D05207, doi:10.1029/2010JD014724.
              80. Sun, W., Y. Hu, B. Lin, Z. Liu, and G. Videen (2011), The impact of ice cloud particle microphysics on the uncertainty of ice water content retrievalsJ. Quant. Spectrosc. Radiat. Transfer, 112(2), 189–196, doi:10.1016/j.jqsrt.2010.04.003.
              81. Sun, N. and F. Weng (2012), Retrieval of Cloud Ice Water Path from Special Sensor Microwave Imager/Sounder (SSMIS)J. Appl. Meteorol. Clim., 51(2), 366–379, doi:10.1175/JAMC-D-11-021.1.
              82. Westbrook, C. D. (2011), Origin of the Parry arcQ. J. R. Meteorol. Soc., Early View (Article online in advance of print), doi:10.1002/qj.761.
              83. Woods, C. P., D. E. Waliser, J.-L. Li, R. T. Austin, G. L. Stephens, and D. G. Vane (2008), Evaluating CloudSat ice water content retrievals using a cloud- resolving model: Sensitivities to frozen particle propertiesJ. Geophys. Res., 113, D00A11, doi:10.1029/2008JD009941.
              84. Wu, D. L., J. H. Jiang, W. G. Read, R. T. Austin, C. P. Davis, A. Lambert, G. L. Stephens, D. G. Vane, and J. W. Waters (2008), Validation of the Aurs MLS cloud ice water content measurementsJ. Geophys. Res., 113, D15S10, doi:10.1029/2007JD008931.
              85. Wu, D. L., A. Lambert, W. G. Read, P. Eriksson, and J. Gong (2014), MLS and CALIOP Cloud Ice Measurements in the Upper Troposphere: A Constraint from Microwave on Cloud MicrophysicsJ. Appl. Meteorol. Clim., 53(1), 157–165, doi:10.1175/JAMC-D-13-041.1.
              86. Xie, Y., P. Yang, G. W. Kattawar, B. A. Baum, and Y. Hu (2011), Simulation of the optical properties of plate aggregates for application to the remote sensing of cirrus cloudsAppl. Opt., 50(8), 1065–1081, doi:10.1364/AO.50.001065.
              87. Yang, P., K. N. Liou, K. Wyser, and D. Mitchell (2000), Parameterization of the scattering and absorption properties of individual ice crystalsJ. Geophys. Res., 105(D4), 4699–4718.
              88. Yang, P., B.-C. Gao, B. A. Baum, Y. X. Hu, W. J. Wiscombe, S.-C. Tsay, D. M. Winker, and S. L. Nasiri (2001), Radiative properties of cirrus clouds in the infrared (8–13μm) spectral regionJ. Quant. Spectrosc. Radiat. Transfer, 70, 473–504.
              89. Yang, P. and K. N. Liou (1998), Single-Scattering Properties of Complex Ice Crystals in Terrestrial AtmosphereContr. Atmos. Phys., 71(2), 223–248.
              90. Zhang, Z., P. Yang, G. Kattawar, J. Riedi, L. C. Labonnote, B. A. Baum, S. Platnick, and H. L. Huang (2009), Influence of ice particle model on satellite ice cloud retrieval: lessons learned from MODIS and POLDER cloud product comparisonAtmos. Chem. Phys., 9, 7115–7129, doi:10.5194/acp-9-7115-2009.
              91. Zhang, Z., S. Platnick, P. Yang, A. K. Heidinger, and J. M. Comstock (2010), Effects of ice particle size vertical inhomogeneity on the passive remote sensing of ice cloudsJ. Geophys. Res., 115, D17203, doi:10.1029/2010JD013835.
              92. Zou, X., S. Yang, and P. S. Ray (2012), Impacts of Ice Clouds on GPS Radio Occultation MeasurementsJ. Atmos. Sci., 69, 3670–3682, doi:10.1175/JAS-D-11-0199.1.