There is currently a filter applied. To see the complete list of publications, clear the filter.
Group references
In the Pipeline
Articles
2010
Kuhn, T., R. Damoah, A. Bacak, and J. J. Sloan (2010), Characterising aerosol transport into the Canadian High Arctic using aerosol mass spectrometry and Lagrangian modelling, Atmos. Chem. Phys., 10(21), 10489–10502, doi:10.5194/acp-10-10489-2010.
Articles in Conference Proceedings and Newsletters
Internal Reports
External references
Bell, J. F., R. C. Anderson, J. L. Bishop, N. T. Bridges, D. T. Britt, J. A. Crisp, T. Economou, A. Gosh, J. P. Greenwood, H. P. Gunnlaugsson, R. B. Hargraves, K. Herkenhoff, S. F. Hviid, J. R. Johnson, J. M. Knudsen, M. B. Madsen, H. Y. McSween Jr., R. V. Morris, S. L. Murchie, and R. J. Reid (1998), Mineralogy, Composition, and Origin of Soil and Dust at the Mars Pathfinder Landing Site, In: 29th Annual Lunar and Planetary Science Conference, March 16-20, 1998, Houston, TX, abstract no. 1723.
Bister, M. and M. Kulmala (2011), Anthropogenic aerosols may have increased upper tropospheric humidity in the 20th century, Atmos. Chem. Phys., 11, 4577–4586, doi:10.5194/acp-11-4577-2011.
Clancy, R. T., M. J. Wolff, and P. R. Christensen (2003), Mars aerosol studies with the MGS TES emission phase function observations: Optical depths, particle sizes, and ice cloud types versus latitude and solar longitude, J. Geophys. Res., 108(E9), 5098, doi:doi:10.1029/2003JE002058.
Clancy, R. T., S. W. Lee, G. R. Gladstone, W. W. McMillan, and T. Rousch (1995), A new model for Mars atmospheric dust based upon analysis of ultraviolet through infrared observations from Mariner 9, Viking, and Phobos, J. Geophys. Res., 100(E3), 5251–5262, doi:10.1029/94JE01885.
Fan, J., M. Ovtchinnikov, J. M. Comstock, S. A. McFarlane, and A. Khain (2009), Ice formation in Arctic mixed-phase clouds: Insights from a 3-D cloud-resolving model with size-resolved aerosol and cloud microphysics, J. Geophys. Res., 114, D04205, doi:10.1029/2008JD010782.
Grießbach, S. (2012), Clouds and aerosol in infrared radiative transfer calculations for the analysis of satellite observations, Ph.D. thesis, Forschungszentrum Jülich GmbH, Institute of Energy and Climate Research (IEK), Stratosphere (IEK-7), ISBN: 978-3-89336-785-6 ISSN: 1866-1793.
Hansen, G. B. (2003), Infrared Optical Constants of Martian Dust Derived from Martian Spectra, In: Sixth International Conference on Mars, July 20-25 2003, Pasadena, California, abstract no. 3194.
Heavens, N. G., M. I. Richardson, A. Kleinböhl, D. M. Kass, D. J. McCleese, W. Abdou, J. L. Benson, J. T. Schofield, J. H. Shirley, and P. M. Wolkenberg (2011), The vertical distribution of dust in the Martian atmosphere during northern spring and summer: Observations by the Mars Climate Sounder and analysis of zonal average vertical dust profiles, J. Geophys. Res., 116, E04003, doi:10.1029/2010JE003691.
Hunt, G. R., L. M. Logan, and J. W. Salisbury (1973), Mars: Components of infrared spectra and the composition of the dust cloud, Icarus, 18(3), 459–469, doi:10.1016/0019-1035(73)90155-3.
Jiang, J. H., H. Su, C. Zhai, S. T. Massie, M. R. Schoeberl, P. R. Colarco, S. Platnick, Y. Gu, and K. N. Liou (2011), Influence of convection and aerosol pollution on ice cloud particle effective radius, Atmos. Chem. Phys., doi:10.5194/acp-11-457-2011.
Koch, D., Y. Balkanski, S. E. Bauer, R. C. Easter, S. Ferrachat, S. J. Ghan, C. Hoose, T. Iversen, A. Kirkevåg, J. E. Kristjansson, X. Liu, U. Lohmann, S. Menon, J. Quaas, M. Schulz, Ø. Seland, T. Takemura, and N. Yan (2011), Soot microphysical effects on liquid clouds, a multi-model investigation, Atmos. Chem. Phys., 11, 1051–1064, doi:10.5194/acp-11-1051-2011.
Korablev, O., V. I. Moroz, E. V. Petrova, and A. V. Rodin (2005), Optical properties of dust and the opacity of the Martian atmosphere, Adv. Space. Res., 35(1), 21–30, doi:10.1016/j.asr.2003.04.061.
Li, Q., J. H. Jiang, D. L. Wu, W. G. Read, N. J. Livesey, J. W. Waters, Y. Zhang, B. Wang, M. J. Filipiak, C. P. Davis, S. Turquety, S. Wu, R. J. Park, R. M. Yantosca, and D. J. Jacob (2005), Convective outflow of South Asian pollution: A global CTM simulation compared with EOS MLS observations, Geophys. Res. Lett., 32, doi:10.1029/2005GL022762.
Lohmann, U., P. Stier, C. Hoose, S. Ferrachat, E. Roeckner, and J. Zhang (2007), Cloud microphysics and aerosol indirect effects in the global climate model ECHAM5–HAM, Atmos. Chem. Phys., 7, 3719–3761, doi:10.5194/acp-7-3425-2007.
Lohmann, U., L. Rotstayn, T. Storelvmo, A. Jones, S. Menon, J. Quaas, A. M. L. Ekman, D. Koch, and R. Ruedy (2010), Total aerosol effect: radiative forcing or radiative flux perturbation?, Atmos. Chem. Phys., 10(7), 3235–3246, doi:10.5194/acp-10-3235-2010.
Otto, S., T. Trautmann, and M. Wendisch (2011), On realistic size equivalence and shape of spheroidal Saharan mineral dust particles applied in solar and thermal radiative transfer calculations, Atmos. Chem. Phys., 11, 4469–4490, doi:10.5194/acp-11-4469-2011.
Pollack, J. B., D. Colburn, R. Kahn, J. Hunter, W. van Camp, C. E. Carlston, and M. R. Wolf (1977), Properties of Aerosols in the Martian Atmosphere, as Inferred From Viking Lander Imaging Data, J. Geophys. Res., 82(28), 4479–4496, doi:10.1029/JS082i028p04479.
Quaas, J., B. Stevens, P. Stier, and U. Lohmann (2010), Interpreting the cloud cover — Aerosol optical depth relationship found in satellite data using a general circulation model, Atmos. Chem. Phys., 10, 6129–6135, doi:10.5194/acp-10-6129-2010.
Redemann, J., M. A. Vaughan, Q. Zhang, Y. Shinozuka, P. B. Russell, J. M. Livingston, M. Kacenelenbogen, and L. A. Remer (2012), The comparison of MODIS-Aqua (C5) and CALIOP (V2 & V3) aerosol optical depth, Atmos. Chem. Phys., 12, 3025–3043, doi:10.5194/acp-12-3025-2012.
Roush, T., J. Pollack, and J. Orenberg (1991), Derivation of Midinfrared (5–25 μm) Optical Constants of Some Silicates and Palagonite, Icarus, 94(1), 191–208, doi:10.1016/0019-1035(91)90150-R.
Smith, M. D. (2004), Interannual variability in TES atmospheric observations of Mars during 1999-2003, Icarus, 167(1), 148–165, doi:10.1016/j.icarus.2003.09.010.
Steele, H. M. and P. Hamill (1981), Effects of Temperature and Humidity on the Growth and Optical Properties of Sulphuric Acid-Water Droplets in the Stratosphere, J. Atmos. Sci., 12(6), 517–528, doi:10.1016/0021-8502(81)90054-9.
Storelvmo, T., J. E. Kristjánsson, and U. Lohmann (2008), Aerosol Influence on Mixed-Phase Clouds in CAM-Oslo, J. Atmos. Sci., 65, 3214–3230, doi:10.1175/2008JAS2430.1.
Storelvmo, T., C. Hoose, and P. Eriksson (2011), Global modeling of mixed-phase clouds: The albedo and lifetime effects of aerosols, J. Geophys. Res., 116, D05207, doi:10.1029/2010JD014724.
Toon, O. B., J. B. Pollack, and C. Sagan (1977), Physical Properties of the Particles Composing the Martian Dust Storm of 1971–1972, Icarus, 30(4), 663–696, doi:10.1016/0019-1035(77)90088-4.
Twohy, C. H., J. A. Coakley, and W. R. Tahnk (2009), Effect of changes in relative humidity on aerosol scattering near clouds, J. Geophys. Res., 114, D05205, doi:10.1029/2008JD010991.
Wolff, M. J. and R. T. Clancy (2003), Constraints on the size of Martian aerosols from Thermal Emission Spectrometer observations, J. Geophys. Res., 108(E9), 5097, doi:10.1029/2003JE002057.
Wolff, M. J., M. D. Smith, R. T. Clancy, N. Spanovich, B. A. Whitney, M. T. Lemmon, J. L. Bandfield, D. Banfield, A. Ghosh, G. Landis P. R. Christensen, J. F. Bell III, and S. W. Squyres (2006), Constraints on dust aerosols from the Mars Exploration Rovers using MGS overflights and Mini-TES, J. Geophys. Res., 111, E12S17, doi:10.1029/2006JE002786.
Zobrist, B., C. Marcolli, T. Koop, B. P. Luo, D. M. Murphy, U. Lohmann, A. A. Zardini, U. K. Krieger, T. Corti, D. J. Cziczo, S. Fueglistaler, P. K. Hudson, D. S. Thomson, and T. Peter (2006), Oxalic acid as a heterogeneous ice nucleus in the upper troposphere and its indirect aerosol effect, Atmos. Chem. Phys., 6, 3115–3129, doi:10.5194/acp-6-3115-2006.