There is currently a filter applied. To see the complete list of publications, clear the filter.
Group references
In the Pipeline
Articles
2017
Mueller, K. J., D. L. Wu, Á. Horváth, V. M. Jovanovic, J.-P. Muller, L. Di Girolamo, M. J. Garay, D. J. Diner, C. M. Moroney, and S. Wanzong (2017), Assessment of MISR Cloud Motion Vectors (CMVs) Relative to GOES and MODIS Atmospheric Motion Vectors (AMVs), J. Appl. Meteorol. Clim., 56, 555–572, doi:10.1175/JAMC-D-16-0112.1.
Eliasson, S., S. A. Buehler, M. Milz, P. Eriksson, and V. O. John (2011), Assessing observed and modelled spatial distributions of ice water path using satellite data, Atmos. Chem. Phys., 11, 375–391, doi:10.5194/acp-11-375-2011.
Eliasson, S. (2013), Ice clouds in satellite observations and climate models, Ph.D. thesis, Luleå University of Technology, Department of Computer Science, Electrical and Space Engineering Division of Space Technology, ISBN 978-91-7439-544-0 ISSN: 1402-1544.
Eliasson, S. (2011), Ice clouds in satellite observations and climate models, Luleå University of Technology, Department of Computer Science, Electrical and Space Engineering Division of Space Technology, Licentiate thesis, ISSN: 1402-1757, ISBN: 978-91-7439-312-5.
Articles in Conference Proceedings and Newsletters
Internal Reports
External references
Ackerman, S. A., K. I. Strabala, W. P. Menzel, R. A. Frey, C. C. Moeller, and L. E. Gumley (1998), Discriminating Clear-sky from Clouds with MODIS, J. Geophys. Res., 103(D24), 32141–32157.
Baum, B. A., D. P. Kratz, P. Yang, S. C. Ou, Y. X. Hu, P.F. Soulen, and S.-C. Tsay (2000), Remote sensing of cloud properties using MODIS airborne simulator imagery during SUCCESS. 1. Data and models, J. Geophys. Res., 105, 11767–11780, doi:10.1029/1999JD901089.
Baum, B. A., P. F. Soulen, K. I. Strabala, M. D. King, S. A. Ackerman, W. P. Menzel, and P. Yang (2000), Remote sensing of cloud properties using MODIS airborne simulator imagery during SUCCESS. 2. Cloud thermodynamic phase, J. Geophys. Res., 105, 11781–11792, doi:10.1029/1999JD901090.
Baum, B. A. and J. D. Spinhirne (2000), Remote sensing of cloud properties using MODIS airborne simulator imagery during SUCCESS. 3. Cloud overlap, J. Geophys. Res., 105, 11793–11804, doi:10.1029/1999JD901091.
Baum, B. A., A. J. Heymsfield, P. Yang, and S. T. Bedka (2005), Bulk Scattering Properties for the Remote Sensing of Ice Clouds. Part I: Microphysical Data and Models, J. Appl. Meteorol., 44, 1885–1895.
Baum, B. A., P. Yang, A. J. Heymsfield, S. Platnick, M. D.King, Y.-X. Hu, and S. T. Bedka (2005), Bulk Scattering Properties for the Remote Sensing of Ice Clouds. Part II: Narrowband Models, J. Appl. Meteorol., 44, 1896–1911.
Chen, R., Z. Li, R. J. Kuligowski, R. Ferraro, and F. Weng (2011), A study of warm rain detection using A-Train satellite data, Geophys. Res. Lett., 38, L04804, doi:10.1029/2010GL046217.
Choi, Y-S. and C-H. Ho (2006), Radiative effect of cirrus with different optical properties over the tropics in MODIS and CERES observations, Geophys. Res. Lett., 33, L21811, doi:10.1029/2006GL027403.
Cooper, S. J., T. S. L'Ecuyer, and G. L. Stephens (2003), The impact of explicit cloud boundary information on ice cloud microphysical property retrievals from infrared radiances, J. Geophys. Res., 108, doi:10.1029/2002JD002611.
Cooper, S. J., T. S. L'Ecuyer, P. Gabriel, A. J. Baran, and G. L. Stephens (2006), Objective Assessment of the Information Content of Visible and Infrared Radiance Measurements for Cloud Microphysical Property Retrievals over the Global Oceans. Part II: Ice Clouds, J. Appl. Meteorol. Clim., 45, 42–62, doi:10.1175/JAM2327.1.
Cooper, S. J., T. S. L'Ecuyer, P. Gabriel, A. J. Baran, and G. L. Stephens (2007), Performance assessment of a five-channel estimation-based ice cloud retrieval scheme for use over the global oceans, J. Geophys. Res., 112, D04207, doi:10.1029/2006JD007122.
Delanoë, J. and R. J. Hogan (2008), A variational scheme for retrieving ice cloud properties from combined radar, lidar, and infrared radiometer, J. Geophys. Res., 113, D07204, doi:10.1029/2007JD009000.
Delanoë, J. and R. J. Hogan (2010), Combined CloudSat-CALIPSO-MODIS retrievals of the properties of ice clouds, J. Geophys. Res., 115, D00H29, doi:10.1029/2009JD012346.
Diner, D. J., B. H. Braswell, R. Davies, N. Gobron J. Hu, Y. Jin, R. A. Kahn, Y. Knyazikhin, N. Loeb, J.-P. Muller, A. W. Nolin, B. Pinty, C. B. Schaaf, G. Seiz, and J. Stroeve (2005), The value of multiangle measurements for retrieving structurally and radiatively consistent properties of clouds, aerosols, and surfaces, Rem. Sen. Env., 97(4), 495–518, doi:10.1016/j.rse.2005.06.006.
Frey, R. A., S. A. Ackerman, Y. Liu, K. I. Strabala, H. Zhang, J. R. Key, and X. Wang (2008), Cloud Detection with MODIS. Part I: Improvements in the MODIS Cloud Mask for Collection 5, J. Atmos. Oceanic Technol., 25, 1057–1072, doi:10.1175/2008JTECHA1052.1.
Genkova, I., G. Seiz, P. Zuidema, G. Zhao, and L. Di Girolamo (2007), Cloud top height comparisons from ASTER, MISR, and MODIS for trade wind cumuli, Rem. Sen. Env., 107(1), 211–222, doi:10.1016/j.rse.2006.07.021.
Holz, R. E., S. A. Ackerman, F. W. Nagle, R. Frey, S. Dutcher, R. E. Kuehn, M. A. Vaughan, and B. Baum (2008), Global Moderate Resolution Imaging Spectroradiometer (MODIS) cloud detection and height evaluation using CALIOP, J. Geophys. Res., 113, D00A19, doi:10.1029/2008JD009837.
Jiang, J. H., H. Su, C. Zhai, S. T. Massie, M. R. Schoeberl, P. R. Colarco, S. Platnick, Y. Gu, and K. N. Liou (2011), Influence of convection and aerosol pollution on ice cloud particle effective radius, Atmos. Chem. Phys., doi:10.5194/acp-11-457-2011.
de la Torre Juárez, M., A. B. Davis, and E. J. Fetzer (2011), Scale-by-scale analysis of probability distributions for global MODIS-AQUA cloud properties: how the large scale signature of turbulence may impact statistical analyses of clouds, Atmos. Chem. Phys., 11, 2893–2901, doi:10.5194/acp-11-2893-2011.
Kato, S., F. G. Rose, S. Sun-Mack, W. F. Miller, Y. Chen, D. A. Rutan, G. L. Stephens, N. G. Loeb, P. Minnis, B. A. Wielicki, D. M. Winkler, T. P. Charlock, P. W. Stackhouse Jr., K.-M. Xu, and W. D. Collins (2011), Improvements of top-of-atmosphere and surface irradiance computations with CALIPSO-, CloudSat-, and MODIS- derived cloud and aerosol properties, J. Geophys. Res., 116(D19), D19209, doi:10.1029/2011JD016050.
King, M. D., S. Platnick, P. Yang, G. T. Arnold, M. A. Gray, J. C. Riedi, S. A. Ackerman, and K. N. Liou (2004), Remote sensing of liquid water and ice cloud optical thickness and effective radius in the Arctic: Application of airborne multispectral MAS data, J. Atmos. Oceanic Technol., 21, 857–875.
King, M. D., S. Platnick, P. A. Hubanks, G. T. Arnold, E. G. Moody, G. Wind, and B Wind (2006), Collection 005 Change Summary for the MODIS Cloud Optical Property (06_OD) Algorithm, NASA Collection 005 Change Summary Doc., 23 pp.
King, M. D., S.-C. Tsay, S. E. Platnick, M. Wang, and K.-N. Liou (1997), Cloud Retrieval Algorithms for MODIS: Optical Thickness, Effective Particle Radius, and Thermodynamic Phase, MODIS Science Team, MODIS Algorithm Theoretical Basis Document No. ATBD-MOD-05.
L'Ecuyer, T. S., P. Gabriel, K. Leesman, S. J. Cooper, and G. L. Stephens (2006), Objective Assessment of the Information Content of Visible and Infrared Radiance Measurements for Cloud Microphysical Property Retrievals over the Global Oceans. Part I: Liquid Clouds, J. Appl. Meteorol. Clim., 45, 20–41.
Li, J., C.-Y. Liu, H.-L. Huang, T. J. Schmit, X. Wu, W. P. Menzel, and J. J. Gurka (2005), Optimal Cloud-Clearing for AIRS Radiances Using MODIS, IEEE Geosci. Remote Sens., 43(6), 1266–1278.
Liu, Y., J. R. Key, R. A. Freya, S. A. Ackerman, and W. P. Menzel (2004), Nighttime polar cloud detection with MODIS, Rem. Sen. Env., 92, 181–194, doi:10.1016/j.rse.2004.06.004.
Mace, G. G., Y. Zhang, S. Platnick, M. D. King, P. Minnis, and P. Yang (2005), Evaluation of Cirrus Cloud Properties Derived from MODIS Data Using Cloud Properties Derived from Ground-Based Observations Collected at the ARM SGP Site, J. Appl. Meteorol., 44(2), 221–240, doi:10.1175/JAM2193.1.
Marchand, R., T. Ackerman, M. Smyth, and W. B. Rossow (2010), A review of cloud top height and optical depth histograms from MISR, ISCCP, and MODIS, J. Geophys. Res., 115, D16206, doi:10.1029/2009JD013422.
Menzel, W. P., R. A. Frey, and B. A. Baum (2010), Cloud top properties and cloud phase algorithm theoretical basis document, , Modis theoretical basis document.
Meyer, K., P. Yang, and B.-C. Gao (2006), Tropical ice cloud optical depth, ice water path, and frequency fields inferred from the MODIS level-3 data, Atmos. Res., 85, 171–182, doi:10.1016/j.atmosres.2006.09.009.
Minnis, P., G. Hong, S. Sun-Mack, W. L. Smith Jr., Y. Chen, and S. D. Miller (2016), Estimating nocturnal opaque ice cloud optical depth from MODIS multispectral infrared radiances using a neural network method, J. Geophys. Res., 121(9), 4907–4932, doi:10.1002/ 2015JD024456.
Mitchell, D. L., R. P. D'Entremont, and R. P. Lawson (2009), Inferring Cirrus Size Distributions through Satellite Remote Sensing and Microphysical Databases, J. Atmos. Sci., 67(4), 1106–1125, doi:10.1175/2009JAS3150.1.
Nakajima, T., M. D. King, and J. D. Spinhirne (1991), Determination of the Optical Thickness and Effective Particle Radius of Clouds from Reflected Solar Radiation Measurements. Part II: Marine Stratocumulus Observations, J. Atmos. Sci., 48(5), 728–750, doi:10.1175/1520-0469(1991)048<0728:DOTOTA>2.0.CO;2.
Pittman, J. V., F. R. Robertson, R. J. Atkinson, and C. Blankenship (2008), Understanding Differences Between Co-Incident CloudSat, Aqua/MODIS and NOAA18 MHS Ice water Path Retrievals Over the Tropical Oceans, In: AGU Fall Meeting Abstracts.
Platnick, S., M. D. King, S. A. Ackermann, W. P. Menzel, B. A. Baum, J. C. Riedi, and R. A. Frey (2003), The MODIS Cloud Products: Algorithms and Examples From Terra, IEEE T. Geosci. Remote, 41(2), 459–473.
Quaas, J., B. Stevens, P. Stier, and U. Lohmann (2010), Interpreting the cloud cover — Aerosol optical depth relationship found in satellite data using a general circulation model, Atmos. Chem. Phys., 10, 6129–6135, doi:10.5194/acp-10-6129-2010.
Redemann, J., M. A. Vaughan, Q. Zhang, Y. Shinozuka, P. B. Russell, J. M. Livingston, M. Kacenelenbogen, and L. A. Remer (2012), The comparison of MODIS-Aqua (C5) and CALIOP (V2 & V3) aerosol optical depth, Atmos. Chem. Phys., 12, 3025–3043, doi:10.5194/acp-12-3025-2012.
Stein, T. H. M., J. Delanoë, and R. J. Hogan (2011), A Comparison among Four Different Retrieval Methods for Ice-Cloud Properties Using Data from CloudSat, CALIPSO, and MODIS, J. Appl. Meteorol. Clim., 50, 1952–1969, doi:10.1175/2011JAMC2646.1.
Waliser, D. E., J-L. F. Li, C. P. Woods, R. T. Austin, J. Bacmeister, J. Chern, A. Del Genio, J. H. Jiang, Z. Kuang, H. Meng, P. Minnis, S. Platnick, W. B. Rossow, G. L. Stephens, S. Sun-Mack, W-K. Tao, A. M. Tompkins, D. G. Vane, C. Walker, and D. Wu (2009), Cloud ice: A climate model challenge with signs and expectations of progress, J. Geophys. Res., 114, D00A21, doi:10.1029/2008JD010015.
Young, A. H., J. J. Bates, and J. A. Curry (2013), Application of cloud vertical structure from CloudSat to investigate MODIS-derived cloud properties of cirriform, anvil, and deep convective clouds, J. Geophys. Res., 118(10), 4689–4699, doi:10.1002/jgrd.50306.
Zhang, Z., P. Yang, G. Kattawar, J. Riedi, L. C. Labonnote, B. A. Baum, S. Platnick, and H. L. Huang (2009), Influence of ice particle model on satellite ice cloud retrieval: lessons learned from MODIS and POLDER cloud product comparison, Atmos. Chem. Phys., 9, 7115–7129, doi:10.5194/acp-9-7115-2009.