| a-train | abs lookup | absorption | aerosols | aggregation | airs | albedo | algorithm | amsu | annual cycle | anomalies | aqua | ar4 | ar5 | arctic | arm | arts | arts-dev | asr | assimilation | astrophysics | atmosphere | atmospheric composition | atmospheric dynamics | atmospheric profiles | atsr-2 | avhrr | backscattering | basics | bayes | book | calculation | calculations | calibration | calipso | ccn | cdr | ceres | cfmip | chemistry | cia | ciraclim | cirrus | cirrus anvil sublimation | cirrus cloud | cirrus clouds | cirrusstudy | ciwsir/cloudice | claus | climate | climate change | climate dynamics | climate feedbacks | climate sensitivity | climate sensivity | climate variability | climatology | cloud feedback | cloud forcing | cloud fraction | cloud ice | cloud properties | cloud radiative effects | cloud radiative forcing | cloud regimes | clouds | cloudsat | cmip3 | cmip5 | cmip6 | cmsaf | co2 | collocation | comparison | computer science | continua | contrail | convection | convective clouds | convective processes | convective self-aggregation | correlated k | cosmic background | cosmic rays | cosp | cross-calibration | cth | cumulus | dardar | data bases | dda | deep convection | delta m | dimer | disort | diurnal cycle | dmsp | documentation | droplet size | dynamics | earth | earthcare | echam | ecmwf | effective radius | electromagnetism | electron content | elevation | elevation satellite-2 | emd | emissivity | enso | eof-pca-svd | erbe | error assessment | ers | eruption | esa planetary | exoplanets | extraterrestrial | fall speed | far-infrared | faraday-voigt | fcdr | feedback | feedbacks | fingerprinting | flux uav | forcing | forest fire | fox19_airborne_amt.pdf | friend | fun | gcm | genesis | geostationary | gerrit_erca | global warming | gnss | goes | gps | gras | graupel | greenhouse effect | groundbased | hadley circulation | hail | heating rate | heating rates | herschel | hiatus | hirs | history | hsb | humidity | hydrological sensitivity | hydrological sensivity | iasi | ice | ice clouds | ice crystal growth | ice nucleation | ice water | icesat-2 | ici | icon | icz | in situ | infrared | instruments | intercalibration | intercomparison | interference | inverse modelling | ipcc | ir/vis | iris | isccp | ismar | isotopes | itcz | iwc | iwp | iwv | jupiter | kessler scheme | lblrtm | lidar | limb effect | limb sounding | limb-correction | linemixing | lineshape | liquid water | liquid water path | longwave radiation | low-cloud feedback | magnetic field | magnetism | mars | mas | mass-dimension relation | masters thesis | math | megha-tropiques | mendrok | mesoscale organization | meteorology | meteosat | metop | mhs | microphysics | microwave | mipas | mirs | misr | mixed phase | mls | model | modeling | models | modis | monte carlo | mspps | msu | mth | multi-moment scheme | multisensor | mwhs | mwi | net radiation | neural network | nicam | nlte | noaa | nonsphericity | npoess | observation | ocean | ocean reflection | ocean-atmosphere interactions | odin | olr | one-moment scheme | open loop | optical | optical depth | optical properties | optics | orbital drift | orbits | ozone | pacific ocean | particle orientation | particle shape | particle size | particle size distribution | patmos-x | phase function | phd thesis | polarimetry | polarization | polder | potss | precipitation | profile datasets | programming | projection | promet | propagation modeling | python | radar | radiation | radiation profiles | radiative convective equilibrium | radiative equilibrium | radiative feedback | radiative fluxes | radiative forcing | radiative processes | radiative transfer | radiative-convective equilibrium | radiative-equilibrium | radio occultation | radiometers | radiosonde | radiosonde cloud liquid | radiosonde correction | rain | reanalysis | refractive index | relative humidity | remote sensing | retrieval | review | rodgers | rttov | sahara | sahel | sampling | sand/dust | sar | satellite | satellite missions | satellite observations | satellite simulator | sbuehler_habil | scattering | scattering databases | scintillations | scout-amma | self-aggregation | sensor geometry | seviri | shallow convection | simulated annealing | single scattering | smiles | sno | snow | snowfall | software | soil | solar | soot | sounders | spectral information | spectroscopy | split window technique | ssm/i | ssm/t | ssmis | ssmt2 | stability | statistics | ste | stereo | stratosphere | submillimeter | submm | sun | supersaturation | surface | synergies | task2 | tempera | temperature | terra | thermodynamics | time series | titan | toa radiation | top of the atmosphere | total column | tovs | trade-wind clouds | trajectory analysis | trend | trmm | tropical circulation | tropical convection | tropical meteorology | tropics | tropopause | troposphere | ttl | turbulence | tutorial | two-moment scheme | upper troposphere | uth | utls | validation | vater vapor | venus | visualization | volcanic ash | walker circulation | walker rirculation | water | water cycle | water dimer | water vapor | water vapor continuum | water vapour | water vapour path | water-vapour | wind | zeeman |

Hide tag cloud

Filter by author:
Filter by year:
Filter by bibtex key:
Filter by type:
Filter by keyword:
and
and
 

Filtered by keyword:emissivity

There is currently a filter applied. To see the complete list of publications, clear the filter.
  1. Aires, F., C. Prigent, F. Bernando, C. Jiménez, R. Saunders, and P. Brunel (2011), A tool to estimate land-surface emissivities at microwave frequencies (TELSEM) for use in numerical weather predictionQ. J. R. Meteorol. Soc., 137, 690–699, doi:10.1002/qj.803.
  2. Bennartz, R., K. Pappe, J. Fischer, and T. J. Hewison (2002), Comparison of observed and simulated microwave land surface emissivities over bare soilMet. Zeit., 11(1), 5–12.
  3. Cruz-Pol, S. L. and C. S. Ruf (2000), A Modified Model for Specular Sea Surface Emissivity at Microwave FrequenciesIEEE T. Geosci. Remote, 38(2), 858–869.
  4. Deblonde, G. (2000), Evaluation of FASTEM and FASTEM2, Data Assimilation and Satellite Meteorology Division.
  5. Harlow, R. C. (2007), Airborne Retrievals of Snow Microwave Emissivity at AMSU Frequencies Using ARTS/SCEM-UAJ. Appl. Meteorol. Clim., 46, 23–35, doi:10.1175/JAM2440.1.
  6. Hewison, T. J. (2001), Airborne Measurements of Forest and Agricultural Land Surface Emissivity at Millimeter WavelengthsIEEE T. Geosci. Remote, 39(2), 393–400.
  7. Hewison, T. (2002), Analysis of emissivity data from POLEX: Initial results and Development of FASTEM for Arctic Surfaces, Met Office.
  8. Hewison, T. J., N. Selbach, G. Heygster, J. P. Taylor, and A. J. McGrath (xx), Airborne Measurements of Arctic Sea Ice, Glacier and Snow Emissivity at 24–183 GHz, University of Bremen.
  9. Jin, M. and S. Liang (2006), An Improved Land Surface Emissivity Parameter for Land Surface Models Using Global Remote Sensing ObservationsJ. Climate, 19(12), 1867–2881, doi:10.1175/JCLI3720.1.
  10. Karbou, F. and C. Prigent (2005), Calculation of Microwave Land Surface Emissivity From Satellite Observations: Validity of the Specular Approximation Over Snow-Free Surfaces?IEEE Geosci. Remote Sens. Let., 2(3), 311–314, doi:10.1109/LGRS.2005.847932.
  11. Karbou, F., C. Prigent, L. Eymard, and J. R. Pardo (2005), Microwave Land Emissivity Calculations Using AMSU MeasurementsIEEE T. Geosci. Remote, 43(5), 948–959, doi:10.1109/TGRS.2004.837503.
  12. Karbou, F. (2005), Two Microwave Land Emissivity Parameterizations Suitable for AMSU ObservationsIEEE Geosci. Remote Sens. Let., 43(8), 1788–1795.
  13. Lohmann, U. and E. Roeckner (1995), The influence of cirrus cloud-radiative forcing on climate and climate sensitivity in a general circulation modelJ. Geophys. Res., 100, 16,305–16,323.
  14. Maetzler, C. (2005), On the Determination of Surface Emissivity From Satellite ObservationsIEEE Geosci. Remote Sens. Let., 2(2), 160–163.
  15. Paape, K., R. Bennartz, and Juergen Fischer (xx), A combined two-scale model for microwave emissivities of land surfaces, Institute for Space Science, Free University of Berlin.
  16. Prigent, C., E. Jaumouillé, F. Chevallier, and F. Aires (2008), A Parameterization of the Microwave Land Surface Emissivity Between 19 and 100 GHz, Anchored to Satellite-Derived EstimatesIEEE Geosci. Remote Sens., 46, 1–9, doi:10.1109/TGRS.2007.908881.
  17. Prigent, C., F. Aires, D. Wang, S. Fox, and C. Harlow (2016), Sea-surface emissivity parametrization from microwaves to millimetre wavesQ. J. R. Meteorol. Soc., doi:10.1002/qj.2953.
  18. Ruston, B. C. and T. H. Vonder Haar (2004), Characterization of summertime microwave emissivities from the Special Sensor Microwave Imager over the conterminous United StatesJ. Geophys. Res., 109, D19103, doi:10.1029/2004JD004890.
  19. Vogel, R. L., Q. Liu, Y. Han, and F. Weng (2011), Evaluating a satellite derived global infrared land surface emissivity data set for use in radiative transfer modelingJ. Geophys. Res., 116, 1–11, doi:10.1029/2010JD014679.
  20. Weng, F., B. Yan, and N. C. Grody (2001), A microwave land emissivity modelJ. Geophys. Res., 106(D17), 20,115–20,123.
  21. Weng, F. and B. Yan (2004), A microwave snow emissivity model, In: The Technical Proceedings of The Thirteenth International TOVS Study Conference (ITSC XIII).