Show tag cloud

Filter by author:
Filter by year:
Filter by bibtex key:
Filter by type:
Filter by keyword:
and
and
 

Filtered by keyword:cirrusstudy

There is currently a filter applied. To see the complete list of publications, clear the filter.
  1. Appleman, H. S. (1953), The formation of exhaust condensation trails by jet aircraftBull. Amer. Met. Soc., 34, 14–20.
  2. Arnott, W., W. P. Dong, Y. Ya, and J. Hallett (1995), Extinction efficiency in the IR (2-18 micron) of laboratory ice clouds: Observation of scattering minima in Christiansen bands of iceJ. Appl. Opt., 34, 541–551.
  3. Astin, I. (1997), A survey of studies into errors in large scale space-time averages of rainfall, cloud cover, sea surface processes and the earth's radiation budget as derived from low earth orbit satellite instruments because of their incomplete temporal and spatial coverageSur. Geophy., 18, 384–403.
  4. Aumann, H. H., M. T. Chahine, C. Gautier, M. D. Goldberg, E. Kalnay, L. M. McMillin, H. Revercomb, P. W. Rosenkranz, W. L. Smith, D. H. Staelin, L. L. Strow, and J. Susskind (2003), AIRS/AMSU/HSB on the Aqua mission: Design, science objectives, data products, and processing systemsIEEE T. Geosci. Remote, 41(2), 253–264.
  5. Bailey, M. and J. Hallet (2003), Growth rates and habits of ice crystals between -20° and -70°J. Atmos. Sci., 61, 514–544.
  6. Baran, A. J., P. N. Francis, L.C. Labonnote, and M. Doutriaux-Boucher (2001), A scattering phase function for ice cloud : Tests of applicability using aircraft and satellite multi-angle multi-wavelength radiance measurements of cirrusQ. J. R. Meteorol. Soc., 127, 2395–2416.
  7. Baran, A. J., S. Havemann, P. N. Francis, and P. D. Watts (2003), A consistent set of single-scattering properties for cirrus cloud: tests using radiance measurements from a dual-viewing multi-wavelength satellite-based instrumentJ. Quant. Spectrosc. Radiat. Transfer, 79–80, 549–567.
  8. Baran, A. J. (2003), Simulation of infrared scattering from ice aggregates using a size/shape distribution of ice cylindersAppl. Opt., 42, 2811–2818.
  9. Baran, A. J. and P. N. Francis (2004), On the radiative properties of cirrus cloud at solar and thermal wavelengths: A test of model consistency using high-resolution airborne radiance measurementsQ. J. R. Meteorol. Soc., 130, 1–16.
  10. Baran, A. J. (2005), The dependence of cirrus infrared radiative properties in ice crystal geometry and shape of the size-distribution functionQ. J. R. Meteorol. Soc., 131, 1129–1142.
  11. Baran, A. J., P. D. Watts, and J. S. Foot (1998), Potential retrieval of dominating crystal habit and size using radiance data from a dual-view and multiwavelength instrument: A tropical cirrus anvil caseJ. Geophys. Res., 103, 6075–6082.
  12. Baran, A. J., P. D. Watts, and P. N. Francis (1999), Testing the coherence of microphysical and bulk properties retrieved from dual-viewing multispectral satellite radiance measurementsJ. Geophys. Res., 104, 31673–31683.
  13. Barkstrom, B. R. (1984), The Earth Radiation Budget Experiment (ERBE)Bull. Amer. Met. Soc., 74.
  14. Baum, B. A., A. J. Heymsfield, P. Yang, and S. T. Bedka (2005), Bulk Scattering Properties for the Remote Sensing of Ice Clouds. Part I: Microphysical Data and ModelsJ. Appl. Meteorol., 44, 1885–1895.
  15. Baum, B. A., P. Yang, A. J. Heymsfield, S. Platnick, M. D.King, Y.-X. Hu, and S. T. Bedka (2005), Bulk Scattering Properties for the Remote Sensing of Ice Clouds. Part II: Narrowband ModelsJ. Appl. Meteorol., 44, 1896–1911.
  16. Bizzarri, B., et al. (2005), Geostationary Observation for Microwave Atmospheric Sounding (GOMAS), CNR Istiuto di Scienze dell'Atmosfera e del Clima (ISAC).
  17. Boucher, O. (1999), Air traffic may increase cirrus cloudinessNature, 397, 30–31.
  18. Boudala, F. S., G. A. Isaac, Q. Fu, and S. G. Cober (2002), Parameterization of effective ice particle size for high-latitude cloudsInt. J. Climatol., 22(10), 1267–1284.
  19. Breon, F.-M. and B. Dubrulle (2004), Horizontally Oriented Plates in CloudsJ. Atmos. Sci., 61, 2888–2898.
  20. Chandrasekar, V., W. Li, and B. Zafar (2005), Estimation of raindrop size distribution from spaceborne radar observationsIEEE T. Geosci. Remote, 43(5), 1078–1086, doi:10.1109/TGRS.2005.846130.
  21. Charlton, J., M. L. Jarrett, M. E. Humphries, R. K. Child, N. L. Atkinson, T. J. Hewison, A. Slingo, D. A. V. Spilling, J. M. Higgins, M. A. Bray, P. R. Foster, and D. N. Matheson. (2002), Study on Future Microwave and Millimetre-wave Radiometer Requirements and Concepts, Final Report, ESTEC Contract No 14841/01/NL/MM.
  22. Charlton, J., B. Moyna, C. Lee, and E. Defer (2010), Study of a Sub-millimetre Wave Airborne Demonstrator for Observations of Precipitation and Ice Clouds, Final Report, ESTEC Contract No. 20927/07/NL/JA.
  23. Chen, T., W. B. Rossow, and Y. Zhang (2000), Radiative Effects of Cloud-Type VariationsJ. Climate, 13(1), 264–286.
  24. Chepfer, H., P. Goloub, J. Riedi, J. F. De Haan, J. W. Hovenier, and P. H. Flamant (2001), Ice crystal shapes in cirrus clouds derived from POLDER/ADEOS-1J. Geophys. Res., 106(D8), 7955–7966, doi:10.1029/2000JD900285.
  25. Chepfer, H., G. Brogniez, and Y. Fouquart (1998), Cirrus coulds' microphysical properties deduced from POLDER observationsJ. Quant. Spectrosc. Radiat. Transfer, 60(3), 375–390.
  26. Chepfer, H., G. Brogniez, P. Goloub, F. M. Breon, and P. H. Flamant (1999), Observations of horizontally oriented ice crystals in cirrus clouds with POLDER-1/ADEOS-1J. Quant. Spectrosc. Radiat. Transfer, 63, 521–543.
  27. Clark, H. L., R. S. Harwood, A. Billingham, and H. C. Pumphrey (2003), Cirrus and water vapor in the tropical tropopause layer observed by Upper Atmosphere Research Satellite (UARS)J. Geophys. Res., 108(D24), doi:10.1029/2003JD003748.
  28. Crutzen, P. J. (2006), Albedo enhancement by stratospheric sulfur injections: A contribution to resolve a policy dilemma?, Max-Planck-Institute for Chemistry Department of Atmospheric Chemistry and University of California.
  29. Curry, J. A., et al. (2000), FIRE Arctic Clouds ExperimentBull. Amer. Met. Soc., 81(1).
  30. Deeter, M. N. and K. F. Evans (2000), A Novel Ice-Cloud Retrieval Algorithm Based on the Millimeter-Wave Imaging Radiometer (MIR) 150- and 220-GHz ChannelsJ. Appl. Meteorol., 39, 623–633.
  31. DelGenio, A. D. (2002), GCM simulations of cirrus for climate studies, In: Cirrus, pp. 310–326, Edited by Lynch, D. K., K. Sassen, D. Starr, and G. Stephens, Oxford University Press.
  32. DelGenio, A. D., M.-S. Yao, W. Kovari, and K. K.-W. Lo (1996), A Prognostic Cloud Water Parameterization for Global Climate ModelsJ. Climate, 9(2), 270–304.
  33. Deschamps, P. Y., F. M. Breon, M. Leroy, A. Podaire, A. Bricaud, J. C. Buriez, and G. Seze (1994), The POLDER mission - Instrument characteristics and scientific objectivesIEEE T. Geosci. Remote, 32(3), 598–615.
  34. Doms, G. and U. Schaettler (1999), The nonhydrostatic Limited-Area Model LM (Lokal-Modell) of DWD. Part I: Scientific Documentation. DWD, GB Forschung und Entwicklung, DWD.
  35. Donner, L. J., C. J. Seman, B. J. Soden, R. S. Hemler, J. C. Warren, J. Stroem, and K.-N. Liou (1997), Large-scale ice clouds in the GFDL SKYHI general circulation modelJ. Geophys. Res., 102, 21745–21768.
  36. Donovan, D. P. (2003), Ice-cloud effective particle size parameterization based on combined lidar, radar reflectivity, and mean Doppler velocity measurementsJ. Geophys. Res., 108(D18), doi:10.1029/2003JD003469.
  37. Dowling, D. R. and L. F. Radke (1990), A summary of the physical properties of cirrus cloudsJ. Appl. Meteorol., 29, 970–978.
  38. Duda, P.D., P. Minnis, L. Nguyen, and R. Palikonda (2004), A case study of the development of contrail clusters over the Great lakesJ. Atmos. Sci., 61, 1132–1146.
  39. Eguchi, N. and M. Shiotani (2004), Intraseasonal variations of water vapor and cirrus clouds in the tropical upper troposphereJ. Geophys. Res., 109(D18), doi:10.1029/2003JD004314.
  40. ESA (2001), The Five Candidate Earth Explorer Core Missions - EarthCARE- Earth Clouds, Aerosols and Radiation Explorer, European Space Agency Agence spatiale europeenne.
  41. Evans, K. F., S. J. Walter, A. J. Heymsfield, and G. M. McFarquhar (2002), Submillimeter-Wave Cloud Ice Radiometer: Simulations of retrieval algorithm performanceJ. Geophys. Res., 107(D3), doi:10.1029/2001JD000709.
  42. Evans, K. F. and W. J. Wiscombe (2004), An algorithm for generating stochastic cloud fields from radar profile statisticsAtmos. Res., 72, 263–289.
  43. Evans, K. F. (2004), Submillimeter-wave Ice Cloud Radiometry Channel Selection Study, Univerity of Colorado, Boulder.
  44. Evans, K. F. and G. L. Stephens (1995), Microwave Radiative Transfer through Clouds Composed of Realistically Shaped Ice Crystals. Part I: Single Scattering PropertiesJ. Atmos. Sci., 52(11), 2041–2057, doi:10.1175/1520-0469(1995)052<2041:MRTTCC>2.0.CO;2.
  45. Evans, K. F. and G. L. Stephens (1995), Microwave Radiative Transfer through Clouds Composed of Realistically Shaped Ice Crystals. Part II: Remote Sensing of Ice CloudsJ. Atmos. Sci., 52, 2058–2072, doi:10.1175/1520-0469(1995)052<2058:MRTTCC>2.0.CO;2.
  46. Evans, K. F., S. J. Walter, A. J. Heymsfield, and M. N. Deeter (1998), Modeling of Submillimeter Passive Remote Sensing of Cirrus CloudsJ. Appl. Meteorol., 37, 184–205.
  47. Evans, K. F., A. H., I. G. Nolt, and B. T. Marshall (1999), The Prospect for Remote Sensing of Cirrus Clouds with a Submillimeter-Wave SpectrometerJ. Appl. Meteorol., 38, 514–525.
  48. Ferraro, R. R., N. C. Grody, F. Weng, and A. Basist (1996), An Eight-Year (1987–1994) Time Series of Rainfall, Clouds, Water Vapor, Snow Cover, and Sea Ice Derived from SSM/I MeasurementsBull. Amer. Met. Soc., 77, 891–906.
  49. Field, P. R., R. J. Hogan, P. R. A. Brown, A. J. Illingworth, T. W. Choularton, and R. J. Cotton (2005), Parametrization of Ice Particle Size Distributions For Mid-latitude Stratiform CloudQ. J. R. Meteorol. Soc., 131, 1997–2019.
  50. Fowler, L. D., D. A. Randall, and S. A. Rutledge (1996), Liquid and Ice Cloud Microphysics in the CSU General Circulation Model. Part I: Model Description and Simulated Microphysical ProcessesJ. Climate, 9(3), 489–529.
  51. Fu, Q. and K. N. Liou (1993), Parameterization of the Radiative Properties of Cirrus CloudsJ. Atmos. Sci., 50, 2008–2025, doi:10.1175/1520-0469(1993)050<2008:POTRPO>2.0.CO;2.
  52. Fu, Q. and Y. Takano (1994), On the limitation of using asymmetry factor for radiative transfer in cirrus cloudsAtmos. Res., 34, 299–308.
  53. Fu, Q. (1996), An Accurate Parameterization of the Solar Radiative Properties of Cirrus for Climate ModelsJ. Climate, 9(9), 2058–2082, doi:10.1175/1520-0442(1996)009<2058:AAPOTS>2.0.CO;2.
  54. Fu, Q., P. Yang, and W. B. Sun (1998), An Accurate Parameterization of the Infrared Radiative Properties of Cirrus Clouds for Climate ModelsJ. Climate, 11, 2223–2237, doi:10.1175/1520-0442(1998)011<2223:AAPOTI>2.0.CO;2.
  55. Gallagher, M. W., P. J. Connolly, J. Whiteway, D. Figueras-Nieto, M. Flynn, T. W. Choularton, K. N. Bower, and J. Hacker (2005), An overview of the microphysical structure of cirrus clouds observed during EMERALD-1Q. J. R. Meteorol. Soc., 131, 1143–1169, doi:10.1256/qj.03.138.
  56. Gasiewski, A. J., A. Voronovich, B. L. Weber, B. Stankov, M. Klein, R. J. Hill, and J. W. Bao (2003), Geosynchronous Microwave (GEM) Sounder/Imager Observation System Simulation, In: IGARSS Geoscience and Remote Sensing Symposium, Proceedings.
  57. Gayet, J.-F., J. Ovarlez, V. Shcherbakov, J. Strom, U. Schumann, A. Minikin, F. Auriol, A. Petzold, and M. Monier (2004), Cirrus cloud microphysical and optical properties at southern and northern midlatitudes during the INCA experimentJ. Geophys. Res., 109, doi:10.1029/2004JD004803.
  58. Goldfarb, L., P. Keckhut, M-L. Chanin, and A. Hauchecorne (2001), Cirrus climatological results from lidar measurements at OHP (44°N, 6°E)Geophys. Res. Lett., 28, 1687–1690, doi:10.1029/2000GL012701.
  59. Golding, B. W. and N. C. Atkinson (2002), Study of Future Microwave Sounders on Geostationary and Medium Earth Orbits. Task 1 Report: Review of Preliminary List of Products and Corresponding Requirements, ESA study STN/PR72/002, MGO-MET-RP-001.
  60. Goodman, J., R. F. Pueschel, E. J. Jensen, S. Verma, G. V. Ferry, S. D. Howard, S. A. Kinne, and D. Baumgardner (1998), Shape and Size of Contrails Ice ParticlesGeophys. Res. Lett., 25(9), 1327–1330, doi:10.1029/97GL03091.
  61. Gultepe, I., G. A. Isaac, and S. G. Cober (2001), Ice crystal number concentration versus temperature for climate studiesInt. J. Climatol., 21, 1281–1302.
  62. Gultepe, I. and G. A. Isaac (2004), Aircraft observations of cloud droplet number concentration: Implications for climate studiesQ. J. R. Meteorol. Soc., 130, 2377–2390, doi:10.1256/qj.03.120.
  63. Guo, G., Q. Ji, P. Yang, and S.-C. Tsay (2005), Remote Sensing of Cirrus Optical and Microphysical Properties From Ground-Based Infrared Radiometric Measurements- Part II: Retrievals From CRYSTAL-FACE MeasurementsIEEE Geosci. Remote Sens. Let., 2(2), 132–135.
  64. Hahn, C. J., W. B. Rossow, and S. G. Warren (2001), ISCCP Cloud Properties Associated with Standard Cloud Types Identified in Individual Surface ObservationsJ. Climate, 14, 11–28.
  65. Hallar, A. Gannet, L. M. Avallone, R. L. Herman, B. E. Anderson, and A. J. Heymsfield (2004), Measurements of ice water content in tropopause region Arctic cirrus during the SAGE III Ozone Loss and Validation Experiment (SOLVE)J. Geophys. Res., 109, D17203, doi:10.1029/2003JD004348.
  66. Han, Q.-Y, W. B. Rossow, and A. A. Lacis (1994), Near-global survey of effective cloud droplet radii in liquid water clouds using ISCCP dataJ. Climate, 7, 465–497.
  67. Han, Q.-Y., W. B. Rossow, J. Chou, K.-S. Kuo, and R. M. Welch (1999), The effects of aspect ratio and surface roughness on satellite retrievals of ice-cloud propertiesJ. Quant. Spectrosc. Radiat. Transfer, 63, 559–583.
  68. Hanesch, M. (1999), Fall Velocity and Shape of Snowflakes, Swiss Federal Institute of Technology.
  69. Hartmann, D. L., J. R. Holton, and Q. Fu (2001), The heat balance of the tropical tropopause, cirrus, and stratospheric dehydration, University of Washington.
  70. Hartmann, D. L. and D. A. Short (1980), On the use of earth radiation budget statistics for studies of clouds and climateJ. Atmos. Sci., 37, 1233–1249.
  71. Havemann, S., A. J. Baran, and J. M. Edwards (2003), Implementation of the T-matrix method on a massively parallel machine: a comparison of hexagonal ice cylinder single-scattering properties using T-matrix and improved geometric optics methodJ. Quant. Spectrosc. Radiat. Transfer, 79, 707–720.
  72. Hendricks, J., B. Kärcher, U. Lohmann, and M. Ponater (2005), Do aircraft black carbon emissions affect cirrus clouds on the global scale?Geophys. Res. Lett., 32, doi:10.1029/2005GL022740.
  73. Herman, G. F., M.-L.C. Wu, and W.T. Johnson (1980), The effect of clouds on the Earth's solar and infrared radiation budgetsJ. Atmos. Sci., 37, 1251–1261.
  74. Heymsfield, A. J. and J. Iaquinta (2000), Cirrus crystal terminal velocitiesJ. Atmos. Sci., 57, 916–938.
  75. Heymsfield, A. J., S. Lewis, A. Bansemer, J. Iaquinta, L. M. Miloshevich, M. Kajikawa, C. Twohy, and M. R. Poellot (2002), A general approach for deriving the properties of cirrus and stratiform ice cloud particlesJ. Atmos. Sci., 59, 3–29.
  76. Heymsfield, A. J. and G. M. McFarquahar (2002), Mid-latitude and Tropical Cirrus, In: Cirrus, pp. 78–101, Edited by Lynch, D. K., K. Sassen, D. Starr, and G. Stephens, Oxford University Press.
  77. Heymsfield, A. J., A. Bansemer, P.R. Field, S. L. Durden, J. L. Stith, J. E. Dye, W. Hall, and C. A. Grainger (2002), Observations and Parameterizations of Particle Size Distributions in Deep Tropical Cirrus and Stratiform Precipitating Clouds: Results from In Situ Observations in TRMM Field Campaigns.J. Atmos. Sci., 59, 3457–3491.
  78. Heymsfield, A. J. and L. M. Miloshevic (2002), Parameterizations for the Cross-Sectional Area and Extinction of Cirrus Stratiform Ice Cloud ParticlesJ. Atmos. Sci., 60, 936–956.
  79. Heymsfield, A. J., S. Matrosov, and B. Baum (2003), Ice water path - optical depth relationships for cirrus and deep stratiform ice cloud layersJ. Appl. Meteorol., 42(20), 1369–1390.
  80. Heymsfield, A. J. (2003), Properties of tropical and midlatitude ice cloud particle ensembles, Part I: Median Mass Diameters and Terminal VelocitiesJ. Atmos. Sci., 60, 2592–2611.
  81. Heymsfield, A. J. (2003), Properties of tropical and midlatitude ice cloud particle ensembles, Part II: Applications for mesoscale and climate modelsJ. Atmos. Sci., 60, 2592–2611.
  82. Heymsfield, A. J., C. G. Schmitt, A. Bansemer, D. Baumgardner, E. M. Weinstock, J. T. Smith, and D. Sayres (2004), Effective Ice Particle Densities for Cold Anvil CirrusGeophys. Res. Lett., 31.
  83. Heymsfield, A. J., A. Bansemer, C. Schmitt, C. Twohy, and M. R. Poellot (2004), Effective Ice Particle Densities Derived from Aircraft DataJ. Atmos. Sci., 61, 982–1003, doi:10.1175/1520-0469(2004)061<0982:EIPDDF>2.0.CO;2.
  84. Heymsfield, A. J., D. Winker, and G.-J. van Zadelhoff (2005), Extinction-ice water content-effective radius algorithms for CALIPSOGeophys. Res. Lett., 32, doi:10.1029/2005GL022742.
  85. Heymsfield, A. J., L. M. Misloshevich, C. Schmitt, and A. Bansemer (2005), Homogeneous ice nucleation in subtropical convection and its influence on cirrus anvil microphysicsJ. Atmos. Sci., 62, 41–64.
  86. Heymsfield, A. J. and C. M. R. Platt (1984), A Parameterization of the Particle Size Spectrum of Ice Clouds in Terms of the Ambient Temperature and the Ice Water ContentJ. Atmos. Sci., 41(5), 846–855, doi:10.1175/1520-0469(1984)041<0846:APOTPS>2.0.CO;2.
  87. Heymsfield, A. J. and L. J. Donner (1990), A scheme for parameterizing ice cloud water content in general circulation modelsJ. Atmos. Sci., 47, 1865–1877.
  88. Heymsfield, A. J. and L. M. Miloshevich (1995), Relative Humidity and Temperature Influences on Cirrus Formation and Evolution: Observations from Wave Clouds and FIRE IIJ. Atmos. Sci., 52, 4302–4326.
  89. Hinsman, D. (2002), Manual of the CEOS/WMO Database on User Requirements and In Situ and Space Capabilities, World Meteorological Organization, Issue 1.5.
  90. Hinsman, D. (2003), Satellite Systems and Requirements, CEOS/WMO database, Version 2.5, World Meteorological Organization, http://alto-stratus.wmo.ch/sat/stations/SatSystem.html.
  91. Hong, G., G. Heygster, J. Miao, and K. Kunzi (2005), Sensitivity of microwave brightness temperatures to hydrometeors in tropical deep convective cloud system at 89-190 GHz channels measurementsRadio Sci., 40, RS4003, doi:10.1029/2004RS003129.
  92. Hong, G., G. Heygster, and K. Kunzi (2005), Intercomparison of Deep Convective Cloud Fractions From Passive Infrared and Microwave Radiance MeasurementsIEEE Geosci. Remote Sens. Let., 2, 18–24, doi:10.1109/LGRS.2004.838405.
  93. Hong, G., G. Heygster, J. Miao, and K. Kunzi (2005), Detection of tropical deep convective clouds from AMSU-B water vapor channels measurementsJ. Geophys. Res., 110(D9), D05205, doi:10.1029/2004JD004949.
  94. Hu, Y. and K. Stamnes (2000), Climate sensitivity to cloud optical propertiesTellus, 52B, 81–93.
  95. Ivanova, D., D. L. Mitchell, W. P. Arnott, and M. Poellot (2001), A GCM Parameterization for Bimodal Size Spectra and Ice Mass Removal Rates in Mid- latitude Cirrus CloudsAtmos. Res., 59–60, 89–113.
  96. Jensen, E. J., J. B. Smith, L. Pfister, J. V. Pittman, E. M. Weinstock, D. S. Sayres, R. L. Herman, R. F. Troy, K. Rosenlof, T. L. Thompson, A. M. Fridlind, P. K. Hudson, D. J. Cziczo, A. J. Heymsfield, C. Schmitt, and J. C. Wilson (2005), Ice supersaturations exceeding 100% at the cold tropical tropopause: implications for cirrus formation and dehydrationAtmos. Chem. Phys., 5, 851–862, doi:10.5194/acp-5-851-2005.
  97. Jin, Y., W. B. Rossow, and D. P. Wylie (1996), Comparison of the climatologies of high-level clouds from HIRS and the ISCCPJ. Climate, 9, 2850–2879.
  98. Kärcher, B. and U. Lohmann (2002), A parameterization of cirrus cloud formations: Homogeneous freezing including the effects of arerosol sizeJ. Geophys. Res., 107, doi:10.1029/2001JD001429.
  99. Kärcher, B. and U. Lohmann (2002), A parameterization of cirrus cloud formation: Homogeneous freezing of supercooled aerosolsJ. Geophys. Res., 107, doi:10.1029/2001JD000470.
  100. Kärcher, B. (2002), Properties of subvisible cirrus clouds formed by homogeneous freezingAtmos. Chem. Phys., 2, 161–170, doi:10.5194/acp-2-161-2002.
  101. Kärcher, B. and U. Lohmann (2003), A parameterization of cirrus cloud formation: Heterogeneous freezingJ. Geophys. Res., 108, doi:10.1029/2002JD003220.
  102. Kärcher, B. and J. Ström (2003), The roles of dynamical variability and aerosols in cirrus cloud formationAtmos. Chem. Phys., 3, 823–838, doi:10.5194/acp-3-823-2003.
  103. Kärcher, B. (2004), Cirrus clouds in the tropical tropopause layer: Role of heteorogeneous ice nucleiGeophys. Res. Lett., 31.
  104. Kahn, B. H., A. Eldering, M. Ghil, S. Bordoni, and S. A. Clough (2004), Sensitivity Analysis of Cirrus Cloud Properties from High-Resolution Infrared Spectra. Part I: Methodology and Synthetic CirrusJ. Climate, 17, 4856–4870.
  105. Kent, G. S., D. M. Winker, M. T. Osborn, and K. M. Skeens (1993), A model for the separation of cloud and aerosol in SAGE II occultation dataJ. Geophys. Res., 98, 20725–20735.
  106. Khain, A. M., M. Ovtchinnikov, M. Pinsky, A. Pokrovsky, and H. Krugliak (2000), Notes on the state-of-the-art numerical modelling of cloud microphysicsAtmos. Res., 55, 159–224.
  107. King, M. D., W. P. Menzel, Y. J. Kaufman, D. Tanre, B.-C. Gao, S. Platnick, S. S. Ackerman, L. A. Remer, R. Pincus, and P. A. Hubanks (2003), Cloud and Aerosol Properties, Precipitable Water, and Profiles of Temperature and Water Vapor from MODISIEEE T. Geosci. Remote, 41(2), 442–458.
  108. King, M. D., W. P. Menzel, P. S. Grant, J. S. Myers, G. T. Arnold, S. E. Platnick, L. E. Gumley, S.-C. Tsay, C. C. Moeller, M. Fitzgerald, K. S. Brown, and F. G. Osterwisch (1996), Airborne Scanning Spectormeter for Remote Sensong of Cloud, Aerosol, Water Vapor, and Surface PropertiesJ. Atmos. Oceanic Technol., 13(4), 777–794.
  109. Kinne, S., T. P. Ackerman, M. Shiobara, A. Uchiyama, A. J. Heymsfield, L. Miloshevich, J. Wendell, E. Eloranta, C. Purgold, and R. W. Bergstrom (1997), Cirrus Cloud Radiative and Microphysical Properties From Ground Observations and In Situ Measurements During Fire 1991 and Their Application to Exhibit Problems in Cirrus Solar Radiative Transfer ModelingJ. Atmos. Sci., 54, 2320–2344.
  110. Knap, W., L. C.-Labonnote, G. Brogniez, and P. Stammes (2005), Modeling total and polarized reflectances of ice clouds : Evaluation by means of POLDER and ATSR-2 measurementsAppl. Opt., 44, 4060–4073.
  111. Knap, W. H., M. Hess, P. Stammes, R. B. A. Koelemeijer, and P. D. Watts (1999), Cirrus optical thickness and crystal size retrieval from ATSR-2 data using phase functions of imperfect hexagonal ice crystalsJ. Geophys. Res., 104(13), 31721–31730, doi:10.1029/1999JD900267.
  112. Knollenberg, R. G., K. Kelly, and J. C. Wilson (1993), Measurements of high number densities of ice crystals in the tops of tropical cumulonimbusJ. Geophys. Res., 98(D5), 8639–8664.
  113. Korolev, A. V., G. A. Isaac, S. G. Cober, J. W. Strapp, and J. Hallett (2003), Microphysical Characterization of Mixed Phase CloudsQ. J. R. Meteorol. Soc., 129, 39–65.
  114. Korolev, A. and G. Isaac (2003), Roundness and Aspect Ratio of Particles in Ice cloudsJ. Atmos. Sci., 60, 1795–1808.
  115. Korolov, A. V., G. A. Isaac, and J. Hallett (1999), Ice Particle habits in Artic clouds, Atmospheric Environment Service, Desert Research Institute.
  116. Krämer, M., C. Rolf, A. Luebke, A. Afchine, N. Spelten, A. Costa, J. Meyer, M. Zöger, J. Smith, R. L. Herman, B. Buchholz, V. Ebert, D. Baumgardner, S. Borrmann, M. Klingebiel, and L. Avallone (2016), A microphysics guide to cirrus clouds — Part 1: Cirrus typesAtmos. Chem. Phys., 16, 3463–3483, doi:10.5194/acp-16-3463-2016.
  117. Kristjánsson, J. E., J. M. Edwards, and D. L. Mitchell (1999), A new parameterization scheme for the optical properties of ice crystals for use in general circulation models of the atmospherePhys. Chem. Earth, 24, 231–236.
  118. Kumar, S. V. Sunil, K. Parameswaran, and B. V. Krishna Murthy (2003), Lidar Observations of Cirrus Cloud Near the Tropical Tropopause: General FeaturesAtmos. Res., 66, 203–227.
  119. Kummerow, C., W. Barnes, T. Kozu, J. Shiue, and J. Simpson (1998), The Tropical Rainfall Measuring Mission (TRMM) Sensor PackageJ. Atmos. Oceanic Technol., 15, 808–816.
  120. C.-Labonnote, L., G. Brogniez, J. C. Buriez, M. Doutriaux-Boucher, J. F. Gayet, and A. Macke (2001), Polarized light scattering by inhomogeneous hexagonal monocrystals. Validation with ADEOS-POLDER measurementsJ. Geophys. Res., 106, 12139–12153.
  121. Lawson, R. P., A. J. Heymsfield, S. M. Aulenbach, and T. L. Jensen (1998), Shapes, sizes and light scattering properties of ice crystals in cirrus and a persistent contrail during SUCCESSGeophys. Res. Lett., 25(9), 1331–1334.
  122. Li, J., H.-L. Huang, C.-Y. Liu, P. Yang, T. J. Schmit, H. Wie, E. Weisz, L. Guan, and W. P. Menzel (2005), Retrieval of Cloud Microphysical Properties from MODIS and AIRSJ. Appl. Meteorol., 44, 1526–1543.
  123. Liao, X., W. B. Rossow, and D. Rind (1995), Comparison between SAGE II and ISCCP high-level clouds. Part I: Global and zonal mean cloud amountsJ. Geophys. Res., 100, 1121–1135.
  124. Liao, X., W. B. Rossow, and D. Rind (1995), Comparison between SAGE II and ISCCP high-level clouds. Part II: Locating cloud topsJ. Geophys. Res., 100, 1137–1147.
  125. Lin, R.-F., D. O'C. Starr, P. J. DeMott, R. Cotton, K. Sassen, E. Jensen, B. Kärcher, and X. Liu (2002), Cirrus Parcel Model Comparison Project. Phase I: The critical components to simulate cirrus initiation explicitlyJ. Atmos. Sci., 59(15), 2305–2329.
  126. Lin, B., B. A. Wielicki, L. H. Chambers, Y. Hu, and K. Xu (2002), The iris hypothesis: a negative or positive cloud feedback?J. Climate, 15, 3–7.
  127. Lin, B. and W. B. Rossow (1996), Seasonal Variation of Liquid and Ice Water Path in Nonprecipitating Clouds over Oceans.J. Climate, 9, 2890–2902.
  128. Lin, B. and W. B. Rossow (1997), Precipitation water path and rainfall rate estimates for oceans using special sensor microwave imager and International Satellite Cloud Climatology Project dataJ. Geophys. Res., 102, 9359–9374.
  129. Lin, H., K. J. Noone, J. Stroem, and A. J. Heymsfield (1998), Small Ice Crystals in Cirrus Clouds: A Model Study and Comparison with In Situ ObservationsJ. Atmos. Sci., 55, 1928–1939.
  130. Liou, K. N. (2002), An Introduction to Atmospheric Radiation, chap. Light scattering by atmospheric particulates, Academic Press.
  131. Liou, K. N. (2005), Cirrus clouds and Climate, The McGraw Hill Companies.
  132. Liou, K. N. (1986), Influence of cirrus clouds on weather and climate processes: a global perspectiveMon. Weather Rev., 114, 1167–1199.
  133. Liu, G. and J. A. Curry (2000), Determination of Ice Water Path and Mass Median Particle Size Using Multichannel Microwave MeasurementsJ. Appl. Meteorol., 39, 1318–1329.
  134. Liu, G. and J. A. Curry (1998), Remote Sensing of Ice Water Characteristics in Tropical Clouds Using Aircraft Microwave MeasurementsJ. Appl. Meteorol., 37, 337–355.
  135. Lohmann, U. and B. Kaecher (2002), First interactive simulations of cirrus clouds formed by homogeneous freezing in the ECHAM GCMJ. Geophys. Res., 107, doi:10.1029/2001JD000767.
  136. Lohmann, U., B. Kärcher, and C. Timmreck (2004), Impact of the Mount Pinatubo Eruption on Cirrus Clouds Formed by Homogeneous Freezing in the ECHAM GCMJ. Geophys. Res., 109, doi:10.1029/2002JD003185.
  137. Lohmann, U., B. Kärcher, and J. Hendricks (2004), Sensitivity studies of cirrus clouds formed by heterogeneous freezing in the ECHAM GCMJ. Geophys. Res., 108, doi:10.1029/2003JD004443.
  138. Lohmann, U. and E. Roeckner (1995), The influence of cirrus cloud-radiative forcing on climate and climate sensitivity in a general circulation modelJ. Geophys. Res., 100, 16,305–16,323.
  139. Lohmann, U. and E. Roeckner (1996), Design and performance of a new microphysics schemen developed for the ECHAM general circulation modelClimate Dynamics, 12, 557–572.
  140. Luo, Z., W. B. Rossow, T. Inoue, and C. J. Stubenrauch (2002), Did the eruption of the Mount Pinatubo volcano affect cirrus properties?J. Climate, 15, 2806–2820.
  141. Lynch, D. K., K. Sassen, D. Starr, and G. Stephens (ed.) (2002), Cirrus, Oxford University Press.
  142. Lynch, D. K. (2002), Cirrus History and definition, In: Cirrus, pp. 3–10, Edited by Lynch, D. K., K. Sassen, D. Starr, and G. Stephens, Oxford University Press.
  143. Lynch, D. K. and K. Sassen (2002), Subvisual cirrus, In: Cirrus, pp. 256–264, Edited by Lynch, D. K., K. Sassen, D. Starr, and G. Stephens, Oxford University Press.
  144. Mace, G. G., E. E. Clothiaux, and T. P. Ackerman (2001), The Composite Characteristics of Cirrus Clouds: Bulk Properties Revealed by One Year of Continuous Cloud Radar DataJ. Climate, 14, 2185–2203.
  145. Mace, G. G., S. Benson, and E. Vernon (2005), On the Relationship Between Cirrus Clouds and the Large-Scale Atmospheric State as Revealed by 6 Years of Ground-Based Data, University of Utah, Submitted to the Journal of Climate.
  146. Mace, G. G., T. P. Ackerman, P. Minnis, and D. F. Young (1998), Cirrus Layer Microphysical Properties Derived From Surface-Based Millimeter Radar and Infrared Interferometer DataJ. Geophys. Res., 103, 23207–23216.
  147. Masuda, K., H. Ishimoto, and T. Takashima (2002), Retrieval of cirrus optical thickness and ice-shape information using total and polarized reflectance from satellite measurementsJ. Quant. Spectrosc. Radiat. Transfer, 75, 39–51.
  148. Matrosov, S. Y., M. D. Shupe, A. J. Heymsfield, and P. Zuidema (2003), Ice optical thickness estimates from radar measurementsJ. Appl. Meteorol., 42, 1584–1597.
  149. Matrosov, S. Y., A. J. Heymsfield, and Z. Wang (2005), Dual-frequency radar ratio of non-spherical atmospheric hydrometeorsGeophys. Res. Lett., 31, L13816, doi:10.1029/2005GL023210.
  150. McFarlane, N. A., G. J. Boer, J. P. Blanchet, and M. Lazare (1992), The Canadian Climate Centre second-generation general circulation model and its equilibrium climateJ. Climate, 5, 1013–1044.
  151. McFarquhar, G. M. and A. J. Heymsfield (1996), Microphysical Characteristics of Three Anvils Sampled during the Central Equatorial Pacific ExperimentJ. Atmos. Sci., 53(17), 2401–2423, doi:10.1175/1520-0469(1996)053<2401:MCOTAS>2.0.CO;2.
  152. McFarquhar, G. M. and A. J. Heymsfield (1997), Parameterization of Tropical Cirrus Ice Crystal Size Distribution and Implications for Radiative Transfer: Results from CEPEXJ. Atmos. Sci., 54, 2187–2200, doi:10.1175/1520-0469(1997)054<2187:POTCIC>2.0.CO;2.
  153. McFarquhar, G. M. and A. J. Heymsfield (1998), The Definition and Significance of an Effective Radius for Ice CloudsJ. Atmos. Sci., 55, 2039–2052.
  154. Menzel, W. P. and D. P. Wylie (2003), HIRS observations of a decline in high clouds since 1995, proceedings of ITSC XII, 27 Feb –5 Mar 2002, Lorne, Australia.
  155. Meyer, R., H. Mannstein, R. Meerkoetter, U. Schumann, and P. Wendling (2002), Regional radiative forcing by line-shaped contrails derived from satellite dataJ. Geophys. Res., 107(D10), doi:10.1029/2001JD000426.
  156. Meyer, K., P. Yang, and B.-C. Gao (2004), Optical Thickness of Tropical Cirrus Clouds Derived From the MODIS 0.66- and 1.375-μm channelsIEEE T. Geosci. Remote, 42(4), 833–841.
  157. Miloshevich, L. M. (2002), Parameterizations for the Cross-Sectional Area and Extinction of Cirrus Stratiform Ice Cloud ParticlesJ. Atmos. Sci., 60, 936–956.
  158. Miloshevich, L. M. and A. J. Heymsfield (1997), A Balloon-Borne Continuous Cloud Particle Replicator for Measuring Vertical Profiles of Cloud Microphysical Properties: Instrument Design, Performance, and Collection Efficiency AnalysisJ. Atmos. Oceanic Technol., 14, 753–768.
  159. Minnis, P., J. K. Ayers, R. Palikonda, and D. Phan (2004), Contrails, cirrus trends, and climateJ. Climate, 1671–1685.
  160. Minnis, P., D. F. Young, D. P. Garber, L. Nguyen, W. L. Smith Jr., and R. Palikonda (1998), Transformation of Contrails into Cirrus during SUCCESSGeophys. Res. Lett., 25, 1157–1160.
  161. Mishchenko, M. I., L. D. Travis, and A. A. Lacis (2002), Scattering, Absorption, and Emission of Light by Small Particles, Cambridge University Press, ISBN 0-521-78252-X.
  162. Mitchell, D. L. (1996), Use of Mass- and Area Dimensional Power Laws for Determining Precipitation Particle Terminal VelocitiesJ. Atmos. Sci., 53(12), 1710–1723.
  163. Mitchell, D. L., S. K. Chai, Y. Liu, A. J. Heymsfield, and Y. Dong (1996), Modeling Cirrus Clouds. Part I: Treatment of Bimodal Size Spectra and Case Study AnalysisJ. Atmos. Sci., 53(20), 2952–2987.
  164. Mo, T. (1996), Prelaunch Calibration of the Advanced Microwave Sounding Unit-A for NOAA-KIEEE T. Microw. Theory, 44(8), 1460–1469, doi:10.1109/22.536029.
  165. Murtagh, D., U. Frisk, F. Merino, M. Ridal, A. Jonsson, J. Stegman, G. Witt, P. Eriksson, C. Jiménez, G. Megie, J. de la Noë, P. Ricaud, P. Baron, J. R. Pardo, A. Hauchcorne, E. J. Llewellyn, D. A. Degenstein, R. L. Gattinger, N. D. Lloyd, W. F. J. Evans, I. C. McDade, C. S. Haley, C. Sioris, C. von Savigny, B. H. Solheim, J. C. McConnell, K. Strong, E. H. Richardson, G. W. Leppelmeier, E. Kyrölä, H. Auvinen, and L. Oikarinen (2002), An overview of the Odin atmospheric missionCan. J. Phys., 80(4), 309–319, doi:10.1139/P01-157.
  166. Nasiri, S. L., B. A. Baum, A. J. Heymsfield, P. Yang, M. R. Poellot, D. P. Kratz, and Y. Hu (2002), The Development of Midlatitude Cirrus Models for MODIS Using FIRE-I, FIRE-II, and ARM In Situ DataJ. Appl. Meteorol., 41, 197–217.
  167. Neshyba, S.P., T. C. Grenfell, and S. G. Warren (2003), Representation of a nonspherical ice particle by a collection of independent spheres for scattering and absorption of radiation: 2. Hexagonal columns and platesJ. Geophys. Res., 108(D15), doi:10.1029/2002JD003302.
  168. Newell, R. E., Y. Zhu, E. V. Browell, S. Ismail, W. G. Read, J. W. Waters, K. K. Kelly, and S. C. Liu (1996), Upper tropospheric water vapor and cirrus: Comparison of DC-8 observations, preliminary UARS microwave limb sounder measurements and meteorological analysesJ. Geophys. Res., 101(D1), 1931–1942.
  169. Noel, V. and K. Sassen (2005), Study of Planar Ice Crystal Orientations in Ice Clouds from Scanning Polarization Lidar ObservationsJ. Appl. Meteorol., 44, 653–664.
  170. Norris, J. R. (2005), Multidecadal changes in near-global cloud cover and estimated cloud cover radiative forcingJ. Geophys. Res., 110.
  171. Ono, A. (1969), The Shape and Riming Properties of Ice Crystals in Natural CloudsJ. Atmos. Sci., 26, 138–147.
  172. O'Shea, S. J., T. W. Choularton, G. Lloyd, J. Crosier, K. N. Bower, M. Gallagher, S. J. Abel, R. J. Cotton, P. R. A. Brown, J. P. Fugal, O. Schlenczek, S. Borrmann, and J. C. Pickering (2016), Airborne observations of the microphysical structure of two contrasting cirrus cloudsJ. Geophys. Res.: Atm., 121(22), 13510–13536, doi:10.1002/2016JD025278.
  173. Ou, S. C. and K. N. Liou (1984), A two-dimensional radiation turbulence climate model:I Sensitivity to cirrus radiative propertiesJ. Atmos. Sci., 41, 2289–2309.
  174. Ou, S. C. and K. N. Liou (1995), Ice microphysics and climatic temperature feedbackAtmos. Res., 35, 127–138.
  175. Ovarlez, J., J.-F. Gayet, K. Gierens, J. Ström, H. Ovarlez, F. Auriol, R. Busen, and U. Schumann (2002), Water vapour measurements inside cirrus clouds in Northern and Southern hemispheres during INCAGeophys. Res. Lett., 29(16), 1813, doi:10.1029/2001GL014440.
  176. Parol, F., J. C. Buriez, C. Vanbauce, P. Couvert, S. Seze, P. Goloub, and S. Cheinet (1999), First Results of the POLDER "Earth Radiation Budget and Clouds" Operational AlgorithmIEEE T. Geosci. Remote, 37, 1597–1613.
  177. Parungo, F. (1995), Ice Crystals in High Clouds and ContrailsAtmos. Res., 38, 249–262.
  178. Penner, J. E., D. H. Lister, D. J. Griggs, D. J. Dokken, and M. McFarland (ed.) (1999), IPCC Report, chap. Aviation and the Global Atmosphere, A special report of IPCC, IPCC.
  179. Platnick, S., M. D. King, S. A. Ackermann, W. P. Menzel, B. A. Baum, J. C. Riedi, and R. A. Frey (2003), The MODIS Cloud Products: Algorithms and Examples From TerraIEEE T. Geosci. Remote, 41(2), 459–473.
  180. Poetzsch-Heffter, C., Q. Liu, E. Ruperecht, and C. Simmer (1995), Effect of Cloud Types on the Earth Radiation Budget Calculated with the ISCCP Cl Dataset: Methodology and Initial ResultsJ. Climate, 8(4), 829–843.
  181. Baptista, J. P. V. Poiares and W. Leibrandt (2001), EarthCARE – Earth Clouds, Aerosols and Radiation Explorer. Assessment Report, ESA SP-1257(1), ESA.
  182. Prigent, C., E. Defer, J. R. Pardo, C. Pearl, W. B. Rossow, and J.-P. Pinty (2005), Relations of polarized scattering signatures observed by the TRMM Microwave Instrument with electrical processes in cloud systemsGeophys. Res. Lett., 32, L04810, doi:10.1029/2004GL022225.
  183. Rädel, G., C. J. Stubenrauch, R. Holz, and D. L. Mitchell (2003), Retrieval of effective ice crystal size in the infrared: Sensitivity study and global measurements from TIROS-N Operational Vertical SounderJ. Geophys. Res., 108(D9), doi:10.1029/2002JD002801.
  184. Ramanathan, V., R. D. Cess, E. F. Harrison, P. Minnis, B. R. Barkstrom, E. Ahmad, and D. Hartmann (1989), Cloud-Radiative Forcing and Climate: Results from the Earth Radiation Budget ExperimentScience, 243, 57–63.
  185. Rasch, P. J. and J. E. Kristjánsson (1998), A comparison of the CCM3 model climate using diagnosed and predicted condensate parameterizationsJ. Climate, 11, 1587–1614.
  186. Raschke, E., A. Ohmura, W. B. Rossow, B. E. Carlson, Y.-C. Zhang, C. Stubenrauch, M. Kottek, and M. Wild (2005), Cloud effects on the radiation budget based on ISCCP data (1991 to 1995)Int. J. Climatol., 25, 1103–1125.
  187. Reinhardt, T. and U. Wacker (2004), Impact of ice particle habits on simulated cloudsGeophys. Res. Lett., 31, L21106, doi:1029/2004GL021134.
  188. Roeckner, E., et al. (2003), The atmospheric general circulation model ECHAM5. Part I: model description. 127pp., MPI Hamburg.
  189. Rossow, W. B. and E. Duenas (2004), International Satellite Cloud Climatology Project (ISCCP) web site: An online resource for researchBull. Amer. Met. Soc., 85, 167–172, doi:10.1175/BAMS-85-2-167.
  190. Rossow, W. B. and R. A. Schiffer (1991), ISCCP Cloud Data ProductsBull. Amer. Met. Soc., 72, 2–20.
  191. Rossow, W. B. and R. A. Schiffer (1999), Advances in Understanding Clouds From ISCCPBull. Amer. Met. Soc., 80(11), 2261–2288.
  192. Sassen, K. and J. R. Campbell (2001), A Midlatitude Cirrus Cloud Climatology from the Facility for Atmospheric Remote Sensing. Part I: Macrophysical and Synoptic PropertiesJ. Atmos. Sci., 58, 481–496.
  193. Sassen, K. and S. Benson (2001), A Midlatitude Cirrus Cloud Climatology from the Facility for Atmospheric Remote Sensing. Part II: Microphysical Properties Derived from Lidar DepolarizationJ. Atmos. Sci., 58, 2103–2112.
  194. Sassen, K. and J. M. Comstock (2001), A Midlatitude Cirrus Cloud Climatology from the Facility for Atmospheric Remote Sensing. Part III: Radiative PropertiesJ. Atmos. Sci., 58, 2113–2127.
  195. Sassen, K., Z. Wang, V. I. Khvorostyanov, G. L. Stephens, and A. Bennedetti (2002), Cirrus Cloud Ice Water Content Radar Algorithm Evaluation Using an Explicit Cloud Microphysical ModelJ. Appl. Meteorol., 41, 620–628.
  196. Sassen, K., K.-N. Liou, Y. Takano, and V. I. Khvorostyanov (2003), Diurnal effects in the composition of cirrus cloudsGeophys. Res. Lett., 30, doi:1029/2003GL017034.
  197. Saunders, R. W., T. J. Hewison, S. J. Stringer, and N. C. Atkinson (1995), The Radiometric Characterization of AMSU-BIEEE T. Microw. Theory, 43(4), 760–771.
  198. Schmetz, J., P. Pili, S. Tjemkes, D. Just, J. Kerkmann, S. Rota, and A. Ratier (2002), An introduction to Meteosat Second Generation (MSG)Bull. Amer. Met. Soc., 83(7), 977–992.
  199. Schumann, U. (2002), Contrail cirrus, In: Cirrus, pp. 231–255, Edited by Lynch, D. K., K. Sassen, D. Starr, and G. Stephens, Oxford University Press.
  200. Scott, N. A., A. Chedin, R. Armante, J. Francis, C. J. Stubenrauch, J.-P. Chaboureau, F. Chevallier, C. Claud, and F. Cheruy (1999), Characteristics of the TOVS Pathfinder Path-B DatasetBull. Amer. Met. Soc., 12, 2679–2701.
  201. Seinfeld, J. H. (1998), Clouds, contrails and climateNature, 391, 837–838.
  202. Senior, C. A. and J. F. B. Mitchell (1993), Carbon Dioxide and Climate: The Impact of Cloud ParameterizationJ. Climate, 6(3), 393–418.
  203. Seo, E.-K. and G. Liu (2005), Retrievals of ice water path by combining ground cloud radar and satellite high-frequency microwave measurements near the ARM SGP siteJ. Geophys. Res., 110, D14203, doi:10.1029/2004JD005727.
  204. Sherwood, S. C. (1999), On moistening of the tropical troposphere by cirrus cloudsJ. Geophys. Res., 104(13), 11949–11960, doi:10.1029/1999JD900162.
  205. Shupe, M. D., T. Uttal, S. Matrosov, and S. Frisch (2001), Cloud Water Contents and Hydrometer Sizes During the FIRE-Arctic Cloud ExperimentJ. Geophys. Res., 106, 15015–15028.
  206. Skofronick-Jackson, G. M., A. J. Gasiewski, and J. R. Wang (2002), Influence of microphysical cloud parametrizations on microwave brightness temperaturesIEEE T. Geosci. Remote, 40(1), 187–196.
  207. Skofronick-Jackson, G. M., J. R. Wang, G. M. Heymsfield, R. Hood, W. Manning, R. Meneghini, and J. A. Weinman (2003), Combined Radiometer-Radar Microphysical Profile Estimations with Emphasis on High-Frequency Brightness Temperature Observations.J. Appl. Meteorol., 42, 476–487.
  208. Slingo, A. and J. Slingo (1988), Response of a general circulation model to cloud longwave radiative forcing: Part 1 Introduction and initial experimentsQ. J. R. Meteorol. Soc., 114, 1027–1062.
  209. Smith, E. A., G. Asrar, Y. Furuhama, A. Ginati, C. Kummerow, V. Levizzani, A. Mugnai, K. Nakamura, R. Adler, V. Casse, M. Cleave, M. Debois, J. Durning, J. Entin, P. Houser, T. Iguchi, R. Kakar, J. Kaye, M. Kojima, D. Lettenmaier, M. Luther, A. Mehta, P. Morel, T. Nakazawa, S. Neeck, K. Okamoto, R. Oki, G. Raju, M. Shepherd, E. Stocker, J. Testud, and E. Wood (2004), Measuring Precipitation from Space: EURAINSAT and the Future, chap. International Global Precipitation Measurement (GPM) Program and Mission: An Overview, Kluwer Publishers.
  210. Spichtinger, P., K. Gierens, H. G. J. Smit, J. Ovarlez, and J.-F. Gayet (2004), On the distribution of relative humidity in cirrus cloudsAtmos. Chem. Phys., 4, 365–397, doi:10.5194/acp-4-639-2004.
  211. Stamnes, K., S.-C. Tsay, and I. Laszlo (2000), DISORT, a General-Purpose Fortran Program for Discrete-Ordinate-Method Radiative Transfer in Scattering and Emitting Layered Media: Documentation of Methodology, Dept. of Physics and Engineering Physics Stevens Institute of Technology,NASA Goggard Space Flight Center, Department of Meteorology University of Maryland.
  212. Stephens, G. L. (2002), Cirrus, climate and global change, In: Cirrus, Edited by Lynch, D. K., K. Sassen, D. Starr, and G. Stephens, Oxford University Press.
  213. Stephens, G. L., D. G. Vane, R. J. Boain, G. G. Mace, K. Sassen, Z. Wang, A. J. Illingworth, E. J. O'Connor, W. B. Rossow, S. L. Durden, S. D. Miller, R. T. Austin, A. Benedetti, C. Mitrescu, and the CloudSat Science Team (2002), The CloudSat mission and the A-trainBull. Amer. Met. Soc., 83(12), 1771–1790, doi:10.1175/BAMS-83-12-1771.
  214. Stephens, G. L. (2005), Cloud feedbacks in the climate system: A critical reviewJ. Climate, 18(2), 237–273, doi:10.1175/JCLI-3243.1.
  215. Stephens, G. L., S. Tsay, P. W. Stackhouse Jr., and P. J. Flatau (1990), The relevance of the microphysical and radiative properties of cirrus clouds to climate and climatic feedbackJ. Atmos. Sci., 47(14), 1742–1753, doi:10.1175/1520-0469(1990)047<1742:TROTMA>2.0.CO;2.
  216. Stocker, T., et al. (2001), IPCC Third assessment Report - climate change 2001: The Scientific Basis, chap. Physical Climate Processes and FeedbackWMO.
  217. Stordal, F., G. Myhre, E. J. G. Stordal, W. B. Rossow, D. S. Lee, D. W. Arlander, and T. Svendby (2005), Is there a trend in cirrus cloud cover due to aircraft traffic?Atmos. Chem. Phys., 5, 2155–2162, doi:10.5194/acp-5-2155-2005.
  218. Ström, J., M. Seifert, B. Kärcher, J. Ovarlez, A. Minikin, J.-F. Gayet, R. Krejci, A. Petzold, F. Auriol, W. Haag, R. Busen, U. Schumann, and H. C. Hansson (2003), Cirrus cloud occurrence as function of ambient relative humidity: a comparison of observations obtained during the INCA experimentAtmos. Chem. Phys., 3, 1807–1816, doi:10.5194/acp-3-1807-2003.
  219. Stubenrauch, C. J. and F. Eddounia (2001), Cloud property survey from satellite observations using vertical sounders (TOVS Path-B) and Imagers (ISCCP)Workshop on Ion-Aerosol-Cloud Interactions Proceed. CERN, Geneva, 18-20 April 2001, CERN Yellow report CERN-2001-007, 63-74.
  220. Stubenrauch, C. (2004), Cirrus microphysical properties and their effect on Radiation: survey and integration into climate Models using combined Satellite observations, Laboratoire de Meteorologie Dynamique, Meteorological Office, Institute for Marine Research at Kiel, Laboratoire d'Optique Atmospherique, Final Report on the Environment project EVK2-CT-2000-00063, available at http://www.lmd.polytechnique.fr/CIRAMOSA/Welcome.html.
  221. Stubenrauch, C. J., F. Eddounia, and G. Rädel (2004), Correlations between microphysical properties of large-scale semi-transparent cirrus and the state of the atmosphereAtmos. Res., 72, 403–423.
  222. Stubenrauch, C. J. and U. Schumann (2005), Impact of air traffic on cirrus coverageGeophys. Res. Lett., 32, L14813, doi:10.1029/2005GL022707.
  223. Stubenrauch, C. J., F. Eddounia, and L. Sauvage (2005), Cloud heights from TOVS Path-B: Evaluation using LITE observations and distributions of highest cloud layersJ. Geophys. Res., 110, D19203, doi:10.1029/2004JD005447.
  224. Stubenrauch, C. J. and U. Schumann (2005), Survey of Cirrus and atmospheric properties from TOVS Path-B: Natural variability and impact of air traffic on cirrus coverage14th International TOVS Study Conference Proceed., Beijing, China, 25 May-1 Jun.
  225. Stubenrauch, C. J., R. Armante, G. Abdelaziz, C. Crevoisier, C. Pierangelo, N. A. Scott, and A. Chedin (2006), Cloud properties from AIRS, In: 15th International TOVS Study Conference Proceedings, Maratea, Italy, 4-10 Oct. 2006, pp. 4–10.
  226. Stubenrauch, C. J., A. Chedin, G. Rädel, N. A. Scott, and S. Serrar (2006), Cloud properties and their seasonal and diurnal variability from TOVS Path-BJ. Climate, 19, 5531–5553.
  227. Stubenrauch, C. J., W. B. Rossow, F. Cheruy, N. A. Scott, and A. Chedin (1999), Clouds as Seen by Satellite Sounders (3I) and Imagers (ISCCP). Part I: Evaluation of Cloud ParametersJ. Climate, 12, 2189–2213.
  228. Stubenrauch, C. J., A. Chedin, R. Armante, and N. A. Scott (1999), Clouds as seen by Satellite Sounders (3I) and Imagers (ISCCP). Part II: A New Approach for Cloud Parameter Determination in the 3I AlgorithmsJ. Climate, 12, 2214–2223.
  229. Stubenrauch, C. J., W. B. Rossow, N. A. Scott, and A. Chedin (1999), Clouds as Seen by Satellite Sounders (3I) and Imagers (ISCCP). Part III: Spatial Heterogeneity and Radiative EffectsJ. Climate, 12, 3419–3442.
  230. Sun, Z. and K. P. Shine (1994), Studies of the radiative properties on ice and mixed-phase cloudsQ. J. R. Meteorol. Soc., 120, 111–137.
  231. Taylor, J. P. and S. J. English (1995), The retrieval of cloud radiative and microphysical properties using combined near-infrared and microwave radiometryQ. J. R. Meteorol. Soc., 121, 1083–1112.
  232. Vanek, M. D., I. G. Nolt, N. D. Tappan, P. A. R. Ade, F. C. Gannaway, P. A. Hamilton, C. Lee, J. E. Davis, and S. Predko (2001), Far-Infrared sensor for cirrus (FIRSC): an aircraft-based Fourier-transform spectrometer to measure cloud radianceAppl. Opt., 40(13).
  233. Wallace, J. M. and P. V. Hobbs (2006), Atmospheric science: an introductory survey, Academic press.
  234. Wallace, J. M. and P. V. Hobbs (1977), Atmospheric science an introductory survey, Academic press.
  235. Wang, J., W. B. Rossow, and Y. Zhang (2000), Cloud Vertical Structure and Its Variations from a 20-Yr Global Rawinsonde DatasetJ. Climate, 13, 3041–3056.
  236. Wang, J. R., G. Liu, J. D. Spinhirne, P. Racette, and W. D. Hart (2001), Observations and retrievals of cirrus cloud parameters using multichannel millimeter-wave radiometric measurementsJ. Geophys. Res., 106(15), 15251–15264, doi:10.1029/2000JD900262.
  237. Wang, P. H., R. E. Veiga, L. B. Vann, P. Minnis and, and G. S. Kent (2001), A further study of the method for estimation of SAGE II opaque cloud occurrenceJ. Geophys. Res., 106, 12603–12613.
  238. Wang, Z. and K. Sassen (2002), Cirrus Cloud Microphysical Property Retrieval Using Lidar and Radar Measurements. Part I: Algorithm Description and Comparison with In Situ DataJ. Appl. Meteorol., 41, 218–229.
  239. Wang, Z. and K. Sassen (2002), Cirrus Cloud Microphysical Property Retrieval Using Lidar and Radar Measurements. Part II: Midlatitude Cirrus Microphysical and Radiative PropertiesJ. Atmos. Sci., 59, 2291–2302.
  240. Wang, Z., D. N. Whiteman, B. B. Demoz, and I. Veselovskii (2004), A new way to measure cirrus cloud ice water content by using ice Raman scatter with Raman lidarGeophys. Res. Lett., 31, L15101, doi:10.1029/2004GL020004.
  241. Wang, P. H., M. P. McCormick, L. R. Poole, W. P. Chu, G. K. Yue, G. S. Kent, and K. M. Skeens (1994), Tropical high cloud characteristics derived from SAGE II extinction measurementsAtmos. Res., 34, 53–83.
  242. Wang, P. H., P. Minnis, M. P. McCormick, G. S. Kent, and K. M. Skeens (1996), A 6-Year Climatology of Cloud Occurrence Frequency from Stratospheric Aerosol and Gas Experiment II Observations (1985-1990)J. Geophys. Res., 101, 29407–29429.
  243. Wang, J. R., P. Racette, J. D. Spinhirne, K. F. Evans, and W. D. Hart (1998), Observations of cirrus clouds with airborne MIR CLS, and MAS during SUCCESSGeophys. Res. Lett., 25, 1145–1148, doi:10.1029/97GL03194.
  244. Wang, P. H., P. Minnis, M. P. McCormick, G. S. Kent, G. K. Yue, D. F. Young, and K. M. Skeens (1998), A study of the vertical structure of tropical (20S-20N) optically thin clouds from SAGE II observationsAtmos. Res., 47–48, 599–614.
  245. Waters, J. W., W. G. Read, L. Froidevaux, R. F. Jarnot, R. E. Cofield, D. A. Flower, G. K. Lau, H. M. Pickett, M. L. Santee, D. L. Wu, M. A. Boyles, J. R. Burke, R. R. Lay, M. S. Loo, N. J. Livesey, T. A. Lungu, G. L. Manney, L. L. Nakamura, V. S. Perun, B. P. Ridenoure, Z. Shippony, P. H. Siegel, R. P. Thurstans, R. S. Harwood, H. C. Pumphrey, and M. J. Filipiak (1999), The UARS and EOS Microwave Limb Sounder ExperimentsJ. Atmos. Sci., 56, 194–218.
  246. Wei, H., P. Yang, J. Li, B. A. Baum, H.-L Huang, S. Platnick, Y. Hu, and L. Strow (2004), Retrieval of Semitransparent Ice Cloud Optical Thickness from Atmospheric Infrared Sounder (AIRS) MeasurementsIEEE T. Geosci. Remote, 42, 2254–2267.
  247. Wendisch, M., P. Pilewskie, J. Pommier, S. Howard, P. Yang, A. J. Heymsfield, C. G. Schmitt, D. Baumgardner, and B. Mayer (2005), Impact of cirrus crystal shape on solar spectral irradiance: a case study for subtropical cirrusJ. Geophys. Res., 110, D03202, doi:10.1029/2004JD005294.
  248. Weng, F. and N. C. Grody (2000), Retrieval of Ice Cloud Parameters Using a Microwave Imaging RadiometerJ. Atmos. Sci., 1069–1081.
  249. Whiteway, J., C. Cook, M. Gallagher, T. Choularton, J. Harries, P. Connolly, R. Busen, K. Bower, M. Flynn, P. May, R. Aspey, and J. Hacker (2004), Anatomy of Cirrus Clouds: Results from the Emerald Airborne CampaignsGeophys. Res. Lett., 31.
  250. Wilson, D. (2000), The impact of a physically based microphysical scheme on the climate simulation of The Meteorological Office Unified ModelQ. J. R. Meteorol. Soc., 126, 1281–1300.
  251. Winker, D. M., J. R. Pelon, and M. P. McCormick (2003), The CALIPSO mission: spaceborne lidar for observation of aerosols and clouds, In: Lidar Remote Sensing for Industry and Environment Monitoring III, pp. 1–11, Edited by U. N. Singh, T. Itabe, Z. Liu, doi:10.1117/12.466539.
  252. Winker, D. M. and C. R. Trepte (1998), Laminar cirrus observed near the tropical tropopause by LITEGeophys. Res. Lett., 25(17), 3351–3354.
  253. Wylie, D. P., D. L. Jackson, W. P. Menzel, and J. J. Bates (2005), Trends in global cloud cover in two decades of HIRS observationsJ. Climate, 18, 3021–3031.
  254. Wylie, D. P., W. P. Menzel, and K. I. Strabala (1994), Four years of global cirrus cloud statistics using HIRSJ. Climate, 7(12), 1972–1986.
  255. Wylie, D., P. Piironen, W. Wolf, and E. Eloranta (1995), Understanding satellite cirrus cloud climatologies with calibrated lidar optical depthsJ. Atmos. Sci., 52, 4327–4343.
  256. Wylie, D. P. and P.-H. Wang (1997), Comparison of cloud frequency data from the high-resolution infrared radiometer sounder and the Stratospheric Aerosol and Gas Experiment IIJ. Geophys. Res., 102, 29893–29900.
  257. Wylie, D. P. and W. P. Menzel (1999), Eight years of cloud statistics using HIRSJ. Climate, 12, 170–184.
  258. Yeh, H.-Y. M., N. Prasad, R. A. Mack, and R. F. Alder (1990), Aircraft microwave observations and simulations of deep convection from 18 to 183 GHz. Part II: Model resultsJ. Atmos. Oceanic Technol., 7, 392–410.
  259. Zerefos, C., K. Eleftheratos, D. Balis, P. Zanis, G. Tselioudis, and C. Meleti (2003), Evidence of impact of aviation on cirrus cloud formationAtmos. Chem. Phys., 3, 1633–1644, doi:10.5194/acp-3-1633-2003.
  260. Zhang, Z., P. Yang, G. W. Kattawar, S. Tsay, B. A. Baum, Y. Hu, A. J. Heymsfield, and J. Reichardt (2004), Geometrical-optic solution to light scattering by droxtal ice crystalsAppl. Opt., 43(12).
  261. Zhang, Y.-C., W. B. Rossow, A. A. Lacis, V. Oinas, and M. I. Mishchenko (2004), Calculation of radiative fluxes from the surface to top of atmosphere based on ISCCP and other global data sets: Refinements of the radiative transfer model and the input dataJ. Geophys. Res., 109, doi:10.1029/2003JD004457.
  262. Zhang, Y., A. Macke, and F. Albers (1999), Effect of crystal size spectrum and crystal shape on stratiform cirrus radiative forcingAtmos. Res., 52, 59–75.
  263. Zhao, L. and F. Weng (2002), Retrieval of Ice Cloud Parameters Using the Advanced Microwave Sounding UnitJ. Appl. Meteorol., 41, 384–395.