There is currently a filter applied. To see the complete list of publications, clear the filter.
Aires, F., F. Bernardo, H. Brogniez, and C. Prigent (2010), An Innovative Calibration Method for the Inversion of Satellite Observations, J. Appl. Meteorol. Clim., 49(12), 2458–2473, doi:10.1175/2010JAMC2435.1.
Aires, F., C. Prigent, F. Bernando, C. Jiménez, R. Saunders, and P. Brunel (2011), A tool to estimate land-surface emissivities at microwave frequencies (TELSEM) for use in numerical weather prediction, Q. J. R. Meteorol. Soc., 137, 690–699, doi:10.1002/qj.803.
Anderson, G. P., F. X. Keizys, J. H. Chetwynd, J. Wang, M. L. Hoke, L. S. Rothman, L. M. Kimball, R. A. McClatchey, E. P. Shettle, S. A. Clough, W. O. Gallery, L. W. Abreu, and J. E. A. Selby (1995), FASCODE/MODTRAN/LOWTRAN: Past/Present/Future, , 18th Annual Review Conference on Atmospheric Transmission Models.
Aoki, T. (1988), Development of a Line-by-Line Model for the Infrared Radiative Transfer in the Earth's Atmosphere, Papers in Meteorol. and Geophys., 39(2), 53–58.
Attia, M. T. (2000), On the exact solution of a generalized equation of radiative transfer in a two-region inhomogeneous slab, J. Quant. Spectrosc. Radiat. Transfer, 66, 529–538.
Baran, A. J. (2009), A review of the light scattering properties of cirrus, J. Quant. Spectrosc. Radiat. Transfer, 110, 1239–1260, doi:10.1016/j.jqsrt.2009.02.026.
Baran, A. J., A. Bodas-Salcedo, R. Cottona, and C. Lee (2011), Simulating the equivalent radar reflectivity of cirrus at 94 GHz using an ensemble model of cirrus ice crystals: a test of the Met Office global numerical weather prediction model, Q. J. R. Meteorol. Soc., Not published yet, doi:10.1002/qj.870.
Barker, H. W., M. P. Jerg, T. Wehr, S. Kato, D. P. Donovan, and R. J. Hogan (2011), A 3D cloud-construction algorithm for the EarthCARE satellite mission, Q. J. R. Meteorol. Soc., 137(657), 1042–1058, doi:10.1002/qj.824.
Baron, P., J. Mendrok, Y. Kasai, S. Ochiai , T. Seta, K. Sagi, K. Suzuki, H. Sagawa, and J. Urban (2008), AMATERASU: Model for Atmospheric TeraHertz Radiation Analysis and Simulation, Journal of the National Institute of Information and Communications Technology, 55(1), 109–121.
Battaglia, A. and S. Mantovani (2005), Forward Monte Carlo computations of fully polarized microwave radiation in non-isotropic media, J. Quant. Spectrosc. Radiat. Transfer, 95, 285–308.
Bauer, P., P. Lopez, A. Benedetti, D. Salmond, and E. Moreau (2006), Implementation of 1D+4D-Var Assimilation of Precipitation Affected Microwave Radiances at ECMWF, Part I: 1D-Var, European Centre for Medium-Range Weather Forecasts ECMWF,Technical Memorandum.
Bauer, P., P. Lopez, D. Salmond, A. Benedetti, S. Saarinen, and M. Bonazzola (2006), Implementation of 1D+4D-Var Assimilation of Precipitation Affected Microwave Radiances at ECMWF, Part II: 4D-Var, European Centre for Medium-Range Weather Forecasts ECMWF,Technical Memorandum.
Bauer, P., E. Moreau, F. Chevallier, and U. O'Keeffe (2006), Multiple-scattering microwave radiative transfer for data assimilation applications, SAF research report ,Technical Memorandum.
Baum, B. A., P. Yang, A. J. Heymsfield, A. Bansemer, B. H. Cole, A. Merrelli, C. Schmitt, and C. Wang (2014), Ice cloud single-scattering property models with the full phase matrix at wavelengths from 0.2 to 100 μm, J. Quant. Spectrosc. Radiat. Transfer, 146, 123–139, doi:10.1016/j.jqsrt.2014.02.029.
Berk, A., G. P. Anderson, P. K. Acharya, L. S. Bernstein, L. Muratov, J. Lee, M. Fox, S. M. Adler-Golden, J. H. Chetwynd, M. L. Hoke, R. B. Lockwood, J. A. Gardner, T. W. Cooley, C. C. Borel, and P. E. Lewis (2005), MODTRAN 5: a reformulated atmospheric band model with auxiliary species and practical multiple scattering options: update, In: Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XI, pp. 662–667, Edited by Shen, S. S. and P. E. Lewis, SPIE, doi:10.1117/12.606026.
Bugliaro, L., T. Zinner, C. Keil, B. Mayer, R. Hollmann, M. Reuter, and W. Thomas (2011), Validation of cloud property retrievals with simulated satellite radiances: a case study for SEVIRI, Atmos. Chem. Phys., 11, 5603–5624, doi:10.5194/acp-11-5603-2011.
Buras, R., T. Dowling, and C. Emde (2011), New secondary-scattering correction in DISORT with increased efficiency for forward scattering, J. Quant. Spectrosc. Radiat. Transfer, 112, 2028–2034, doi:10.1016/j.jqsrt.2011.03.019.
Cahalan, R. F., L. Oreopoulos, A. Marshak, K. F. Evans, A. B. Davis, R. Pincus, K. H. Yetzer, B. Mayer, R. Davies, T. P. Ackerman, H. W. Barker, E. E. Clothiaux, R. G. Ellingson, M. J. Garay, E. K. Assianov, S. Kinne, A. Macke, W. O'Hirok, P. T. Partain, S. M. Prigarin, A. N. Rublev, G. L. Stephens, F. Szczap, E. E. Takara, T. Várnai, G. Wen, and T. B. Zhuravleva (2005), The I3RC. Bringing Together the Most Advanced Radiative Transfer Tools for Cloudy Atmospheres, Bull. Amer. Met. Soc., 86(9), 1275–1293, doi:10.1175/BAMS-86-9-1275.
Cheruy, F., N. A. Scott, R. Armante, B. Tournier, and A. Chedin (1995), Contribution to the Development of Radiative Transfer Models for High Spectral Resolution Observations in the Infrared, J. Quant. Spectrosc. Radiat. Transfer, 53(5), 597–611.
Cheruy, F. and N. A. Scott (1995), Contribution to the development of radiative transfer models for high spectral resolution observations in infrared, J. Quant. Spectrosc. Radiat. Transfer, 53(6), 597–611.
Cimini, D., F. Nasir, E. R. Westwater, V. H. Payne, D. D. Turner, E. J. Mlawer, M. L. Exner, and M. P. Cadeddu (2009), Comparison of Ground-Based Millimeter-Wave Observations and Simulations in the Arctic Winter, IEEE T. Geosci. Remote, 47(9), 3098–3106, doi:10.1109/TGRS.2009.2020743.
von Clarmann, T., A. Dudhia, D. P. Edwards, B. Funke, M. Hoepfner, B. Kerridge, V. Kostsov, A. Linden, M. Lopez-Puertas, and Y. Timofeyev (2002), Intercomparison of radiative transfer codes under non-local thermodynamic equilibrium conditions, J. Geophys. Res., 107(D22), doi:10.1029/2001JD001551.
von Clarmann, T., M. Hoepfner, B. Funke, M. Lopez-Puertas, A. Dudhia, V. Jay, F. Schreier, M. Ridolfi, S. Ceccherini, B. J. Kerridge, J. Reburn, and R. Siddans (2003), Modelling of atmospheric mid-infrared radiative transfer: the AMIL2DA algorithm intercomparison experiment, J. Quant. Spectrosc. Radiat. Transfer, 78, 381–407.
Clough, S. A., M. W. Shephard, E. J. Mlawer, J. S. Delamere, M. Iacono, K. Cady-Pereira, S. Boukabara, and P. D. Brown (2005), Atmospheric radiative transfer modeling: a summary of the AER codes, J. Quant. Spectrosc. Radiat. Transfer, 91(2), 233–244, doi:10.1016/j.jqsrt.2004.05.058.
Clough, S. A., M. J. Iacono, and J.-L. Moncet (1992), Line-by-Line Calculations of Atmospheric Fluxes and Cooling Rates: Application to Water Vapor, J. Geophys. Res., 97(D14), 15761–15785.
Czekala, H. and C. Simmer (1998), Microwave Radiative Transfer with Nonspherical Precipitating Hydrometeors, J. Quant. Spectrosc. Radiat. Transfer, 60(3), 365–374.
Czekala, H., S. Havemann, K. Schmidt, T. Rother, and C. Simmer (1999), Comparison of microwave radiative transfer calculations obtained with three different approximations of hydrometeor shape, J. Quant. Spectrosc. Radiat. Transfer, 63, 545–558.
Deeter, M. N. and K. F. Evans (1998), A Hybrid Eddington-Single Scattering Radiative Transfer Model for Computing Radiances from Thermally Emitting Atmospheres, J. Quant. Spectrosc. Radiat. Transfer, 60(4), 635–648.
Deiveegan, M., C. Balaji, and S. P. Venkateshan (2008), A polarized microwave radiative transfer model for passive remote sensing, Atmos. Res., 88, 277–293, doi:10.1016/j.atmosres.2007.11.023.
Delamere, J. S., S. A. Clough, V. H. Payne, E. J. Mlawer, D. D. Turner, and R. R. Gamache (2010), A far-infrared radiative closure study in the Arctic: Application to water vapor, J. Geophys. Res., 115, D17106, doi:10.1029/2009JD012968.
Doicu, A., D. Efremenko, and T. Trautmann (2013), A multi-dimensional vector spherical harmonics discrete ordinate method for atmospheric radiative transfer, J. Quant. Spectrosc. Radiat. Transfer, 118, 121–131, doi:10.1016/j.jqsrt.2012.12.009.
Emde, C., R. Buras, and B. Mayer (2011), ALIS: An efficient method to compute high spectral resolution polarized solar radiances using the Monte Carlo approach, J. Quant. Spectrosc. Radiat. Transfer, 112(10), 1622–1631, doi:10.1016/j.jqsrt.2011.03.018.
Eriksson, P., F. Merino, D. Murtagh, P. Baron, P. Ricaud, and J. de La Noë (2002), Studies for the Odin sub-millimetre radiometer: 1. Radiative transfer and instrument simulation, Can. J. Phys., 80, 321–340, doi:10.1139/p02-024.
Evans, K. F. and W. J. Wiscombe (2003), Improvements to the SHDOM Radiative Transfer Modeling Package, University of Colorado, National Aeronautics and Space Administration, Thirteenth ARM Science Team Meeting Proceedings.
Evans, K. F. (2007), SHDOMPPDA: A radiative transfer model for cloudy sky data assimilation, J. Atmos. Sci., 64(11), 3854–3864, doi:10.1175/2006JAS2047.1.
Evans, K. F. and G. L. Stephens (2010), Many polarized radiative transfer models, J. Quant. Spectrosc. Radiat. Transfer, 111, 1686–1688, doi:10.1016/j.jqsrt.2010.01.029.
Evans, K. F. and G. L. Stephens (1995), Microwave Radiative Transfer through Clouds Composed of Realistically Shaped Ice Crystals. Part I: Single Scattering Properties, J. Atmos. Sci., 52(11), 2041–2057, doi:10.1175/1520-0469(1995)052<2041:MRTTCC>2.0.CO;2.
Evans, K. F. and G. L. Stephens (1995), Microwave Radiative Transfer through Clouds Composed of Realistically Shaped Ice Crystals. Part II: Remote Sensing of Ice Clouds, J. Atmos. Sci., 52, 2058–2072, doi:10.1175/1520-0469(1995)052<2058:MRTTCC>2.0.CO;2.
Evans, K. F. (1998), The Spherical Harmonics Discrete Ordinate Method for Three-Dimensional Atmospheric Radiative Transfer, J. Atmos. Sci., 55, 429–446.
Evans, K. F. (1111), The Spherical Harmonic Discrete Ordinate Method: Application to 3D Radiatve Transfer in Boundary Layer Clouds, University of Colorado.
Flatau, P. J. and G. L. Stephens (1988), On the Fundamental Solution of the Radiative Transfer Equation, J. Geophys. Res., 93(D9), 11037–11050, doi:10.1029/JD093iD09p11037.
Fleming, H. E., N. C. Grody, and E. J. Kratz (1991), The Forward Problem and Corrections for the SSM/T Satellite Microwave Temperature Sounder, IEEE T. Geosci. Remote, 29(4), 571–583.
Franquet, S., N. Scott, A. Chedin, R. Armante, and L. Eymard (1111), Simulations of radiative transfer in the SAPHIR and AMSU channels in the perspective of water vapor profiles retrievals, ARA/LMD Ecole Polytechnique, CETP.
Garand, L., et al. (2001), Radiance and jacobian intercomparison of radiative transfer models applied to HIRS and AMSU channels, J. Geophys. Res., 106(D20), 24,017–24,031.
Geer, A. J., P. Bauer, and C. W. O'Dell (2009), A Revised Cloud Overlap Scheme for Fast Microwave Radiative Transfer in Rain and Cloud, J. Appl. Meteorol. Clim., 48(11), 2257–2270, doi:10.1175/2009JAMC2170.1.
Geer, A. J. and F. Baordo (2014), Improved scattering radiative transfer for frozen hydrometeors at microwave frequencies, Atmos. Meas. Tech., 7, 1839–1860, doi:10.5194/amt-7-1839-2014.
Greenwald, T., R. Bennartz, A. Heidinger, and C. O'Dell (xx), Radiative Transfer Model Development for Operational Global Assimilation of Passive Microwave Radiances in Precipitation Clouds, University of Wisconsin-Madison, NOAA/NESDIS.
Gribanov, K. G., V. I. Zakharov, S. A. Tashkun, and V. G. Tyuterec (2001), A new software tool for radiative transfer calculations and its application to IMG/ADEOS data, J. Quant. Spectrosc. Radiat. Transfer, 68, 435–451.
Grießbach, S. (2012), Clouds and aerosol in infrared radiative transfer calculations for the analysis of satellite observations, Ph.D. thesis, Forschungszentrum Jülich GmbH, Institute of Energy and Climate Research (IEK), Stratosphere (IEK-7), ISBN: 978-3-89336-785-6 ISSN: 1866-1793.
Griffioen, E. and L. Oikarinen (2000), LIMBTRAN: A pseudo three-dimensional radiative transfer model for the limb-viewing imager OSIRIS on the ODIN satellite, J. Geophys. Res., 105(D24), 29,717–29,730.
Haferman, J. L., T. F. Smith, and W. F. Krajewski (1997), A multi-dimensional discrete-ordinates method for polarised radiative transfer. Part I: Validation for randomly oriented axisymmetric particles, J. Quant. Spectrosc. Radiat. Transfer, 58, 379–398.
Han, Y., F. Weng, Q. Liu, and Paul van Delst (2007), A fast radiative transfer model for SSMIS upper atmosphere sounding channels, J. Geophys. Res., 112, D11121, doi:10.1029/2006JD008208.
Han, Y., P. van Delst, and F. Weng (2010), An improved fast radiative transfer model for special sensor microwave imager/sounder upper atmosphere sounding channels, J. Geophys. Res., 115, D15109, doi:10.1029/2010JD013878.
Harries, J., B. Carli, R. Rizzi, C. Serio, M. Mlynczak, L. Palchetti, T. Maestri, H. Brindley, and G. Masiello (2008), The Far-infrared Earth, Rev. Geophys., 46(4), 1–34, doi:10.1029/2007RG000233.
Hartmann, J.-M. and H. Tran G. C. Toon (2009), Influence of line mixing on the retrievals of atmospheric CO2 from spectra in the 1.6 and 2.1 μm regions, Atmos. Chem. Phys., 9(19), 7303–7312, doi:10.5194/acp-9-7303-2009.
Heng, K. and M. S. Marley (2017), Radiative Transfer for Exoplanet Atmospheres, In: Handbook of Exoplanets, pp. 1–16, Edited by Deeg, H. J. and J. A. Belmonte, Springer, Cham, ISBN 978-3-319-30648-3, doi:10.1007/978-3-319-30648-3_102-1.
Hill, C., I. E. Gordon, L. S. Rothman, and J. Tennyson (2013), A new relational database structure and online interface for the HITRAN database, J. Quant. Spectrosc. Radiat. Transfer, 130, 51–61, doi:10.1016/j.jqsrt.2013.04.027.
Hovenier, J. W. and C. V. M. van der Mee (1983), Fundamental relationships relevant to the transfer of polarized light in the scattering atmosphere, Astron. Astrophys, 128.
Hu, Y.-X., B. Wielicki, B. Lin, G. Gibson, S.-C. Tsay, K. Stamnes, and T. Wong (2000), δ-Fit: A fast and accurate treatment of particle scattering phase functions with weighted singular-value decomposition least-squares fitting, J. Quant. Spectrosc. Radiat. Transfer, 65(4), 681–690, doi:10.1016/S0022-4073(99)00147-8.
Jethva, H. (2003), Comparison of Microwave Radiative Transfer Models and Retrieval of Humidity using Satellite Microwave Data, Indian Institute of Science.
Kato, S., F. G. Rose, S. Sun-Mack, W. F. Miller, Y. Chen, D. A. Rutan, G. L. Stephens, N. G. Loeb, P. Minnis, B. A. Wielicki, D. M. Winkler, T. P. Charlock, P. W. Stackhouse Jr., K.-M. Xu, and W. D. Collins (2011), Improvements of top-of-atmosphere and surface irradiance computations with CALIPSO-, CloudSat-, and MODIS- derived cloud and aerosol properties, J. Geophys. Res., 116(D19), D19209, doi:10.1029/2011JD016050.
Key, J. R. and A. J. Schweiger (1998), Tools for atmospheric radiative transfer: STREAMER and FLUXNET, Comput. Geosci., 24(5), 443–451, doi:10.1016/S0098-3004(97)00130-1.
Kim, M.-J., G. Skofronick-Jackson, and J. A. Weinman (2004), Intercomparison of Millimeter-Wave Radiative Transfer Models, University of Washington, NASA Goddard Flight Center.
Kinne, S., T. P. Ackerman, M. Shiobara, A. Uchiyama, A. J. Heymsfield, L. Miloshevich, J. Wendell, E. Eloranta, C. Purgold, and R. W. Bergstrom (1997), Cirrus Cloud Radiative and Microphysical Properties From Ground Observations and In Situ Measurements During Fire 1991 and Their Application to Exhibit Problems in Cirrus Solar Radiative Transfer Modeling, J. Atmos. Sci., 54, 2320–2344.
Klein, M. and A. J. Gasiewski (2000), Nadir sensitivity of passive millimeter and submillimeter wave channels to clear air temperature and water vapor variations, J. Geophys. Res., 105(D13), 17,481–17,511.
Kleinböhl, A., J. T. Schofield, W. A. Abdoua, P. G. J. Irwin, and R. J. de Kok (2011), A single-scattering approximation for infrared radiative transfer in limb geometry in the Martian atmosphere, J. Quant. Spectrosc. Radiat. Transfer, 112, 1568–1580, doi:10.1016/j.jqsrt.2011.03.006.
Kneifel, Stefan, U. Löhnert, A. Battaglia, S. Crewell, and D. Siebler (2010), Snow scattering signals in ground-based passive microwave radiometer measurements, J. Geophys. Res., 115, D16214, doi:10.1029/2010JD013856.
Kulie, M. S., R. Bennartz, T. J. Greenwald, Y. Chen, and F. Weng (2010), Uncertainties in Microwave Properties of Frozen Precipitation: Implications for Remote Sensing and Data Assimilation, J. Atmos. Sci., 67(11), 3471–3487.
Kummerow, C. (1993), On the Accuracy of the Eddington Approximation for Radiative Transfer in the Microwave Frequencies, J. Geophys. Res., 98(D2), 2757–2765.
Kunde, V., R. Hanel, W. Maguire, D. Gautier, J. P. Baluteau, A. Marten, A. Chedin, N. Husson, and N. Scott (1982), The tropospheric gas composition of Jupiter's north equatorial belt (NH3, PH3, GeH4, H2O) and the Jovian D/H isotopic ratio, Astrophys. J., 263, 443–467.
Kuntz, M., M. Höpfner, G. P. Stiller, T. v. Clarmann, G. Echle, B. Funke, N. Glatthor, F. Hase, H. Kemnitzer, and S. Zorn (1998), The Karlsruhe Optimized and Precise Radiative transfer Algorithm. Part III: ADDLIN and TRANFS algorithms for modeling spectral transmittance and radiance, Proc. of SPIE, 3501, 247–256, Optical Remote Sensing of the Atmosphere and Clouds; Beijing; 15 September 1998 through 17 September 1998; Code 59821.
Kuntz, M. and M. Höpfner (1999), Efficient line-by-line calculation of absorption coefficients, J. Quant. Spectrosc. Radiat. Transfer, 63(1), 97–114, doi:10.1016/S0022-4073(98)00140-X.
Landi Degl'Innocenti, E. and M. Landi Degl'Innocenti (1985), On the solution of the radiative transfer equations for polarized radiation, Sol. Phys., 97, 239–250.
Lenoble, J. (1977), Standard Procedures to Compute Atmospheric Radiative Transfer in a Scattering Atmosphere, Universite des Sciences et Techniques de Lille, International Association of Meterology and Atmospheric Physics (IAMAP).
Lenoble, J. (1980), Standard Procedures to Compute Atmospheric Radiative Transfer in a Scattering Atmosphere Volume II, Universite des Sciences et Techniques de Lille, International Association of Meterology and Atmospheric Physics (IAMAP).
Li, H.-S. and G. Flamant an J.-D. Lu (2004), A new discrete ordinate algorithm for computing radiative transfer in one-dimensional atmospheres, J. Quant. Spectrosc. Radiat. Transfer, 83, 407–421.
Liebe, H. J., P. W. Rosenkranz, and G. A. Hufford (1992), Atmospheric 60 GHz oxygen spectrum: new laboratory measurements and line parameters, J. Quant. Spectrosc. Radiat. Transfer, 48(5/6), 629–643.
Liou, K.-L. (1973), A Numerical Experiment on Chandrasekhar's Discrete-Ordinate Method for Radiative Transfer: Applications to Cloudy and Hazy Atmospheres, J. Atmos. Sci., 30, 1303–1314.
Lipton, A. E., J.-L. Moncet, and G. Uymin (2009), Approximations of the Planck Function for Models and Measurements Into the Submillimeter Range, IEEE Geosci. Remote Sens. Let., 6, 433–437, doi:10.1109/LGRS.2009.2016120.
Lipton, A. E., M. K. Griffin, and A. G. Ling (1999), Microwave Transfer Model Differeces in Remote Sensing of Cloud Liquid Water at Low Temperatures, IEEE Geosci. Remote Sens., 37(1), 620–623.
Liu, Q., F. Weng, and Y. Han (2008), Conversion issues between microwave radiance and brightness temperature, J. Quant. Spectrosc. Radiat. Transfer, 109, 1943–1950, doi:10.1016/j.jqsrt.2008.03.001.
Liu, Q., C. Simmer, and E. Ruprecht (1996), Three-dimensional radiative transfer effects of clouds in the microwave spectral range, J. Geophys. Res., 101(D2), 4289–4298.
Lopez-Valverde, M. A., L. Montabone, M. Sornig, and G. Sonnabend (2016), On the Retrieval of Mesospheric Winds on Mars and Venus from Ground-based Observations at 10 μm, Astrophys. J., 816(2), 103, doi:10.3847/0004-637X/816/2/103.
Marten, A., D. Rouan, J. P. Baluteau, D. Gautier, B. J. Conrath, R. A. Hanel, V. Kunde, R. Samuelson, A. Chedin, and N. Scott (1981), Study of the Ammonia Ice Cloud Layer in the Equatorial Region of Jupiter from the Infrared Interferometric Experiment on Voyager, Icarus, 46, 233–248.
Masiello, G. and C. Serio (2005), An effective water vapor self-broadening scheme for look-up-table based radiative transfer, Proc. of SPIE, 4882, 52–61, Remote Sensing of Clouds and the Atmosphere VII; Agia Pelagia, Crete; 24 September 2002 through 27 September 2002; Code 61344, doi:10.1117/12.462580.
Masunaga, H., T. Matsui, W. K. Tao, A. Y. Hou, C. D. Kummerow, T. Nakajima, P. Bauer, W. S. Olson, M. Sekiguchi, and T.Y. Nakajima (2010), Satellite Data Simulator Unit (SDSU): A multi-sensor, multi-spectral satellite simulator, Bull. Amer. Met. Soc.
Matricardi, M. (2009), Technical Note: An assessment of the accuracy of the RTTOV fast radiative transfer model using IASI data, Atmos. Chem. Phys., 9(2), 9491–9535, doi:10.5194/acp-9-6899-2009.
Mayer, B. and A. Kylling (2005), Technical note: The libRadtran software package for radiative transfer calculations - description and examples of use, Atmos. Chem. Phys., 5, 1855–1877, doi:10.5194/acp-5-1855-2005.
McFarquhar, G. M. and A. J. Heymsfield (1997), Parameterization of Tropical Cirrus Ice Crystal Size Distribution and Implications for Radiative Transfer: Results from CEPEX, J. Atmos. Sci., 54, 2187–2200, doi:10.1175/1520-0469(1997)054<2187:POTCIC>2.0.CO;2.
Meerkoetter, R., U. Schumann, D. R. Doelling, P. Minnis, T. Nakajima, and Y. Tsushima (1999), Radiative forcing by contrails, Ann. Geophys., 17, 1080–1094.
Meirold-Mautner, I., C. Prigent, E. Defer, J. R. Pardo, J.-P. Chaboureau, J.-P. Pinty, M. Mech, and S. Crewell (2007), Radiative Transfer Simulations Using Mesoscale Cloud Model Outputs: Comparisons with Passive Microwave and Infrared Satellite Observations for Midlatitudes, J. Atmos. Sci., 64(5), 1550–1568, doi:10.1175/JAS3896.1.
Mendrok, J., P. Baron, and Y. Kasai (2008), The AMATERASU Scattering Module, Journal of the National Institute of Information and Communications Technology, 55(1), 123–133.
Min, Q. (2004), A successive order of scattering model for solving vector radiative transfer in the atmosphere, J. Quant. Spectrosc. Radiat. Transfer, 87(3-4), 243–259, doi:10.1016/j.jqsrt.2003.12.019.
Minnis, P., K.-N. Liou, and Y. Takano (1993), Inference of Cirrus Cloud Properties Using Satellite-observed Visible and Infrared Radiances. Part I: Parameterization of Radiance Fields, J. Atmos. Sci., 50(9), 1279–1304, doi:10.1175/1520-0469(1993)050<1279:IOCCPU>2.0.CO;2.
Minnis, P., P. W. Heck, and D. F. Young (1993), Inference of Cirrus Cloud Properties Using Satellite-observed Visible and Infrared Radiances. Part II: Verification of Theoretical Cirrus Radiative Properties, J. Atmos. Sci., 50(9), 1305–1322, doi:10.1175/1520-0469(1993)050<1305:IOCCPU>2.0.CO;2.
Mishchenko, M. I. (2002), Vector radiative transfer equation for arbitrarily shaped and arbitrarily oriented particles: a microphysical derivation from statistical electromagnetics, Appl. Opt., 41(33), 7114–7134.
Mishchenko, M. I. (2014), Directional radiometry and radiative transfer: The convoluted path from centuries-old phenomenology to physical optics, J. Quant. Spectrosc. Radiat. Transfer, 146, 4–33, doi:10.1016/j.jqsrt.2014.02.033.
Mishchenko, M. I. (1990), Multiple Scattering of Polarized Light in Anisotropic Plane-Parallele Media, Transport Theory and Statistical Physics, 19(3–5), 293–316.
Mishra, S. C., H. K. Roy, and N. Misra (2006), Discrete ordinate method with a new and a simple quadrature scheme, J. Quant. Spectrosc. Radiat. Transfer, 101, 249–262, doi:10.1016/j.jqsrt.2005.11.018.
Mlawer, E. J., S. A. Clough, P. D. Brown, and D. C. Tobin (1998), Collision-Induced Effects and the Water Vapor Continuum, Atmospheric and Environmental Research and the University of Wisconsin.
Molthan, A. L. and W. A. Petersen (2011), Incorporating Ice Crystal Scattering Databases in the Simulation of Millimeter-Wavelength Radar Reflectivity, J. Atmos. Oceanic Technol., 28, 337–351, doi:10.1175/2010JTECHA1511.1.
Morcrette, J.-J., E. J. Mlawer, M. J. Iaconon, and S. A. Clough (2001), Impact of the radiation-transfer scheme RRTM in the ECMWF forecasting system, European Centre for Medium-Range Weather Forecasts.
Mugnai, A. and E. A. Smith (1988), Radiative Transfer to Space through a Precipitating Cloud at Multiple Microwave Frequencies. Part I: Model Description, J. Appl. Meteorol., 27, 1055–1073.
Mugnai, A., H. J. Cooper, E. A. Smith, and G. J. Tripoli (1990), Simulation of Microwave Brightness Temperatures of an Evolving Hailstorm at SSM/I Frequencies, Bull. Amer. Met. Soc., 71(1), 2–13, doi:10.1175/1520-0477(1990)071<0002:SOMBTO>2.0.CO;2.
Nyffenegger-Péré, Y., R. Armante, M. Bati, S. Blanco, J.-L. Dufresne, M. El Hafi, V. Eymet, V. Forest, R. Fournier, J. Gautrais, R. Lebrun, N. Mellado, N. Mourtady, and M. Paulin (2024), Spectrally refined unbiased Monte Carlo estimate of the Earth's global radiative cooling, Proc. Nat. Aca. Sci., 121(5), e2315492121, doi:10.1073/pnas.2315492121.
Pickett, H. M., R. L. Poynter, E. A. Cohen, M. L. Delitsky, J. C. Pearson, and H. S. P. Mueller (1996), Submillimeter, millimeter, and microwave spectral line catalog, xxxx.
Pickett, H.M., R. L. Poynter, E. A. Cohen, M. L. Delitsky, J. C. Pearson, and H. S. P. Müller (1998), Submillimeter, millimeter, and microwave spectral line catalog, J. Quant. Spectrosc. Radiat. Transfer, 60(5), 883–890, doi:10.1016/S0022-4073(98)00091-0.
Pierrot, L., A. Soufiani, and J. Taine (1999), Accuracy of narrow-band and global models for radiative transfer in H2O, CO2, and H2O-CO2 mixtures at high temperature, J. Quant. Spectrosc. Radiat. Transfer, 62, 523–548.
Pincus, R. and K. F. Evans (2009), Computational Cost and Accuracy in Calculating Three-Dimensional Radiative Transfer: Results for New Implementations of Monte Carlo and SHDOM, J. Atmos. Sci., 66(10), 3131–3146, doi:10.1175/2009JAS3137.1.
Polyakov, A. V., B. Funke, G. Stiller, H. Fischer, and E. M. Shulgina (1997), Comparison of Two Radiative Transfer Codes with Respect to the Modeling of the Line Mixing Effect, Forschungszentrum Karlsruhe, Institute fuer Meteorologie und Klimaforschung, Wissenschaftliche Berichte.
Richiazzi, P., S. Yang, C. Gautier, and D. Sowle (1998), SBDART: A Research and Teaching Software Tool for Plane-Parallel Radiative Transfer in the Earths Atmosphere, Bull. Amer. Met. Soc., 79(10), 2101–2114, doi:10.1175/1520-0477(1998)079<2101:SARATS>2.0.CO;2.
Ridolfi, M., B. Carli, M. Carlotti, T. von Clarmann, B. M. Dinelli, A. Dudhia, J.- M. Flaud, M. Hoepfner, P. E. Morris, P. Raspollini, G. Stiller, and R. J. Wells (2000), Optimized forward model and retrieval scheme for MIPAS near-real-time data processing, Appl. Opt., 39(8).
Roberti, L., J. Haferman, and C. Kummerow (1994), Microwave radiative transfer through horizontally inhomogeneous precipitating clouds, J. Geophys. Res., 99(D8), 16,707–16,718.
Rosenkranz, P. W. (2002), Radiative Transfer Solution Using Initial Values in a Scattering and Absorbing Atmosphere With Surface Reflection, IEEE Geosci. Remote Sens., 40(8), 1889–1892.
Rosenkranz, P. W. (2006), Satellite-based Radiometer Measurements at 150 and 183 GHz Compared with Calculated Brightness Temperatures, Research Laboratory of Electronics, Massachusetts Institute of Technology.
Rothman, L. S., D. Jacquemart, A. Barbe, D. Chris Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian Jr., K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J.-M. Flaud, R. R. Gamache, A. Goldman, J.-M. Hartmann, K. W. Jucks, A. G. Maki, J.-Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner (2005), The HITRAN 2004 molecular spectroscopic database, J. Quant. Spectrosc. Radiat. Transfer, 96, 139–204, doi:10.1016/j.jqsrt.2004.10.008.
Rothman, L. S., I. E. Gordon, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, V. Boudon, L. R. Brown, A. Campargue, J.-P. Champion, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, S. Fally, J.-M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. J. Lafferty, J.-Y. Mandin, S. T. Massie, S. N. Mikhailenko, C. E. Miller, N. Moazzen-Ahmadi, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, A. Predoi-Cross, C. P. Rinsland, M. Rotger, M. Simeckova, M. A. H. Smith, K. Sung, S. A. Tashkun, J. Tennyson, R. A. Toth, A. C. Vandaele, and J. Vander Auwera (2009), The HITRAN 2008 molecular spectroscopic database, J. Quant. Spectrosc. Radiat. Transfer, 110, 533–572, doi:10.1016/j.jqsrt.2009.02.013.
Rothman, L. S., I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner (2013), The HITRAN2012 molecular spectroscopic database, J. Quant. Spectrosc. Radiat. Transfer, 130, 4–50, doi:10.1016/j.jqsrt.2013.07.002.
Rozanov, A., V. Rozanov, and J. P. Burrows (2001), A numerical radiative transfer model for a spherical planetary atmosphere: combined differential-integral approach involving the Picard iterative approximation, J. Quant. Spectrosc. Radiat. Transfer, 69, 491–512.
Rozanov, V. V., D. Diebel, R. J. D. Sourr, and J. P. Burrows (1997), GOMETRAN: A Radiative Transfer Model for the Satellite Project GOME- The Plane-Parallel Version, J. Geophys. Res., 102(D14), 16,683–16,696.
Saunders, R., E. Andersson, P. Brunel, F. Chevallier, G. Deblonde, S. English, M. Matricardi, P. Rayer, and V. Sherlock (2002), RTTOV-7- Science and Validation Report, NWP SAF.
Saunders, R., M. Matricardi, and P. Brunel (1999), A fast radiative transfer model for assimilation of satellite radiance observation - RTTOV-5, European Centre for Medium-Range Weather Forecasts ECMWF, Technical Memorandum.
Saunders, R., M. Matricardi, and P. Brunel (1999), An improved fast radiative transfer model for assimilation of satellite radiance observations, Q. J. R. Meteorol. Soc., 125, 1407–1425.
Schulz, F. M. and K. Stamnes (2000), Angular distribution of the Stokes vector in a plane-parallel, vertically inhomogeneous medium in the vector discrete ordinate radiative transfer (VDISORT) model, J. Quant. Spectrosc. Radiat. Transfer, 65, 609–620.
Schulz, F. M., K. Stamnes, and F. Weng (1999), VDISORT: An improved and generalized discrete ordinate method for polarized (vector) radiative transfer, J. Quant. Spectrosc. Radiat. Transfer, 61(1), 105–122.
Shephard, M. W., S. A. Clough, V. H. Payne, W. L. Smith, S. Kireev, and K. E. Cady-Pereira (2009), Performance of the line-by-line radiative transfer model (LBLRTM) for temperature and species retrievals: IASI case studies from JAIVEx, Atmos. Chem. Phys., 9, 7397–7417, doi:10.5194/acp-9-7397-2009.
Sioris, C. E. and W. E. J. Evans (2002), Modelling higher order radiation fields using iterated integrals of phase function, J. Quant. Spectrosc. Radiat. Transfer, 72, 227–236.
Smith, E. A., P. Bauer, F. S. Marzano, C. D. Kummerow, D. McKague, A. Mugnai, and G. Panegrossi (2002), Intercomparison of Microwave Radiative Transfer Models for Precipitating Clouds, IEEE Geosci. Remote Sens., 40(3), 541–549.
Sparks, L. (1997), Efficient line-by-line calculation of absorption coefficients to high numerical accuracy, J. Quant. Spectrosc. Radiat. Transfer, 57(7), 631–650.
Spurr, R. J. S., T. P. Kurosu, and K. V. Chance (2001), A linearized discrete ordinate radiative transfer model for atmospheric remote-sensing retrieval, J. Quant. Spectrosc. Radiat. Transfer, 68, 689–735.
Spurr, R. J. D. (2006), VLIDORT: A linearized pseudo-spherical vector discrete ordinate radiative transfer code for forward model and retrieval studies in multilayer multiple scattering media, J. Quant. Spectrosc. Radiat. Transfer, 102(2), 316–342, doi:10.1016/j.jqsrt.2006.05.005.
Stamnes, K., S.-C. Tsay, W. Wiscombe, and K. Jayaweera (1988), Numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media, Appl. Opt., 27(12), 2502–2509, doi:10.1364/AO.27.002502.
Stiller, G. P., M. Hoepfner, M. Kuntz, T. von Clarmann, G. Echle, H. Fischer, B. Funke, N. Glatthor, F. Hase, H. Kemnitzer, and S. Zorn (1998), Karlsruhe optimized and precise radiative transfer algorithm. Part I: requirements, justification, and model error estimation, In: Optical Remote Sensing of the Atmosphere and Clouds, pp. 257–256, Edited by Wang, Jinxue, Beiying Wu, Toshihiro Ogawa, and Zheng-hua Guan, SPIE, doi:10.1117/12.317754.
Strow, L. L., S. E. Hannon, S. De Souza-Machado, H. E. Motteler, and D. Tobin (2003), An Overview of the AIRS Radiative Transfer Model, IEEE T. Geosci. Remote, 41(2), 303–313, doi:10.1109/TGRS.2002.808244.
Strow, L. L., H. E. Motteler, R. G. Benson, S. E. Hannon, and S. De Souza-Machado (1998), Fast Computation Of Monochromatic Infrared Atmospheric Transmittances Using Compressed Look-up Tables, J. Quant. Spectrosc. Radiat. Transfer, 59(3–5), 481–493, doi:10.1016/S0022-4073(97)00169-6.
Strow, L. L., S. E. Hannon, S. de Souza-Machado, and H. Motteler (1111), Validation of the AIRS Radiative Transfer Algorithm Using ECMWF Datafields, University of Maryland.
Tjemkes, S. A. and J. Schmetz (1998), Radiative Transfer Simulations for the Thermal Channels of METEOSAT Second Generation, European Organisation for the Exploitation of Meteorological Satellites EUMETSAT.
Tsang, L. and K.-H. Ding (1991), Polarimetric Signatures of a Layer of Random Nonspherical Discrete Scatterers Overlying a Homogeneous Half-Space Based on First- and Second-Order Vector Radiative Transfer Theory, xxxx.
Urban, J., P. Baron, N. Lautié, N. Schneider, K. Dassas, P. Ricaud, and J. De La Noë (2004), Moliere (v5): a versatile forward- and inversion model for the millimeter and sub-millimeter wavelength range, J. Quant. Spectrosc. Radiat. Transfer, 83(3–4), 529–554, doi:10.1016/S0022-4073(03)00104-3.
Vilhena, M. T., C. F. Segatto, and L. B. Barichello (1995), A Particular Solution for the SN Radiative Transfer Problems, J. Quant. Spectrosc. Radiat. Transfer, 53(4), 467–469.
Vivekanandan, J., G. Zhang, S. M. Ellis, D. Rajopadhyaya, and S. K. Avery (2003), Radar reflectivity calibration using differential propagation phase measurement, Radio Sci., 38(3), doi:10.1029/2002RS002676.
Vogel, R. L., Q. Liu, Y. Han, and F. Weng (2011), Evaluating a satellite derived global infrared land surface emissivity data set for use in radiative transfer modeling, J. Geophys. Res., 116, 1–11, doi:10.1029/2010JD014679.
Wang, J., G. P. Anderson, H. E. Revercomb, and R. O. Knuteson (1996), Validation of FASCOD3 and MODTRANS3: comparison of model calculations with ground-based and airborne interferometer observations under clear-sky conditions, Appl. Opt., 35(30), 6028–6041.
Wiscombe, W. J. (1977), The Delta-M Method: Rapid Yet Accurate Radiative Flux Calculations for Strongly Asymmetric Phase Functions, J. Atmos. Sci., 34, 1408–1422.
Yang, P., B.-C. Gao, B. A. Baum, Y. X. Hu, W. J. Wiscombe, S.-C. Tsay, D. M. Winker, and S. L. Nasiri (2001), Radiative properties of cirrus clouds in the infrared (8–13μm) spectral region, J. Quant. Spectrosc. Radiat. Transfer, 70, 473–504.
Yang, P., H. Wei, H.-L. Huang, B. A. Baum, Y. X. Hu, G. W. Kattawar, M. I. Mishchenko, and Q. Fu (2005), Scattering and absorption property database for nonspherical ice particles in the near- through far-infrared spectral region, Appl. Opt., 44(26), 5512–5523, doi:10.1364/AO.44.005512.
Zhai, P.-W., Y. Hu, C. R. Trepte, and P. L. Lucker (2009), A vector radiative transfer model for coupled atmosphere and ocean systems based on successive order of scattering method, Opt. Express, 17(4), 2057–2079, doi:10.1364/OE.17.002057.
Zhang, Y.-C., W. B. Rossow, A. A. Lacis, V. Oinas, and M. I. Mishchenko (2004), Calculation of radiative fluxes from the surface to top of atmosphere based on ISCCP and other global data sets: Refinements of the radiative transfer model and the input data, J. Geophys. Res., 109, doi:10.1029/2003JD004457.
Zhong, W. and J. D. Haigh (2000), An efficient and accurate correlated-k parameterization of infrared radiative transfer for troposphere-stratosphere-mesosphere GCMs, Atm. Sci. Lett., 1(2), doi:10.1006/asle.2000.0014.