There is currently a filter applied. To see the complete list of publications, clear the filter.
Baran, A. J., P. N. Francis, L.C. Labonnote, and M. Doutriaux-Boucher (2001), A scattering phase function for ice cloud : Tests of applicability using aircraft and satellite multi-angle multi-wavelength radiance measurements of cirrus, Q. J. R. Meteorol. Soc., 127, 2395–2416.
Baran, A. J. and P. N. Francis (2004), On the radiative properties of cirrus cloud at solar and thermal wavelengths: A test of model consistency using high-resolution airborne radiance measurements, Q. J. R. Meteorol. Soc., 130, 1–16.
Baran, A. J. (2005), The dependence of cirrus infrared radiative properties in ice crystal geometry and shape of the size-distribution function, Q. J. R. Meteorol. Soc., 131, 1129–1142.
Baran, A. J. (2009), A review of the light scattering properties of cirrus, J. Quant. Spectrosc. Radiat. Transfer, 110, 1239–1260, doi:10.1016/j.jqsrt.2009.02.026.
Baran, A. J., P. J. Connolly, and C. Lee (2009), Testing an ensemble model of cirrus ice crystals using midlatitude in situ estimates of Ice water content, volume extinction coefficient and the total solar optical depth, J. Quant. Spectrosc. Radiat. Transfer, 110, 1579–1598, doi:10.1016/j.jqsrt.2009.02.021.
Baran, A. J. (2012), From the single-scattering properties of ice crystals to climate prediction: A way forward, Atmos. Res., 112, 45–69, doi:10.1016/j.atmosres.2012.04.010.
Baran, Anthony J., Peter Hill, Kalli Furtado, Paul Field, and James Manners (2014), A Coupled Cloud Physics-Radiation Parameterization of the Bulk Optical Properties of Cirrus and its Impact on the Met Office Unified Model Global, J. Climate, in press, doi:10.1175/JCLI-D-13-00700.1.
Baran, A. J., K. Furtado, L.-C. Labonnote, S. Havemann, J.-C. Thelen, and F. Marenco (2014), On the relationship between the scattering phase function of cirrus and the atmospheric state, Atmos. Chem. Phys. Discuss., 14, 14109–14157, doi:10.5194/acpd-14-14109-2014.
Baran, A. J., R. Cotton, K. Furtado, S. Havemann, L.-C. Labonnote, F. Marenco, A. Smith, and J.-C. Thelen (2014), A self-consistent scattering model for cirrus. II: The high and low frequencies, Q. J. R. Meteorol. Soc., 140(680), 1039–1057, doi:10.1002/qj.2193.
Bozzo, A., T. Maestri, R. Rizzi, and E. Tosi (2008), Parameterization of single scattering properties of mid-latitude cirrus clouds for fast radiative transfer models using particle mixtures, Geophys. Res. Lett., 35(16), 1–5, doi:10.1029/2008GL034695.
Cairo, F., G. D. Donfrancesco, M. Snels, F. Fierli, M. Viterbini, S. Borrmann, and W. Frey (2010), A comparison of light backscattering and particle size distribution measurements in tropical cirrus clouds, Atmos. Meas. Tech. Discuss., 3, 4059–4089, doi:10.5194/amtd-3-4059-2010.
Chepfer, H., P. Goloub, J. Riedi, J. F. De Haan, J. W. Hovenier, and P. H. Flamant (2001), Ice crystal shapes in cirrus clouds derived from POLDER/ADEOS-1, J. Geophys. Res., 106(D8), 7955–7966, doi:10.1029/2000JD900285.
Chepfer, H., G. Brogniez, and Y. Fouquart (1998), Cirrus coulds' microphysical properties deduced from POLDER observations, J. Quant. Spectrosc. Radiat. Transfer, 60(3), 375–390.
Chepfer, H., G. Brogniez, P. Goloub, F. M. Breon, and P. H. Flamant (1999), Observations of horizontally oriented ice crystals in cirrus clouds with POLDER-1/ADEOS-1, J. Quant. Spectrosc. Radiat. Transfer, 63, 521–543.
Choi, Y-S. and C-H. Ho (2006), Radiative effect of cirrus with different optical properties over the tropics in MODIS and CERES observations, Geophys. Res. Lett., 33, L21811, doi:10.1029/2006GL027403.
Clark, H. L., R. S. Harwood, A. Billingham, and H. C. Pumphrey (2003), Cirrus and water vapor in the tropical tropopause layer observed by Upper Atmosphere Research Satellite (UARS), J. Geophys. Res., 108(D24), doi:10.1029/2003JD003748.
Comstock, J. M. and C. Jakob (2004), Evaluation of tropical cirrus cloud properties derived from ECMWF model output and ground based measurements over Nauru Island, Geophys. Res. Lett., 31.
Comstock, J. M., R. F. Lin, D. O. Starr, and P. Yang (2008), Understanding ice supersaturation, particle growth, and number concentration in cirrus clouds, J. Geophys. Res., 113, D23211, doi:10.1029/2008JD010332.
Considine, G., J. A. Curry, and B. Wielicki (1997), Modeling cloud fraction and horizontal variability in marine boundary layer clouds, J. Geophys. Res., 102(D12), 13,517–13,525.
Corti, T., B. P. Luo, Q. Fu, H. Voemel, and T. Peter (2006), The impact of cirrus clouds on tropical troposphere-to-stratosphere transport, Atmos. Chem. Phys., 6, 2539–2547, doi:10.5194/acp-6-2539-2006.
Crutzen, P. J. (2006), Albedo enhancement by stratospheric sulfur injections: A contribution to resolve a policy dilemma?, Max-Planck-Institute for Chemistry Department of Atmospheric Chemistry and University of California.
Del Genio, A. D., A. B. Wolf, and G. G. Mace (2001), Observed and Simulated Cirrus Cloud Properties at the SGP CART Site, Goddard Institute for Space Studies, University of Utah, Eleventh ARM Science Team Meeting Proceedings.
DelGenio, A. D. (2002), GCM simulations of cirrus for climate studies, In: Cirrus, pp. 310–326, Edited by Lynch, D. K., K. Sassen, D. Starr, and G. Stephens, Oxford University Press.
Eguchi, N. and M. Shiotani (2004), Intraseasonal variations of water vapor and cirrus clouds in the tropical upper troposphere, J. Geophys. Res., 109, D12106, doi:10.1029/2003JD004314.
Eguchi, N. and M. Shiotani (2004), Intraseasonal variations of water vapor and cirrus clouds in the tropical upper troposphere, J. Geophys. Res., 109(D18), doi:10.1029/2003JD004314.
Evans, K. F., S. J. Walter, and W. R. McGrath (1996), Submillimeter-Wave Radiometric Sensing of Cirrus Clouds Properties: The JPL Prototype Cloud Ice Radiometer, University of Colorado.
Evans, K. F., S. J. Walter, A. J. Heymsfield, and M. N. Deeter (1998), Modeling of Submillimeter Passive Remote Sensing of Cirrus Clouds, J. Appl. Meteorol., 37, 184–205.
Evans, K. F., A. H., I. G. Nolt, and B. T. Marshall (1999), The Prospect for Remote Sensing of Cirrus Clouds with a Submillimeter-Wave Spectrometer, J. Appl. Meteorol., 38, 514–525.
Frey, W., S. Borrmann, D. Kunkel, R. Weigel, M. de Reus, H. Schlager, A. Roiger, C. Voigt, P. Hoor, J. Curtius, M. Krämer, C. Schiller, C. M. Volk, C. D. Homan, F. Fierli, G. Di Donfrancesco, A. Ulanovsky, F. Ravegnani, N. M. Sitnikov, S. Viciani, F. D'Amato, G. N. Shur, G. V. Belyaev, K. S. Law, and F. Cairo (2011), In-situ measurements of tropical cloud properties in the West African monsoon: upper tropospheric ice clouds, mesoscale convective system outflow, and subvisual cirrus, Atmos. Chem. Phys., 11, 5569–5590, doi:10.5194/acp-11-5569-2011.
Fu, Q., M. Baker, and D. L. Hartmann (2002), Tropical cirrus and water vapor: an effective Earth infrared iris feedback?, Atmos. Chem. Phys., 2, 31–37, doi:10.5194/acp-2-31-2002.
Fu, R., A. D. Del Genio, W. B. Rossow, and W. T. Liu (1992), Cirrus-cloud thermostat for tropical sea surface temperatures tested using satellite data, Nature, 358, 394–397.
Fu, Q. (1996), An Accurate Parameterization of the Solar Radiative Properties of Cirrus for Climate Models, J. Climate, 9(9), 2058–2082, doi:10.1175/1520-0442(1996)009<2058:AAPOTS>2.0.CO;2.
Fu, Q., P. Yang, and W. B. Sun (1998), An Accurate Parameterization of the Infrared Radiative Properties of Cirrus Clouds for Climate Models, J. Climate, 11, 2223–2237, doi:10.1175/1520-0442(1998)011<2223:AAPOTI>2.0.CO;2.
Fusina, F., P. Spichtinger, and U. Lohmann (2007), Impact of ice supersaturated regions and thin cirrus on radiation in the midlatitudes, J. Geophys. Res., 112, D24S14, doi:10.1029/2007JD008449.
Gallagher, M. W., P. J. Connolly, J. Whiteway, D. Figueras-Nieto, M. Flynn, T. W. Choularton, K. N. Bower, and J. Hacker (2005), An overview of the microphysical structure of cirrus clouds observed during EMERALD-1, Q. J. R. Meteorol. Soc., 131, 1143–1169, doi:10.1256/qj.03.138.
Gao, B.-C., K. Meyer, and P. Yang (2004), A new concept on remote sensing of cirrus optical depth and effective ice particle size using strong water vapor absorption channels near 1.38 and 1.88 micrometer, IEEE T. Geosci. Remote, 42(9), 1891–1899.
Garrett, T. J., A. J. Heymsfield, M. J. McGill, B. A. Ridley, D. G. Baumgardner, T. P. Bui, and C. R. Webster (2004), Convective generation of cirrus near the tropopause, J. Geophys. Res., 109, doi:10.1029/2004JD004952.
Garrett, T. J., B. C. Navarro, C. H. Twohy, E. J. Jensen, D. G. Baumgardner, P. T. Bui, H. Gerber, R. L. Herman, A. J. Heymsfield, P. Lawson, P. Minnis, L. Nguyen, M. Poellot, S. K. Pope, F. P. J. Valero, and E. M. Weinstock (2005), Evolution of a Florida Cirrus Anvil, J. Atmos. Sci., 62, 2352–2372.
Gayet, J.-F., J. Ovarlez, V. Shcherbakov, J. Strom, U. Schumann, A. Minikin, F. Auriol, A. Petzold, and M. Monier (2004), Cirrus cloud microphysical and optical properties at southern and northern midlatitudes during the INCA experiment, J. Geophys. Res., 109, doi:10.1029/2004JD004803.
Gettelman, A. and D. E. Kinnison (2007), The global impact of supersaturation in a coupled chemistry-climate model, Atmos. Chem. Phys., 7, 1629–1643, doi:10.5194/acp-7-1629-2007.
Gierens, K., U. Schumann, M. Helten, H. Smit, and P.-H. Wang (2000), Ice-supersaturated regions and subvisible cirrus in the northern midlatitude upper troposphere, J. Geophys. Res., 105(D18), 22,743–22,753.
Guo, G., Q. Ji, P. Yang, and S.-C. Tsay (2005), Remote Sensing of Cirrus Optical and Microphysical Properties From Ground-Based Infrared Radiometric Measurements- Part II: Retrievals From CRYSTAL-FACE Measurements, IEEE Geosci. Remote Sens. Let., 2(2), 132–135.
Haladay, T. and G. Stephens (2009), Characteristics of tropical thin cirrus clouds deduced from joint CloudSat and CALIPSO observations, J. Geophys. Res., 114, 1–13, doi:10.1029/2008JD010675.
Hallar, A. Gannet, L. M. Avallone, R. L. Herman, B. E. Anderson, and A. J. Heymsfield (2004), Measurements of ice water content in tropopause region Arctic cirrus during the SAGE III Ozone Loss and Validation Experiment (SOLVE), J. Geophys. Res., 109, D17203, doi:10.1029/2003JD004348.
Hartmann, D. L., J. R. Holton, and Q. Fu (2001), The heat balance of the tropical tropopause, cirrus, and stratospheric dehydration, University of Washington.
Heidinger, A. K. and M. J. Pavolonis (2009), Gazing at cirrus clouds for 25 years through a split window, Part 1: Methodology, J. Appl. Meteorol. Clim., 48(6), 1100–1116.
Hendricks, J., B. Kärcher, U. Lohmann, and M. Ponater (2005), Do aircraft black carbon emissions affect cirrus clouds on the global scale?, Geophys. Res. Lett., 32, doi:10.1029/2005GL022740.
Heymsfield, A. J., S. Lewis, A. Bansemer, J. Iaquinta, L. M. Miloshevich, M. Kajikawa, C. Twohy, and M. R. Poellot (2002), A general approach for deriving the properties of cirrus and stratiform ice cloud particles, J. Atmos. Sci., 59, 3–29.
Heymsfield, A. J. and G. M. McFarquahar (2002), Mid-latitude and Tropical Cirrus, In: Cirrus, pp. 78–101, Edited by Lynch, D. K., K. Sassen, D. Starr, and G. Stephens, Oxford University Press.
Heymsfield, A. J., A. Bansemer, P.R. Field, S. L. Durden, J. L. Stith, J. E. Dye, W. Hall, and C. A. Grainger (2002), Observations and Parameterizations of Particle Size Distributions in Deep Tropical Cirrus and Stratiform Precipitating Clouds: Results from In Situ Observations in TRMM Field Campaigns., J. Atmos. Sci., 59, 3457–3491.
Heymsfield, A. J. and L. M. Miloshevic (2002), Parameterizations for the Cross-Sectional Area and Extinction of Cirrus Stratiform Ice Cloud Particles, J. Atmos. Sci., 60, 936–956.
Heymsfield, A. J., S. Matrosov, and B. Baum (2003), Ice water path - optical depth relationships for cirrus and deep stratiform ice cloud layers, J. Appl. Meteorol., 42(20), 1369–1390.
Heymsfield, A. J., C. G. Schmitt, A. Bansemer, D. Baumgardner, E. M. Weinstock, J. T. Smith, and D. Sayres (2004), Effective Ice Particle Densities for Cold Anvil Cirrus, Geophys. Res. Lett., 31.
Heymsfield, A. J., L. M. Misloshevich, C. Schmitt, and A. Bansemer (2005), Homogeneous ice nucleation in subtropical convection and its influence on cirrus anvil microphysics, J. Atmos. Sci., 62, 41–64.
Heymsfield, A. J., C. Schmitt, A. Bansemer, G.-J. van Zadelhoff, M. J. McGill, C. Twohy, and D. Baumgardner (2006), Effective Radius of Ice Cloud Particle Populations Derived from Aircraft Probes, J. Atmos. Oceanic Technol., 23, 361–380.
Heymsfield, A. J. and L. M. Miloshevich (1995), Relative Humidity and Temperature Influences on Cirrus Formation and Evolution: Observations from Wave Clouds and FIRE II, J. Atmos. Sci., 52, 4302–4326.
Heymsfield, A. J. and G. M. McFarquhar (1996), High Albedos of Cirrus in the Tropical Pacific Warm Pool: Microphysical Interpretations from CEPEX and from Kwajalein, Marshall Islands, J. Atmos. Sci., 53(17), 2424–2451, doi:10.1175/1520-0469(1996)053<2424:HAOCIT>2.0.CO;2.
Heymsfield, A. J., L. Miloshevich, and C. Twohy (1998), Upper-tropospheric relative humidity observations and implications for cirrus ice nucleation, Geophys. Res. Lett., 25(9), 1343–1346.
Hong, G., G. Heygster, and K. Kunzi (2006), Effect of Cirrus Clouds on the Diurnal Cycle of Tropical Deep Convective Clouds, J. Geophys. Res., 111, D06209, doi:10.1029/2005JD006208.
Ivanova, D., D. L. Mitchell, W. P. Arnott, and M. Poellot (2001), A GCM Parameterization for Bimodal Size Spectra and Ice Mass Removal Rates in Mid- latitude Cirrus Clouds, Atmos. Res., 59–60, 89–113.
Jensen, E. J., J. B. Smith, L. Pfister, J. V. Pittman, E. M. Weinstock, D. S. Sayres, R. L. Herman, R. F. Troy, K. Rosenlof, T. L. Thompson, A. M. Fridlind, P. K. Hudson, D. J. Cziczo, A. J. Heymsfield, C. Schmitt, and J. C. Wilson (2005), Ice supersaturations exceeding 100% at the cold tropical tropopause: implications for cirrus formation and dehydration, Atmos. Chem. Phys., 5, 851–862, doi:10.5194/acp-5-851-2005.
Jensen, E. and L. Pfister (2005), Implications of persistent ice superaturation in clod cirrus for stratosphere water vapor, Geophys. Res. Lett., 32, L01808, doi:10.1029/2004GL021125.
Jensen, E. J., W. G. Read, J. Mergenthaler, B. J. Sandor, L. Pfister, and A. Tabazadeh (1999), High Humidities and Subvisible Cirrus Near the Tropical Tropopause, Geophys. Res. Lett., 26(15), 2347–2350.
Joos, H., P. Spichtinger, U. Lohmann, J.-F. Gayet, and A. Minikin (2008), Orographic cirrus in the global climate model ECHAM5, J. Geophys. Res., 113, D18205, doi:10.1029/2007JD009605.
Kärcher, B. and U. Lohmann (2002), A parameterization of cirrus cloud formations: Homogeneous freezing including the effects of arerosol size, J. Geophys. Res., 107, doi:10.1029/2001JD001429.
Kärcher, B. and U. Lohmann (2002), A parameterization of cirrus cloud formation: Homogeneous freezing of supercooled aerosols, J. Geophys. Res., 107, doi:10.1029/2001JD000470.
Kärcher, B. and U. Lohmann (2003), A parameterization of cirrus cloud formation: Heterogeneous freezing, J. Geophys. Res., 108, doi:10.1029/2002JD003220.
Kärcher, B. and J. Ström (2003), The roles of dynamical variability and aerosols in cirrus cloud formation, Atmos. Chem. Phys., 3, 823–838, doi:10.5194/acp-3-823-2003.
Kahn, B. H., A. Eldering, M. Ghil, S. Bordoni, and S. A. Clough (2004), Sensitivity Analysis of Cirrus Cloud Properties from High-Resolution Infrared Spectra. Part I: Methodology and Synthetic Cirrus, J. Climate, 17, 4856–4870.
Kahn, B. H., K. Nan Liou, S.-Y. Lee, E. F. Fishbein, S. DeSouza-Machado, A. Eldering, E. J. Fetzer, S. E. Hannon, and L. Larrabee Strow (2005), Nighttime cirrus detection using Atmospheric Infrared Sounder window channels and total column water vapor, J. Geophys. Res., 110, D07203, doi:10.1029/2004JD005430.
Kahn, B. H., C. K. Liang, A. Eldering, A. Gettelman Q. Yue, and K. N. Liou (2008), Tropical thin cirrus and relative humidity observed by the Atmospheric Infrared Sounder, Atmos. Chem. Phys., 8, 1501–1518, doi:10.5194/acp-8-1501-2008.
Kinne, S., T. P. Ackerman, M. Shiobara, A. Uchiyama, A. J. Heymsfield, L. Miloshevich, J. Wendell, E. Eloranta, C. Purgold, and R. W. Bergstrom (1997), Cirrus Cloud Radiative and Microphysical Properties From Ground Observations and In Situ Measurements During Fire 1991 and Their Application to Exhibit Problems in Cirrus Solar Radiative Transfer Modeling, J. Atmos. Sci., 54, 2320–2344.
Knap, W. H., M. Hess, P. Stammes, R. B. A. Koelemeijer, and P. D. Watts (1999), Cirrus optical thickness and crystal size retrieval from ATSR-2 data using phase functions of imperfect hexagonal ice crystals, J. Geophys. Res., 104(13), 31721–31730, doi:10.1029/1999JD900267.
Krämer, M., C. Rolf, A. Luebke, A. Afchine, N. Spelten, A. Costa, J. Meyer, M. Zöger, J. Smith, R. L. Herman, B. Buchholz, V. Ebert, D. Baumgardner, S. Borrmann, M. Klingebiel, and L. Avallone (2016), A microphysics guide to cirrus clouds — Part 1: Cirrus types, Atmos. Chem. Phys., 16, 3463–3483, doi:10.5194/acp-16-3463-2016.
Kuebbeler, M., M. Hildebrandt, J. Meyer, C. Schiller, T. Hamburger, T. Jurkat, A. Minikin, A. Petzold, M. Rautenhaus, H. Schlager, U. Schumann, C. Voigt, P. Spichtinger, J. F. Gayet, C. Gourbeyre, and M. Kramer (2010), Thin and subvisible cirrus and contrails in a subsaturated environment, Atmos. Chem. Phys. Discuss., 10, 31153–31186, doi:10.5194/acpd-10-31153-2010.
Kumar, S. V. Sunil, K. Parameswaran, and B. V. Krishna Murthy (2003), Lidar Observations of Cirrus Cloud Near the Tropical Tropopause: General Features, Atmos. Res., 66, 203–227.
Larsen, H., J.-F. Gayet, G. Febvre, H. Chepfer, and G. Brogniez (1998), Measurement errors in cirrus cloud microphysical properties, Ann. Geophys., 16, 266–276.
Lawson, R. P., B. Baker, B. Pilson, and Q. X. Mo (2006), In situ observations of the microphysical properties of wave, cirrus, and anvil clouds. Part II: Cirrus clouds, J. Atmos. Sci., 63("12"), 3186–3203.
Lawson, R. P., B. Pilson, B. Baker, Q. Mo, E. Jensen, L. Pfister, and P. Bui (2008), Aircraft measurements of microphysical properties of subvisible cirrus in the tropical tropopause layer, Atmos. Chem. Phys., 8(6), 1609–1620, doi:10.5194/acp-8-1609-2008.
Lawson, R. P., A. J. Heymsfield, S. M. Aulenbach, and T. L. Jensen (1998), Shapes, sizes and light scattering properties of ice crystals in cirrus and a persistent contrail during SUCCESS, Geophys. Res. Lett., 25(9), 1331–1334.
Lin, R.-F., D. O'C. Starr, P. J. DeMott, R. Cotton, K. Sassen, E. Jensen, B. Kärcher, and X. Liu (2002), Cirrus Parcel Model Comparison Project. Phase I: The critical components to simulate cirrus initiation explicitly, J. Atmos. Sci., 59(15), 2305–2329.
Lin, H., K. J. Noone, J. Stroem, and A. J. Heymsfield (1998), Small Ice Crystals in Cirrus Clouds: A Model Study and Comparison with In Situ Observations, J. Atmos. Sci., 55, 1928–1939.
Lohmann, U. and B. Kaecher (2002), First interactive simulations of cirrus clouds formed by homogeneous freezing in the ECHAM GCM, J. Geophys. Res., 107, doi:10.1029/2001JD000767.
Lohmann, U., B. Kärcher, and C. Timmreck (2003), Impact of the Mount Pinatubo eruption on cirrus clouds formed by homogeneous freezing in the ECHAM4 GCM, J. Geophys. Res., 108(D18), doi:10.1029/2002JD003185.
Lohmann, U., B. Kärcher, and C. Timmreck (2004), Impact of the Mount Pinatubo Eruption on Cirrus Clouds Formed by Homogeneous Freezing in the ECHAM GCM, J. Geophys. Res., 109, doi:10.1029/2002JD003185.
Lohmann, U., B. Kärcher, and J. Hendricks (2004), Sensitivity studies of cirrus clouds formed by heterogeneous freezing in the ECHAM GCM, J. Geophys. Res., 108, doi:10.1029/2003JD004443.
Lohmann, U. and E. Roeckner (1995), The influence of cirrus cloud-radiative forcing on climate and climate sensitivity in a general circulation model, J. Geophys. Res., 100, 16,305–16,323.
Luo, Z., W. B. Rossow, T. Inoue, and C. J. Stubenrauch (2002), Did the eruption of the Mount Pinatubo volcano affect cirrus properties?, J. Climate, 15, 2806–2820.
Luo, Z. and W. B. Rossow (2004), Characterizing Tropical Cirrus Life Cycle, Evlolution, and Interaction with Upper-Tropospheric Water Vapor Using Lagrangian Trajectory Analysis of Satellite Observations, J. Climate, 17, 4541–4563.
Lynch, D. K. (2002), Cirrus History and definition, In: Cirrus, pp. 3–10, Edited by Lynch, D. K., K. Sassen, D. Starr, and G. Stephens, Oxford University Press.
Lynch, D. K. and K. Sassen (2002), Subvisual cirrus, In: Cirrus, pp. 256–264, Edited by Lynch, D. K., K. Sassen, D. Starr, and G. Stephens, Oxford University Press.
Mace, G. G., E. E. Clothiaux, and T. P. Ackerman (2001), The Composite Characteristics of Cirrus Clouds: Bulk Properties Revealed by One Year of Continuous Cloud Radar Data, J. Climate, 14, 2185–2203.
Mace, G. G., S. Benson, and E. Vernon (2005), On the Relationship Between Cirrus Clouds and the Large-Scale Atmospheric State as Revealed by 6 Years of Ground-Based Data, University of Utah, Submitted to the Journal of Climate.
Mace, G. G., T. P. Ackerman, P. Minnis, and D. F. Young (1998), Cirrus Layer Microphysical Properties Derived From Surface-Based Millimeter Radar and Infrared Interferometer Data, J. Geophys. Res., 103, 23207–23216.
Mace, G. G., K. Sassen, S. Kinne, and T. P. Ackerman (1998), An examination of cirrus cloud characteristics using data from millimeter wave radar and lidar: The 24 April SUCCESS case study, Geophys. Res. Lett., 25(8), 1133–1136, doi:10.1029/98GL00232.
Masuda, K., H. Ishimoto, and T. Takashima (2002), Retrieval of cirrus optical thickness and ice-shape information using total and polarized reflectance from satellite measurements, J. Quant. Spectrosc. Radiat. Transfer, 75, 39–51.
Matrosov, S. Y., B.W. Orr, R. A. Kropfli, and J. B. Snider (1994), Retrieval of Vertical Profiles of Cirrus Cloud Microphysical Parameters from Doppler Radar and Infrared Radiometer Measurements, J. Appl. Meteorol., 33, 617–626.
McFarquhar, G. M. and A. J. Heymsfield (1996), Microphysical Characteristics of Three Anvils Sampled during the Central Equatorial Pacific Experiment, J. Atmos. Sci., 53(17), 2401–2423, doi:10.1175/1520-0469(1996)053<2401:MCOTAS>2.0.CO;2.
McFarquhar, G. M. and A. J. Heymsfield (1997), Parameterization of Tropical Cirrus Ice Crystal Size Distribution and Implications for Radiative Transfer: Results from CEPEX, J. Atmos. Sci., 54, 2187–2200, doi:10.1175/1520-0469(1997)054<2187:POTCIC>2.0.CO;2.
Meyer, K., P. Yang, and B.-C. Gao (2004), Optical Thickness of Tropical Cirrus Clouds Derived From the MODIS 0.66- and 1.375-μm channels, IEEE T. Geosci. Remote, 42(4), 833–841.
Miloshevich, L. M. (2002), Parameterizations for the Cross-Sectional Area and Extinction of Cirrus Stratiform Ice Cloud Particles, J. Atmos. Sci., 60, 936–956.
Minnis, P., D. F. Young, D. P. Garber, L. Nguyen, W. L. Smith Jr., and R. Palikonda (1997), Transformation of Contrails into Cirrus during SUCCESS, NASA Langley Research Center, Analytical Services and Materials.
Minnis, P., D. F. Young, D. P. Garber, L. Nguyen, W. L. Smith Jr., and R. Palikonda (1998), Transformation of Contrails into Cirrus during SUCCESS, Geophys. Res. Lett., 25, 1157–1160.
Mitchell, D. L., S. K. Chai, Y. Liu, A. J. Heymsfield, and Y. Dong (1996), Modeling Cirrus Clouds. Part I: Treatment of Bimodal Size Spectra and Case Study Analysis, J. Atmos. Sci., 53(20), 2952–2987.
Nasiri, S. L., B. A. Baum, A. J. Heymsfield, P. Yang, M. R. Poellot, D. P. Kratz, and Y. Hu (2002), The Development of Midlatitude Cirrus Models for MODIS Using FIRE-I, FIRE-II, and ARM In Situ Data, J. Appl. Meteorol., 41, 197–217.
Naud, C., F. Di Guiseppe, J. E. Russell, R. Rizzi, and J. E. Harries (1111), Comparison of a two-stream parameterisation and high resolution full scattering calculation for cirrus effect on atmospheric heating rates in the far infrared, Space and Atmospheric Physics group, University of Bologna.
Newell, R. E., Y. Zhu, E. V. Browell, S. Ismail, W. G. Read, J. W. Waters, K. K. Kelly, and S. C. Liu (1996), Upper tropospheric water vapor and cirrus: Comparison of DC-8 observations, preliminary UARS microwave limb sounder measurements and meteorological analyses, J. Geophys. Res., 101(D1), 1931–1942.
Hardcopy: Alphabetically in cupboard (only abstract)
Nolt, I. G., M. D. Vanek, N. D. Tappan, P. Minnis, J. L. Alltop, P. A. R. Ade, C. Lee, P. A. Hamilton, K. F. Evans, A. H. Evans, E. E. Evans, E. E. Clothiaux, and A. J. Baran (1999), Far infrared measurements of cirrus, xxxx, Remote Sensing of Clouds and Atmosphere.
O'Shea, S. J., T. W. Choularton, G. Lloyd, J. Crosier, K. N. Bower, M. Gallagher, S. J. Abel, R. J. Cotton, P. R. A. Brown, J. P. Fugal, O. Schlenczek, S. Borrmann, and J. C. Pickering (2016), Airborne observations of the microphysical structure of two contrasting cirrus clouds, J. Geophys. Res.: Atm., 121(22), 13510–13536, doi:10.1002/2016JD025278.
Ovarlez, J., J.-F. Gayet, K. Gierens, J. Ström, H. Ovarlez, F. Auriol, R. Busen, and U. Schumann (2002), Water vapour measurements inside cirrus clouds in Northern and Southern hemispheres during INCA, Geophys. Res. Lett., 29(16), 1813, doi:10.1029/2001GL014440.
Posselt, D. J., T. S. L'Ecuyer, and G. L. Stephens (2008), Exploring the error characteristics of thin ice cloud property retrievals using a Markov chain Monte Carlo algorithm, J. Geophys. Res., 113, D24206, doi:10.1029/2008JD010832.
Prabhakara, C., R. S. Fraser, G. Dalu, M.-L. C. Wu, and R. J. Curran (1988), Thin Cirrus Clouds: Seasonal Distribution over Oceans Deduced from Nimbus-4 IRIS, J. Appl. Meteorol. Clim., 27(4), 379–399, doi:10.1175/1520-0450(1988)027<0379:TCCSDO>2.0.CO;2.
Raschke, E., A. Ohmura, W. B. Rossow, B. E. Carlson, Y.-C. Zhang, C. Stubenrauch, M. Kottek, and M. Wild (2005), Cloud effects on the radiation budget based on ISCCP data (1991 to 1995), Int. J. Climatol., 25, 1103–1125.
Salby, M., F. Sassi, P. Callaghan, W. Read, and H. Pumphrey (2003), Fluctuations of Cloud, Humidity, and Thermal Structure near the Tropical Tropopause, J. Climate, 16, 3428–3446.
Sandor, B. J., E. J. Jensen, E. M. Stone, W. G. Read, J. W. Waters, and J. L. Mergenthaler (2000), Upper Tropospheric Humidity and Thin Cirrus, Geophys. Res. Lett., 27(17), 2645–2648.
Sassen, K. and J. R. Campbell (2001), A Midlatitude Cirrus Cloud Climatology from the Facility for Atmospheric Remote Sensing. Part I: Macrophysical and Synoptic Properties, J. Atmos. Sci., 58, 481–496.
Sassen, K. and S. Benson (2001), A Midlatitude Cirrus Cloud Climatology from the Facility for Atmospheric Remote Sensing. Part II: Microphysical Properties Derived from Lidar Depolarization, J. Atmos. Sci., 58, 2103–2112.
Sassen, K. and J. M. Comstock (2001), A Midlatitude Cirrus Cloud Climatology from the Facility for Atmospheric Remote Sensing. Part III: Radiative Properties, J. Atmos. Sci., 58, 2113–2127.
Sassen, K., Z. Wang, V. I. Khvorostyanov, G. L. Stephens, and A. Bennedetti (2002), Cirrus Cloud Ice Water Content Radar Algorithm Evaluation Using an Explicit Cloud Microphysical Model, J. Appl. Meteorol., 41, 620–628.
Sassen, K., K.-N. Liou, Y. Takano, and V. I. Khvorostyanov (2003), Diurnal effects in the composition of cirrus clouds, Geophys. Res. Lett., 30, doi:1029/2003GL017034.
Sassen, K., Z. Wang, and D. Liu (2008), Global distribution of cirrus clouds from CloudSat/Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) measurements, J. Geophys. Res., 113, 1–12, doi:10.1029/2008JD009972.
Sassen, K. and B. S. Cho (1992), Subvisual-Thin Cirrus Lidar Dataset for Satellite Verification and Climatological Research, J. Appl. Meteorol., 1275–1285.
Schlimme, I., A. Macke, and J. Reichardt (2005), The Impact of Ice Crystal Shapes, Size Distributions, and Spatial Structures of Cirrus Clouds on Solar Radiative Fluxes, J. Atmos. Sci., 62, 2274–2283.
Schmitt, C. G. and A. J. Heymsfield (2009), The Size Distribution and Mass-Weighted Terminal Velocity of Low-Latitude Tropopause Cirrus Crystal Populations, J. Atmos. Sci., 66, 2013–2028, doi:10.1175/2009JAS3004.1.
Schröder, F., B. Kärcher, C. Duroure, J. Ström, A. Petzold, J.-F. Gayet, B. Strauss, P. Wendling, and S. Borrmann (2000), On the Transition of Contrails into Cirrus Clouds, J. Atmos. Sci., 57, 464–480, doi:10.1175/1520-0469(2000)057<0464:OTTOCI>2.0.CO;2.
Smith, W. L., S. Ackerman, H. Revercomb, H. Huang, D. H. DeSlover, W. Feltz, L. Gumley, and A. Collard (1998), Infrared spectral absorption of nearly invisible cirrus clouds, Geophys. Res. Lett., 25(8), 1137–1140.
Soden, B. J. (2004), The impact of tropical convection and cirrus an upper tropospheric humidity: A Lagrangian analysis of satellite measurements, Geophys. Res. Lett., 31, L20104, doi:10.1029/2004GL020980.
Spangenberg, D. A., P. Minnis, S. T. Bedka, R. Palikonda, D. P. Duda, and F. G. Rose (2013), Contrail radiative forcing over the Northern Hemisphere from 2006 Aqua MODIS data, Geophys. Res. Lett., 40, doi:10.1002/GRL.50168.
Spichtinger, P., K. Gierens, H. G. J. Smit, J. Ovarlez, and J.-F. Gayet (2004), On the distribution of relative humidity in cirrus clouds, Atmos. Chem. Phys., 4, 365–397, doi:10.5194/acp-4-639-2004.
Spichtinger, P. and K. M. Gierens (2009), Modelling of cirrus clouds — Part 1a: Model description and validation, Atmos. Chem. Phys., 9, 685–706, doi:10.5194/acp-9-685-2009.
Spichtinger, P. and K. M. Gierens (2009), Modelling of cirrus clouds — Part 1b: Structuring cirrus clouds by dynamics, Atmos. Chem. Phys., 9, 707–719, doi:10.5194/acp-9-707-2009.
Spinhirne, J. D., W. H. Hart, and D. P. Duda (1998), Evolution of the morphology and microphysics of contrail cirrus from airborne remote sensing, Geophys. Res. Lett., 25(8), 1153–1156.
Stephens, G. L. (2002), Cirrus, climate and global change, In: Cirrus, Edited by Lynch, D. K., K. Sassen, D. Starr, and G. Stephens, Oxford University Press.
Stephens, G. L., S. Tsay, P. W. Stackhouse Jr., and P. J. Flatau (1990), The relevance of the microphysical and radiative properties of cirrus clouds to climate and climatic feedback, J. Atmos. Sci., 47(14), 1742–1753, doi:10.1175/1520-0469(1990)047<1742:TROTMA>2.0.CO;2.
Stordal, F., G. Myhre, E. J. G. Stordal, W. B. Rossow, D. S. Lee, D. W. Arlander, and T. Svendby (2005), Is there a trend in cirrus cloud cover due to aircraft traffic?, Atmos. Chem. Phys., 5, 2155–2162, doi:10.5194/acp-5-2155-2005.
Ström, J., M. Seifert, B. Kärcher, J. Ovarlez, A. Minikin, J.-F. Gayet, R. Krejci, A. Petzold, F. Auriol, W. Haag, R. Busen, U. Schumann, and H. C. Hansson (2003), Cirrus cloud occurrence as function of ambient relative humidity: a comparison of observations obtained during the INCA experiment, Atmos. Chem. Phys., 3, 1807–1816, doi:10.5194/acp-3-1807-2003.
Stubenrauch, C. (2004), Cirrus microphysical properties and their effect on Radiation: survey and integration into climate Models using combined Satellite observations, Laboratoire de Meteorologie Dynamique, Meteorological Office, Institute for Marine Research at Kiel, Laboratoire d'Optique Atmospherique, Final Report on the Environment project EVK2-CT-2000-00063, available at http://www.lmd.polytechnique.fr/CIRAMOSA/Welcome.html.
Stubenrauch, C. J., F. Eddounia, and G. Rädel (2004), Correlations between microphysical properties of large-scale semi-transparent cirrus and the state of the atmosphere, Atmos. Res., 72, 403–423.
Stubenrauch, C. J. and U. Schumann (2005), Survey of Cirrus and atmospheric properties from TOVS Path-B: Natural variability and impact of air traffic on cirrus coverage, 14th International TOVS Study Conference Proceed., Beijing, China, 25 May-1 Jun.
Stubenrauch, C. J., F. Eddounia, J. M. Edwards, and A. Macke (2007), Evaluation of cirrus parameterizations for radiative flux computations in climate models using TOVS–ScaRaB satellite observations, J. Climate, 20(17), 4459–4475.
Sunilkumar, S. V. and K. Parameswaran (2005), Temperature dependence of tropical cirrus properties and radiative effects, J. Geophys. Res., 110, doi:10.1029/2004JD005426.
Um, J. and G. M. McFarquhar (2011), Dependence of the single-scattering properties of small ice crystals on idealized shape models, Atmos. Chem. Phys., 11, 3159–3171, doi:10.5194/acp-11-3159-2011.
Vanek, M. D., I. G. Nolt, N. D. Tappan, P. A. R. Ade, F. C. Gannaway, P. A. Hamilton, C. Lee, J. E. Davis, and S. Predko (2001), Far-Infrared sensor for cirrus (FIRSC): an aircraft-based Fourier-transform spectrometer to measure cloud radiance, Appl. Opt., 40(13).
Wang, J. R., G. Liu, J. D. Spinhirne, P. Racette, and W. D. Hart (2001), Observations and retrievals of cirrus cloud parameters using multichannel millimeter-wave radiometric measurements, J. Geophys. Res., 106(15), 15251–15264, doi:10.1029/2000JD900262.
Wang, Z. and K. Sassen (2002), Cirrus Cloud Microphysical Property Retrieval Using Lidar and Radar Measurements. Part I: Algorithm Description and Comparison with In Situ Data, J. Appl. Meteorol., 41, 218–229.
Wang, Z. and K. Sassen (2002), Cirrus Cloud Microphysical Property Retrieval Using Lidar and Radar Measurements. Part II: Midlatitude Cirrus Microphysical and Radiative Properties, J. Atmos. Sci., 59, 2291–2302.
Wang, Z., D. N. Whiteman, B. B. Demoz, and I. Veselovskii (2004), A new way to measure cirrus cloud ice water content by using ice Raman scatter with Raman lidar, Geophys. Res. Lett., 31, L15101, doi:10.1029/2004GL020004.
Wang, J. R., P. Racette, J. D. Spinhirne, K. F. Evans, and W. D. Hart (1998), Observations of cirrus clouds with airborne MIR CLS, and MAS during SUCCESS, Geophys. Res. Lett., 25, 1145–1148, doi:10.1029/97GL03194.
Wang, J. R., G. Liu, J. D. Spinhirne, P. Racette, and W. D. Hart (1999), Observations and Retrievals of Cirrus Cloud Parameters Using Multichannel Millimeter-wave Radiometric Measurements, J. Geophys. Res.
Wendisch, M., P. Pilewskie, J. Pommier, S. Howard, P. Yang, A. J. Heymsfield, C. G. Schmitt, D. Baumgardner, and B. Mayer (2005), Impact of cirrus crystal shape on solar spectral irradiance: a case study for subtropical cirrus, J. Geophys. Res., 110, D03202, doi:10.1029/2004JD005294.
Whiteway, J., C. Cook, M. Gallagher, T. Choularton, J. Harries, P. Connolly, R. Busen, K. Bower, M. Flynn, P. May, R. Aspey, and J. Hacker (2004), Anatomy of Cirrus Clouds: Results from the Emerald Airborne Campaigns, Geophys. Res. Lett., 31.
Wu, D. L., J. H. Jiang, and C.P. Davis (2006), EOS MLS Cloud Ice Measurements and Cloudy-Sky Radiative Transfer Model, IEEE T. Geosci. Remote, 44(5), 1156–1165.
Yang, P., K. N. Liou, K. Wyser, and D. Mitchell (2000), Parameterization of the scattering and absorption properties of individual ice crystals, J. Geophys. Res., 105(D4), 4699–4718.
Yang, P., B.-C. Gao, B. A. Baum, Y. X. Hu, W. J. Wiscombe, S.-C. Tsay, D. M. Winker, and S. L. Nasiri (2001), Radiative properties of cirrus clouds in the infrared (8–13μm) spectral region, J. Quant. Spectrosc. Radiat. Transfer, 70, 473–504.
Zerefos, C., K. Eleftheratos, D. Balis, P. Zanis, G. Tselioudis, and C. Meleti (2003), Evidence of impact of aviation on cirrus cloud formation, Atmos. Chem. Phys., 3, 1633–1644, doi:10.5194/acp-3-1633-2003.
Zhang, Z., S. Platnick, P. Yang, A. K. Heidinger, and J. M. Comstock (2010), Effects of ice particle size vertical inhomogeneity on the passive remote sensing of ice clouds, J. Geophys. Res., 115, D17203, doi:10.1029/2010JD013835.
Zhang, Y., A. Macke, and F. Albers (1999), Effect of crystal size spectrum and crystal shape on stratiform cirrus radiative forcing, Atmos. Res., 52, 59–75.