There is currently a filter applied. To see the complete list of publications, clear the filter.
Aires, F., C. Prigent, F. Bernando, C. Jiménez, R. Saunders, and P. Brunel (2011), A tool to estimate land-surface emissivities at microwave frequencies (TELSEM) for use in numerical weather prediction, Q. J. R. Meteorol. Soc., 137, 690–699, doi:10.1002/qj.803.
Battaglia, A., C. Simmer, S. Crewell, H. Czekala, C. Emde, F. Marzano, M. I. Mishchenko, J. R. Pardo, and C. Prigent (2006), Thermal Microwave Radiation: Application for Remote Sensing, chap. Emission and scattering by clouds and precipitation, pp. 101–223, The Institution of Engineering and Technology, London, United Kingdom.
Bauer, P., A. J. Geer, P. Lopez, and D. Salmond (2010), Direct 4D-Var assimilation of all-sky radiances. Part I: Implementation, Q. J. R. Meteorol. Soc., 136(652), 1868–1885, doi:10.1002/qj.659.
Blumenstock, T., G. Kopp, F. Hase, G. Hochschild, S. Mikuteit, U. Raffalski, and R. Ruhnke (2006), Observation of unusual chlorine activation by ground-based infrared and microwave spectroscopy in the late Arctic winter 2000/2001, Atmos. Chem. Phys., 6, 897–905, doi:10.5194/acp-6-897-2006.
Boukabara, S.-A., K. Garrett, W. Chen, F. Iturbide-Sanchez, C. Grassotti, C. Kongoli, R. Chen, Q. Liu, B. Yan, F. Weng, R. Ferraro, T. J. Kleespies, and H. Meng (2011), MiRS: An All-Weather 1DVAR Satellite Data Assimilation and Retrieval System, IEEE T. Geosci. Remote, 49(9), 3249–3272, doi:10.1109/TGRS.2011.2158438.
Bredow, J. W., R. Porco, M. S. Dawson, C. L. Betty, S. Self, and T. Thordarson (1995), A Multifrequency Laboratory Investigation of Attenuation and Scattering from Volcanic Ash Clouds, IEEE Geosci. Remote Sens., 33(4), 1071–1082, doi:10.1109/36.406693.
Cadeddu, M. P., J. C. Liljegren, and A. L. Pazmany (2007), Measurements and Retrievals From a New 183-GHz Water-vapor Radiometer in the Arctic, IEEE Geosci. Remote Sens., 45, 2207–2215, doi:10.1109/TGRS.2006.888970.
Cimini, D., F. Nasir, E. R. Westwater, V. H. Payne, D. D. Turner, E. J. Mlawer, M. L. Exner, and M. P. Cadeddu (2009), Comparison of Ground-Based Millimeter-Wave Observations and Simulations in the Arctic Winter, IEEE T. Geosci. Remote, 47(9), 3098–3106, doi:10.1109/TGRS.2009.2020743.
Costales, J. B., G. F. Smoot, C. Witebsky, and G. De Amici (1986), Simultaneous measurements of atmospheric emissions at 10, 33, and 90 GHz, Radio Sci., 21(1), 47–55.
Crewell, S., K. Ebell, U. Lohnert, and D. D. Turner (2009), Can liquid water profiles be retrieved from passive microwave zenith observations, Geophys. Res. Lett., 36, L06803, doi:10.1029/2008GL036934.
Defer, E., V. S. Galligani, C. Prigent, and C. Jimenez (2014), First observations of polarized scattering over ice clouds at close-to-millimeter wavelengths (157 GHz) with MADRAS on board the Megha-Tropiques mission, J. Geophys. Res., 119(21), 12301–12316, doi:10.1002/2014JD022353.
Deirmendjian, D. (1963), Complete Microwave Scattering and Extinction Properties of Polydispersed Cloud and Rain Elements, United States Air Force, RAND, R-422-PR.
Deiveegan, M., C. Balaji, and S. P. Venkateshan (2008), A polarized microwave radiative transfer model for passive remote sensing, Atmos. Res., 88, 277–293, doi:10.1016/j.atmosres.2007.11.023.
de Pater, I. and S. T. Massie (1985), Models of the Millimeter-Centimeter Spectra of the Giant Planets, Icarus, 62(1), 143–171, doi:10.1016/0019-1035(85)90177-0.
Devaraj, K., P. G. Steffes, and B. M. Karpowicz (2011), Reconciling the centimeter- and millimeter-wavelength ammonia absorption spectra under jovian conditions: Extensive millimeter-wavelength measurements and a consistent model, Icarus, 212(1), 224–235, doi:10.1016/j.icarus.2010.12.010.
Di Michele, S. and P. Bauer (2006), Passive microwave radiometer channel selection based on cloud and precipitation information content, Q. J. R. Meteorol. Soc., 132(617), 1299–1323, doi:10.1256/qj.05.164.
Elgered, G., B. O. Roennaeng, and J. I. H. Askne (1982), Measurements of atmospheric water vapor with microwave radiometry, Radio Sci., 17(5), 1258–1264.
Evans, K. F., J. R. Wang, D. O'C Starr, G. Heymsfield, L. Li, L. Tian, R. P. Lawson, A. J. Heymsfield, and A. Bansemer (2012), Ice hydrometeor profile retrieval algorithm for high-frequency microwave radiometers: application to the CoSSIR instrument during TC4, Atmos. Meas. Tech., 5(9), 2277–2306, doi:10.5194/amt-5-2277-2012.
Galligani, V. S., C. Prigent, E. Defer, C. Jimenez, and P. Eriksson (2013), The impact of the melting layer on the passive microwave cloud scattering signal observed from satellites: A study using TRMM microwave passive and active measurements, J. Geophys. Res., 118(11), 5667–5678, doi:10.1002/jgrd.50431.
Geer, A. J. and F. Baordo (2014), Improved scattering radiative transfer for frozen hydrometeors at microwave frequencies, Atmos. Meas. Tech., 7, 1839–1860, doi:10.5194/amt-7-1839-2014.
Ghobrial, S. I. and S. M. Sharief (1987), Microwave Attenuation and Cross Polarization in Dust Storms, IEEE Trans. Antennas Propag., 35(4), 418–425, doi:10.1109/TAP.1987.1144120.
Golchert, S. H. W., N. Buschmann, A. Kleindienst, M. Palm, N. Schneider, H. Jønch-Sørensen, and J. Notholt (2005), Starting Long-Term Stratospheric Observations With RAMAS at Summit, Greenland, IEEE T. Geosci. Remote, 43(5), 1022–1027, doi:10.1109/TGRS.2004.840660.
Gueldner, J. and D. Spaenkuch (1999), Results of Year-Round Remotely Sensed Integrated Water Vapor by Ground-Based Microwave Radiometry, J. Appl. Meteorol., 38, 981–988.
Holt, A. R., R. J. Cummings, G. J. G. Upton, and W. J. Bradford (2008), Rain rates, drop size information, and precipitation type, obtained from one-way differential propagation phase and attenuation along a microwave link, Radio Sci., 43, RS5009, doi:10.1029/2007RS003773.
Hong, G., P. Yang, F. Weng, and Q. Liu (2008), Microwave scattering properties of sand particles: Application to the simulation of microwave radiances over sandstorms, J. Quant. Spectrosc. Radiat. Transfer, 109(4), 684–702, doi:10.1016/j.jqsrt.2007.08.018.
Hsu, K.-L., X. Gao, S. Sorooshian, and H. V. Gupta (1997), Precipitation Estimation from Remotely Sensed Information Using Artificial Neural Networks, J. Appl. Meteorol., 36, 1176–1190.
Huang, J., Y. Li, and X. Ma (2002), Computation of the Backscattering Power Density for Rainfall in Millimeter Waves Band, Int. J. Inf. Millim. Waves, 23(9), 1399–1405.
Imaoka, K., M. Kachi, A. Shibata, M. Kasahara, Y. Iida, Y. Tange, K. Nakagawa, and H. Shimoda (2007), Five years of AMSR-E monitoring and successive GCOM-W1/AMSR2 instrument, In: Sensors, Systems, and Next-Generation Satellites XIII, SPIE, doi:10.1117/12.740366.
Karbou, F., C. Prigent, L. Eymard, and J. R. Pardo (2005), Microwave Land Emissivity Calculations Using AMSU Measurements, IEEE T. Geosci. Remote, 43(5), 948–959, doi:10.1109/TGRS.2004.837503.
Karpowicz, B. M. and P. G. Steffes (2011), In search of water vapor on Jupiter: Laboratory measurements of the microwave properties of water vapor under simulated jovian conditions, Icarus, 212(1), 210–223, doi:10.1016/j.icarus.2010.11.035.
Kidd, C., D. R. Kniveton, M. C. Todd, and T. J. Bellerby (2003), Satellite Rainfall Estimation Using Combined Passive Microwave and Infrared Algorithms, J. Hydrometeorol., 4, 1088–1104.
Kim, M.-J., M. S. Kulie, C. O'Dell, and R. Bennartz (2007), Scattering of Ice Particles at Microwave Frequencies: A Physically Based Parameterization, J. Appl. Meteorol. Clim., 46(5), 615–633, doi:10.1175/JAM2483.1.
Kleespies, T. J. (2007), Relative Information Content of the Advanced Technology Microwave Sounder and the Combination of the Advanced Microwave Sounding Unit and the Microwave Humidity Sounder, IEEE T. Geosci. Remote, 45, 2224–2227, doi:10.1109/TGRS.2007.898088.
Klein, M. and A. J. Gasiewski (1998), The Sensitivity of Millimeter and Sub-millimeter Frequencies to Atmospheric Temperature and Water Vapor Variations, , pp. 568–571, This paper appears in Geoscience and Remote Sensing Symposium Proceedings, 1998. IGARSS '98. 1998 IEEE International.
Kummerow, C. D., S. Ringerud, J. Crook, D. Randel, and W. Berg (2011), An Observationally Generated A Priori Database for Microwave Rainfall Retrievals, J. Atmos. Oceanic Technol., 28, doi:10.1175/2010JTECHA1468.1.
Lesht, B. M. and J. C. Liljegren (1996), Comparison of Precipitable Water Vapor Measurements Obtained by Microwave Radiometry and Radiosondes at the Southern Great Plains Cloud and Radiation Testbed Site, Argonne National Laboratory, Pacific Northwest National Laboratory.
Liljegren, James C., S.-A. Boukabara, K. Cady-Pereira, and S. A. Clugh (2005), The Effect of the Half-Width of the 22-GHz Water Vapor Line on Retrievals of Temperature and Water Vapor Profiles With a 12-Channel Microwave Radiometer, IEEE T. Geosci. Remote, 43(5), 1102–1108, doi:10.1109/TGRS.2004.839593.
Liljegren, J. C. (1994), Two-channel Microwave Radiometer for Observations of Total Column Precipitable Water Vapor and Cloud Liquid Water Path, In: Proceedings of the Fifth Symposium on Global Change Studies, pp. 262–269.
Lin, B. and W. B. Rossow (1997), Precipitation water path and rainfall rate estimates for oceans using special sensor microwave imager and International Satellite Cloud Climatology Project data, J. Geophys. Res., 102, 9359–9374.
Lin, B., B. Wielicks, P. Minnis, and W. Rossow (1998), Estimation of water cloud properties from satellite microwave, infrared and visible measurements in oceanic environments 1. Microwave brightness temperature simulations, J. Geophys. Res., 103(D4), 3873–3886.
Liu, G. and J. A. Curry (1999), Tropical Ice Water Amount and Its Relations to Other Atmospheric Hydrological Parameters as Inferred from Satellite Data, J. Appl. Meteorol., 38, 1182–1194.
Mätzler, C. (2006), Thermal Microwave Radiation: Application for Remote Sensing, chap. Microwave dielectric properties of ice, pp. 455–462, Inst. Eng. Technol., Stevenage, U. K.
Manabe, T., K. Sato, and T. Ihara (1992), Measurement of Complex Refractive Index of Soda-Lime Glass at 60 GHz by Vector-Network-Analyser-Based Scatterometer, Elec. Lett., 28(14), 1354–1355, doi:10.1049/el:19920859.
Marzano, F. S., M. Palmacci, D. Cimini, G. Giuliani, and F. J. Turk (2004), Multivariate Statistical Integration of Satellite Infrared and Microwave Radiometric Measurements for Rainfall Retrieval at the Geostationary Scale, IEEE T. Geosci. Remote, 42(5), 1018–1032, doi:10.1109/TGRS.2003.820312.
Marzano, F. S., M. Lamantea, M. Montopoli, S. Di Fabio, and E. Picciotti (2011), The Eyjafjöll explosive volcanic eruption from a microwave weather radar perspective, Atmos. Chem. Phys. Discuss., 12367–12409, doi:10.5194/acpd-11-12367-2011.
Masunaga, H. and C. D. Kummerow (2005), Combined Radar and Radiometer Analysis of Precipitation Profiles for a Parametric Retrieval Algorithm, J. Atmos. Oceanic Technol., 22, 909–929, doi:10.1175/JTECH1751.1.
Mattioli, V., E. R. Westwater, D. Cimini, A. J. Gasiewski, M. Klein, and V. Y. Leuski (2008), Microwave and Millimeter-Wave Radiometric and Radiosonde observations in an Arctic Environment, J. Atmos. Oceanic Technol., 25, 1768–1777, doi:10.1175/2008JTECHA1078.1.
McKinney, R. P. and N. I. Yamane (1981), ORION — Microwave Water Vapor Radiometer Subsystem Design, NASA JPL, Microwave Observational Systems Section, The Telecommunications and Data Acquisition Progress Report, TDA PR 42-62.
Mech, M., E. Orlandi, S. Crewell, F. Ament, L. Hirsch, M. Hagen, G. Peters, and B. Stevens (2014), HAMP - the microwave package on the High Altitude and LOng range research aircraft (HALO), Atmos. Meas. Tech., 7(12), 4539–4553, doi:10.5194/amt-7-4539-2014.
Melsheimer, C. and G. Heygster (2008), Improved Retrieval of Total Water Vapor Over Polar Regions From AMSU-B Microwave Radiometer Data, IEEE T. Geosci. Remote, 46, 2307–2322, doi:10.1109/TGRS.2008.918013.
Mo, T. and Q. Liu (2008), A study of AMSU-A measurement of brightness temperatures over the ocean, J. Geophys. Res., 113, D17120, doi:10.1029/2008JD009784.
Mugnai, A., H. J. Cooper, E. A. Smith, and G. J. Tripoli (1990), Simulation of Microwave Brightness Temperatures of an Evolving Hailstorm at SSM/I Frequencies, Bull. Amer. Met. Soc., 71(1), 2–13, doi:10.1175/1520-0477(1990)071<0002:SOMBTO>2.0.CO;2.
Ning, T., G. Elgered, and J.M. Johansson (2011), The impact of microwave absorber and radome geometries on GNSS measurements of station coordinates and atmospheric water vapour, Adv. Space. Res., 47(2), 186–196, doi:10.1016/j.asr.2010.06.023.
Payne, V. H., J. S. Delamere, K. E. Cady-Pereira, R. R. Gamache, J.-L. Moncet, E. J. Mlawer, and S. A. Clough (2008), Air-Broadened Half-Widths of the 22- and 183-GHz Water-Vapor Lines, IEEE T. Geosci. Remote, 46(11), 3601–3617, doi:10.1109/TGRS.2008.2002435.
Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart (1999), Magnetism from Conductors and Enhanced Nonlinear Phenomena, IEEE T. Microw. Theory, 47(11), 2075–2084.
Petty, G. W. and W. Huang (2010), Microwave Backscatter and Extinction by Soft Ice Spheres and Complex Snow Aggregates, J. Atmos. Sci., 67, 769–787, doi:10.1175/2009JAS3146.1.
Prigent, C., E. Jaumouillé, F. Chevallier, and F. Aires (2008), A Parameterization of the Microwave Land Surface Emissivity Between 19 and 100 GHz, Anchored to Satellite-Derived Estimates, IEEE Geosci. Remote Sens., 46, 1–9, doi:10.1109/TGRS.2007.908881.
Pritchard, E. W., C. Lee, B. Moyna, M. Philipp, J. E. Charlton, and V. Kangas (2012), The Cloud and Precipitation Airborne Radiometer — Populating the International Sub-Millimetre Airborne Radiometer, In: Geoscience and Remote Sensing Symposium (IGARSS), 2012 IEEE International, doi:10.1109/IGARSS.2012.6351301.
Rapp, A. D., G. Elsaesser, and C. Kummerow (2009), A Combined Multisensor Optimal Estimation Retrieval Algorithm for Oceanic Warm Rain Clouds, J. Appl. Meteorol. Clim., 48, 2242–2256.
Rose, T., S. Crewell, U. Löhnert, and C. Simmer (2005), A network suitable microwave radiometer for operational monitoring of the cloudy atmosphere, Atmos. Res., 75, 183–200, doi:10.1016/j.atmosres.2004.12.005.
Rosenkranz, P. W. (1993), Absorption of microwaves by atmospheric gases, In: Atmospheric remote sensing by microwave radiometry, pp. 37–90, Edited by Janssen, M. A., John Wiley and Sons, Inc., ISBN 0-471-62891-3.
Sheu, R.-S., J. A. Curry, and G. Liu (1996), Satellite retrieval of tropical precipitation using combined International Satellite Cloud Climatology Project DX and SSM/I Data, J. Geophys. Res., 101(D16), 21,291–21,301.
Smith, E. A., P. Bauer, F. S. Marzano, C. D. Kummerow, D. McKague, A. Mugnai, and G. Panegrossi (2002), Intercomparison of Microwave Radiative Transfer Models for Precipitating Clouds, IEEE Geosci. Remote Sens., 40(3), 541–549.
Sorooshian, S., K.-L. Hsu, X. Gao, H. V. Gupta, B. Imam, and D. Braithwaite (2000), Evaluation of PERSIANN System Satellite-Based Estimates of Tropical Rainfall, Bull. Amer. Met. Soc., 81(9), 2035–2046.
Spencer, R. W. and J. R. Christy (1992), Precision and Radiosonde Validation of Satellite Gridpoint Temperature Anomalies. Part I: MSU Channel 2, J. Climate, 5(8), 847–857, doi:10.1175/1520-0442.
Taylor, J. P. and S. J. English (1995), The retrieval of cloud radiative and microphysical properties using combined near-infrared and microwave radiometry, Q. J. R. Meteorol. Soc., 121, 1083–1112.
Thies, B. and J. Bendix (2011), Satellite based remote sensing of weather and climate: recent achievements and future perspectives, Met. Appl., 18, 262–295, doi:10.1002/met.288.
Tian, M., X. Zou, and F. Weng (2015), Use of Allan Deviation for Characterizing Satellite Microwave Sounder Noise Equivalent Differential Temperature (NEDT), IEEE Geosci. Remote Sens. Let., 12(12), 2477–2480, doi:10.1109/LGRS.2015.2485945.
Turner, D. D., S. Kneifel, and M. P. Cadeddu (2016), An Improved Liquid Water Absorption Model at Microwave Frequencies for Supercooled Liquid Water Clouds, J. Atmos. Oceanic Technol., 33(1), 33–44, doi:10.1175/JTECH-D-15-0074.1.
Urban, J., K. Dassas, F. Forget, and P. Ricaud (2005), Retrieval of vertical constituents and temperature profiles from passive submillimeter wave limb observations of the Martian atmosphere: a feasibility study, Appl. Opt., 44, 2438–2455.
Vivekanandan, J., J. Turk, and V. N. Bringi (1991), Ice Water Path Estimation and Characterization Using Passive Microwave Radiometry, J. Appl. Meteorol., 30, 1407–1421.
Westwater, E. R., Y. Han, M. D. Shupe, and S. Y. Matrosov (2001), Analysis of integrated cloud liquid and precipitable water vapor retrievals from microwave radiometers during the Surface Heat Budget of the Arctic Ocean project, J. Geophys. Res., 106(D23), 32019–32030, doi:10.1029/2000JD000055.
Westwater, E. R. (1978), The accuracy of water vapor and cloud liquid determination by dual-frequency ground-based microwave radiometry, Radio Sci., 13(4), 677–685, doi:10.1029/RS013i004p00677.
Wood, N. B., T. S. L'Ecuyer, A. J. Heymsfield, and G. L. Stephens (2015), Microphysical Constraints on Millimeter-Wavelength Scattering Properties of Snow Particles, J. Appl. Meteorol. Clim., 54, 909–931, doi:10.1175/JAMC-D-14-0137.1.
Wu, D. L., A. Lambert, W. G. Read, P. Eriksson, and J. Gong (2014), MLS and CALIOP Cloud Ice Measurements in the Upper Troposphere: A Constraint from Microwave on Cloud Microphysics, J. Appl. Meteorol. Clim., 53(1), 157–165, doi:10.1175/JAMC-D-13-041.1.
Xie, X. and J. Miao (2011), Polarization difference due to nonrandomly oriented ice particles at millimeter/submillimeter waveband, J. Quant. Spectrosc. Radiat. Transfer, 112, 1090–1098, doi:10.1016/j.jqsrt.2010.11.020.
Ku, L., X. Gao, S. Sorooshian, P. A. Arkin, and B. Imam (1999), A Microwave Infrared Threshold Technique to Improve the GOES Precipitation Index, J. Appl. Meteorol., 38, 569–579.
Zou, X., Y. Ma, and Z. Qin (2012), Fengyun-3B MicroWave Humidity Sounder (MWHS) Data Noise Characterization and Filtering Using Principle Component Analysis, IEEE T. Geosci. Remote, 50(12), 4892–4902, doi:10.1109/TGRS.2012.2202122.