Show tag cloud

Filter by author:
Filter by year:
Filter by bibtex key:
Filter by type:
Filter by keyword:
and
and
 

Filtered by keyword:infrared

There is currently a filter applied. To see the complete list of publications, clear the filter.
  1. Ananasso, C., R. Santoleri, S. Marullo, and D'Ortenzio. F. (2002), Remote sensing of cloud cover in the Arctic region from AVHRR data during the ARTIST experimentInt. J. Remote Sensing, 1–20.
  2. Anthony, R. (1952), Atmospheric Absorption of Solar Infrared RadiationPhys. Rev., 85(4), 672.
  3. Baran, A. J. (2003), Simulation of infrared scattering from ice aggregates using a size/shape distribution of ice cylindersAppl. Opt., 42, 2811–2818.
  4. Baran, A. J. (2005), The dependence of cirrus infrared radiative properties in ice crystal geometry and shape of the size-distribution functionQ. J. R. Meteorol. Soc., 131, 1129–1142.
  5. Barton, I. J. (1991), Infrared continuum water vapor absorption coefficients derived from satellite dataAppl. Opt., 30(21), 2929–2934.
  6. Baum, B. A., D. P. Kratz, P. Yang, S. C. Ou, Y. X. Hu, P.F. Soulen, and S.-C. Tsay (2000), Remote sensing of cloud properties using MODIS airborne simulator imagery during SUCCESS. 1. Data and modelsJ. Geophys. Res., 105, 11767–11780, doi:10.1029/1999JD901089.
  7. Baum, B. A., P. F. Soulen, K. I. Strabala, M. D. King, S. A. Ackerman, W. P. Menzel, and P. Yang (2000), Remote sensing of cloud properties using MODIS airborne simulator imagery during SUCCESS. 2. Cloud thermodynamic phaseJ. Geophys. Res., 105, 11781–11792, doi:10.1029/1999JD901090.
  8. Baum, B. A. and J. D. Spinhirne (2000), Remote sensing of cloud properties using MODIS airborne simulator imagery during SUCCESS. 3. Cloud overlapJ. Geophys. Res., 105, 11793–11804, doi:10.1029/1999JD901091.
  9. Baum, B. A., B. A. Wielicki, and P. Minnis ans L. Parker (1992), Cloud-Property retrieval Using Merged HIRS and AVHRR DataJ. Appl. Meteorol., 31, 351–369.
  10. Belmiloud, D., R. Schermaul, K. S. Smith, N. F. Zobov, J. W. BRault an R. C. M. Learner, D. A. Newnham, and J. Tennyson (2000), New Studies of the Visible and Near-Infrared Absorption by Water Vapour and Some Problems with the HITRAN databaseGeophys. Res. Lett., 27(22), 3703–3706.
  11. Bennartz, R. and U. Lohmann (2001), Impact of improved near infrared water vapor line data on absorption of solar radiation in GCMsGeophys. Res. Lett., 28(24), 4591–4594.
  12. Berk, A., G. P. Anderson, P. K. Acharya, L. S. Bernstein, L. Muratov, J. Lee, M. Fox, S. M. Adler-Golden, J. H. Chetwynd, M. L. Hoke, R. B. Lockwood, J. A. Gardner, T. W. Cooley, C. C. Borel, and P. E. Lewis (2005), MODTRAN 5: a reformulated atmospheric band model with auxiliary species and practical multiple scattering options: update, In: Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XI, pp. 662–667, Edited by Shen, S. S. and P. E. Lewis, SPIE, doi:10.1117/12.606026.
  13. Blumenstock, T., G. Kopp, F. Hase, G. Hochschild, S. Mikuteit, U. Raffalski, and R. Ruhnke (2006), Observation of unusual chlorine activation by ground-based infrared and microwave spectroscopy in the late Arctic winter 2000/2001Atmos. Chem. Phys., 6, 897–905, doi:10.5194/acp-6-897-2006.
  14. Borysow, A. (2002), Collision-induced absorption in the infrared: A data base for modelling planetary and stellar atmospheres, University of Copenhagen.
  15. Bosomworth, D. R. and H. P. Gush (1965), Collision-Induced Absorption of Compressed Gases in the far infrared, Part ICan. J. Phys., 43, 729–750.
  16. Bosomworth, D. R. and H. P. Gush (1965), Collision-Induced Absorption of Compressed Gases in the far infrared, Part IICan. J. Phys., 43, 751–769.
  17. Boulet, C., D. Robert, and L. Galatry (1980), Influence of the finite duration of collisions on the infrared line shapeJ. Chem. Phys., 72(1), 751–759.
  18. Boulet, C. (1111), On some Aspects of Molecular Broadening, from Resonance to the far Wings, Universite de Rennes.
  19. Brocks, G. and A van der Avoird (1985), Infrared spectra of the van der Waals molecule (N2)2Molecular Physics, 55(1), 11–32.
  20. Brocks, G. (1988), Bound and rotational resonance state and the infrared spectrum of N2ArJ. Chem. Phys., 88(2), 578–587.
  21. Brown, L. R. and C. Plymate (1996), H2-Broadened H216O in four Infrared Bands between 55 and 4045 cm-1J. Quant. Spectrosc. Radiat. Transfer, 56(2), 263–282.
  22. Bryant, C. H., P. B. Davies, and T. J. Sears (1996), The N2 pressure broadening coefficient of the J = 1 ← 0 transition of 1H35Cl measured by tunable far infrared (TuFIR) spectroscopyGeophys. Res. Lett., 23(15), 1945–1947.
  23. Buffey, I. P., W. B. Brown, and H. A. Gebbie (1990), A Theoretical Study of the Infrared Absorption Spectra of Large Water ClustersJ. Chem. Soc. Far. Trans., 86(13), 2357–2360.
  24. Bugliaro, L., T. Zinner, C. Keil, B. Mayer, R. Hollmann, M. Reuter, and W. Thomas (2011), Validation of cloud property retrievals with simulated satellite radiances: a case study for SEVIRIAtmos. Chem. Phys., 11, 5603–5624, doi:10.5194/acp-11-5603-2011.
  25. Buontempo, U., S. Cunsolo, and G. Jacucci (1975), The far infrared absorption spectrum of N2 in the gas and liquid phasesJ. Chem. Phys., 63(6), 2570–2576.
  26. Carlon, H. R. (1978), Phase transition changes in the molecular absorption coefficient of water in the infrared: evidence for clustersAppl. Opt., 17(20), 3192–3193.
  27. Carlon, H. R. (1981), Infrared water vapor continuum absorption: equilibria of ions and neutral water clustersAppl. Opt., 20(8), 1316–1322.
  28. Carlotti, M. and B. Carli (1994), Approach to the design and data analysis of a limb-scanning experimentAppl. Opt., 33(15), 3237–3249.
  29. Chance, K. V., K. Park, and K. M. Evenson (1998), Pressure Broadening of Far Infrared Rotational Transitions: 88.65 cm-1 H2O and 114.47 cm-1 O3J. Quant. Spectrosc. Radiat. Transfer, 59(6), 687–688.
  30. Chantry, G. W. (1982), The use of Fabry-Perot interferometers, etalons and resonators at infrared and longer wavelengths- an overviewJ. of Phys. E: Sci. Instrum., 15, 3–8.
  31. Chen, R. and C. Cao (2012), Physical analysis and recalibration of MetOp HIRS using IASI for cloud studiesJ. Geophys. Res., 117, D03103, doi:10.1029/2011JD016427.
  32. Cheruy, F., N. A. Scott, R. Armante, B. Tournier, and A. Chedin (1995), Contribution to the Development of Radiative Transfer Models for High Spectral Resolution Observations in the InfraredJ. Quant. Spectrosc. Radiat. Transfer, 53(5), 597–611.
  33. Cheruy, F. and N. A. Scott (1995), Contribution to the development of radiative transfer models for high spectral resolution observations in infraredJ. Quant. Spectrosc. Radiat. Transfer, 53(6), 597–611.
  34. Cimini, D., J. A. Shaw, E. R. Westwater, Y. Han, V. Irisov, V. Leuski, and J. H. Churnside (2003), Air temperature profile and air/sea temperature difference measurements by infrared and microwave scanning radiometersRadio Sci., 38(3), doi:10.1029/2002RS002632.
  35. von Clarmann, T., M. Hoepfner, B. Funke, M. Lopez-Puertas, A. Dudhia, V. Jay, F. Schreier, M. Ridolfi, S. Ceccherini, B. J. Kerridge, J. Reburn, and R. Siddans (2003), Modelling of atmospheric mid-infrared radiative transfer: the AMIL2DA algorithm intercomparison experimentJ. Quant. Spectrosc. Radiat. Transfer, 78, 381–407.
  36. Clerbaux, C., A. Boynard, L. Clarisse, M. George, J. Hadji-Lazaro, H. Herbin, D. Hurtmans, M. Pommier, A. Razavi, S. Turquety, C. Wespes and, and P.-F. Coheur (2009), Monitoring of atmospheric composition using the thermal infrared IASI/MetOp sounderAtmos. Chem. Phys., 9, 6041–6054, doi:10.5194/acp-9-6041-2009.
  37. Comstock, J. M., R. D. Entremont, D. DeSlover, G. G. Mace, S. Y. Matrosov, S. A. McFarlane, P. Minnins, D. Mitchell, K. Sassen, M. D. Shupe, D. D. Turner, and Z. Wang (2007), An Intercomparison of Microphysical Retrieval Algorithms for Upper-Tropospheric Ice CloudsBull. Amer. Met. Soc., 191–204, doi:10.1175/BAMS-88-2-191.
  38. Cooper, S. J., T. S. L'Ecuyer, and G. L. Stephens (2003), The impact of explicit cloud boundary information on ice cloud microphysical property retrievals from infrared radiancesJ. Geophys. Res., 108, doi:10.1029/2002JD002611.
  39. Coudert, L. H. and J. T. Hougen (1990), Analysis of the Microwave and Far Infrared Spectrum of the Water DimerJ. Molec. Spectro., 139, 259–277.
  40. Courtin, R. and D. Gautier (1995), Titan's Thermal Emission Spectrum: Reanalysis of the Voyager Infrared MeasurementsIcarus, 114, 144–162.
  41. Cracknell, A. P. (1997), The Advanced Very High Resolution Radiometer, CRC Press.
  42. Doyle, S., P. Mauskopf, J. Naylon, A. Porch, and C. Duncombe (2008), Lumped Element Kinetic Inductance DetectorsJ. Low Temp. Phys., 151(1–2), 530–536, doi:10.1007/s10909-007-9685-2.
  43. Duda, D. P., J. D. Spinhirne, and W. D. Hart (1998), Retrieval of contrail microphysical properties during SUCCESS by the split-window methodGeophys. Res. Lett., 25(8), 1149–1152.
  44. Elsasser, W. M. (1938), Far Infrared Absorption of Atmospheric Water VaporAstrophys. J., 87(5), 497–507.
  45. Engelen, R. J., E. Andersson, F. Chevallier, A. Hollingsworth, M. Matricardi, A. P. McNally, J.-N. Thepaut, and P. D. Watts (2004), Estimating atmospheric CO2 from advanced infrared satellite radiances witin an operational 4D-Var data assimilation system: Methodology and first resultsJ. Geophys. Res., 109, D19309, doi:10.1029/2004JD004777.
  46. Filippov, N. N. and M. V. Tonkov (1996), Line mixing in the infrared spectra of simple gases at moderate and high densitiesSpectrochimica Acta Part A, 52, 901–918.
  47. Finger, G. and F. K. Kneubuehl (1984), Spectral Thermal Infrared Emission on the Terrestrial Atmosphere, Physics Department, ETH, Zuerich, Switzerland.
  48. Fiorucci, I., G. Muscari, C. Bianchi, P. Di Girolamo, F. Esposito, G. Grieco, D. Summa, G. Bianchini, L. Palchetti, M. Cacciani, T. Di Iorio, G. Pavese D. Cimini, and R. L. de Zafra (2008), Measurements of low amounts of precipitable water vapor by millimeter wave spectroscopy: An intercomparison with radiosonde, Raman lidar, and Fourier transform infrared dataJ. Geophys. Res., 113, D14314, doi:10.1029/2008JD009831.
  49. Frey, R. A., S. A. Ackerman, and B. J. Soden (1996), Climate Parameters from Satellite Spectral Measurements. Part I: Collocated AVHRR and HIRS/2 Observations of Spectral Greenhouse ParameterJ. Climate, 9, 327–344.
  50. Fu, Q., M. Baker, and D. L. Hartmann (2002), Tropical cirrus and water vapor: an effective Earth infrared iris feedback?Atmos. Chem. Phys., 2, 31–37, doi:10.5194/acp-2-31-2002.
  51. Fu, Q., P. Yang, and W. B. Sun (1998), An Accurate Parameterization of the Infrared Radiative Properties of Cirrus Clouds for Climate ModelsJ. Climate, 11, 2223–2237, doi:10.1175/1520-0442(1998)011<2223:AAPOTI>2.0.CO;2.
  52. Gaiduk, V. I., O. F. Nielsen, and T. S. Perova (2002), Molecular model of dielectric relaxation and the far-infrared isotopic effect in liquid H2O and D2OJ. Molec. Liqu., 95, 1–25.
  53. Gaiduk, V. I., V. V. Gaiduk, and J. McConnell (1995), The complex susceptibility of liquid water as a two-potential system of reorienting polar moleculesPhysica A, 222, 46–62.
  54. Gasster, S. D., C. H. Townes, D. Goorvitch, and F. P. J. Valero (1988), Foreign-gas collision broadening of the far-infrared spectrum of water vaporJ. Optical Soc. o. Am., 5(3), 593–601.
  55. Giraud, M., D. Robert, and L. Galatry (1973), Intermolecule potential and width of pressure broadened spectral lines. IV. Influence of the nonrigidity of the molecules; diatomic molecules caseJ. Chem. Phys., 59(5), 2204–2214.
  56. Giver, L. P., C. Chackerian Jr., and P. Varanasi (2000), Visible and near-infrared H216O line intensity corrections for HITRAN-96J. Quant. Spectrosc. Radiat. Transfer, 66, 101–105.
  57. Gordon, R. G. (1965), Molecular Motion in Infrared and Raman SpectraJ. Chem. Phys., 43(4), 1307–1312.
  58. Gosse, S., D. Labrie, and P. Chylek (1995), Refractive index of ice in the 1.4–7.8-μm spectral rangeAppl. Opt., 34(28), 6582–6586.
  59. Grießbach, S. (2012), Clouds and aerosol in infrared radiative transfer calculations for the analysis of satellite observations, Ph.D. thesis, Forschungszentrum Jülich GmbH, Institute of Energy and Climate Research (IEK), Stratosphere (IEK-7), ISBN: 978-3-89336-785-6 ISSN: 1866-1793.
  60. Guo, G., Q. Ji, P. Yang, and S.-C. Tsay (2005), Remote Sensing of Cirrus Optical and Microphysical Properties From Ground-Based Infrared Radiometric Measurements- Part II: Retrievals From CRYSTAL-FACE MeasurementsIEEE Geosci. Remote Sens. Let., 2(2), 132–135.
  61. Han, Y., J. A. Shaw, J. H. Churnside, P. D. Brown, and S. A. Clough (1997), Infrared spectral radiance measurements in the tropical Pacific atmosphereJ. Geophys. Res., 102(D4), 4,353–4,356.
  62. Hannon, S., L. L. Strow, and W. W. McMillan (1996), Atmospheric Infrared Fast Transmittance Models: A Comparison of Two Approaches, University of Maryland Baltimore Country.
  63. Hartmann, J. M., J. Taine, J. Bonamy, B. Labani, and D. Robert (1987), Collisional broadening of rotation-vibration lines for asymmetric top molecules.II. H2O diode laser measurements in the 400–900 K range; calculations in the 300–2000 K rangeJ. Chem. Phys., 86(1), 144–156.
  64. Henderson, G. and G. E. Ewing (1973), Infrared spectrum, structure, and properties of the O2-Ar van der Waals moleculeJ. Chem. Phys., 59(5), 2280–2293.
  65. Herman, G. F., M.-L.C. Wu, and W.T. Johnson (1980), The effect of clouds on the Earth's solar and infrared radiation budgetsJ. Atmos. Sci., 37, 1251–1261.
  66. Hong, G., G. Heygster, and K. Kunzi (2005), Intercomparison of Deep Convective Cloud Fractions From Passive Infrared and Microwave Radiance MeasurementsIEEE Geosci. Remote Sens. Let., 2, 18–24, doi:10.1109/LGRS.2004.838405.
  67. Hoogeveen, R. W. M., R. J. van der A., and A. P. H. Goede (2001), Extended wavelength InGaAs infrared (1.0–2.4μm) detector arrays on SCIAMACHY for space-based spectroscopy of the Earth atmosphereInfrared Phys. & Tech., 42, 1–16.
  68. Houdeau, J. P., C. Boulet, and D. Robert (1985), A theoretical and experimental study of the infrared line shape from resonance to the wings for uncoupled linesJ. Chem. Phys., 82(4), 1661–1673.
  69. Hsu, K.-L., X. Gao, S. Sorooshian, and H. V. Gupta (1997), Precipitation Estimation from Remotely Sensed Information Using Artificial Neural NetworksJ. Appl. Meteorol., 36, 1176–1190.
  70. Husson, N., A. Chedin, and B. Bonne (1993), Review of existing spectral line data catalogs, In: High Spectral Resolution Infrared Remote Sensing for Earth's Weather and Climate Studies, pp. 443–457, Springer-Verlag.
  71. Hutson, J. M. (1990), Atom-asymmetric top van der Waals complexes: Angular momentum coupling in AR-H2OJ. Chem. Phys., 92(1), 157–167.
  72. Inoue, T. (1987), A Cloud Type Classification With NOAA 7 Split-Window MeasurementsJ. Geophys. Res., 92(D4), 3991–4000.
  73. Jacobowitz, H., L. L. Stowe, G. Ohring, A. Heidinger, K. Knapp, and N. R. Nalli (2003), The Advanced Very High Resolution Radiometer Pathfinder Atmosphere (PATMOS) Climate dataset: A Resource for Climate ResearchBull. Amer. Met. Soc., 84(6), doi:10.1175/BAMS-84-6-785.
  74. Jin, M. and S. Liang (2006), An Improved Land Surface Emissivity Parameter for Land Surface Models Using Global Remote Sensing ObservationsJ. Climate, 19(12), 1867–2881, doi:10.1175/JCLI3720.1.
  75. Kahn, B. H., A. Eldering, M. Ghil, S. Bordoni, and S. A. Clough (2004), Sensitivity Analysis of Cirrus Cloud Properties from High-Resolution Infrared Spectra. Part I: Methodology and Synthetic CirrusJ. Climate, 17, 4856–4870.
  76. Kahn, B. H., K. Nan Liou, S.-Y. Lee, E. F. Fishbein, S. DeSouza-Machado, A. Eldering, E. J. Fetzer, S. E. Hannon, and L. Larrabee Strow (2005), Nighttime cirrus detection using Atmospheric Infrared Sounder window channels and total column water vaporJ. Geophys. Res., 110, D07203, doi:10.1029/2004JD005430.
  77. Kahn, B. H., E. Fishbein, S. L. Nasiri, A. Eldering, E. J. Fetzer, M. J. Garay, and S.-Y. Lee (2007), The radiative consistency of Atmospheric Infrared Sounder and Moderate Resolution Imaging Spectroradiometer cloud retrievalsJ. Geophys. Res., 112, D09201, doi:10.1029/2006JD007486.
  78. Kahn, B. H., C. K. Liang, A. Eldering, A. Gettelman Q. Yue, and K. N. Liou (2008), Tropical thin cirrus and relative humidity observed by the Atmospheric Infrared SounderAtmos. Chem. Phys., 8, 1501–1518, doi:10.5194/acp-8-1501-2008.
  79. Kidd, C., D. R. Kniveton, M. C. Todd, and T. J. Bellerby (2003), Satellite Rainfall Estimation Using Combined Passive Microwave and Infrared AlgorithmsJ. Hydrometeorol., 4, 1088–1104.
  80. King, M. D., S. Platnick, P. Yang, G. T. Arnold, M. A. Gray, J. C. Riedi, S. A. Ackerman, and K. N. Liou (2004), Remote sensing of liquid water and ice cloud optical thickness and effective radius in the Arctic: Application of airborne multispectral MAS dataJ. Atmos. Oceanic Technol., 21, 857–875.
  81. Kou, L., D. Labrie, and P. Chylek (1993), Refractive indices of water and ice in the 0.65- to 2.5- μm spectral rangeAppl. Opt., 32(19), 3531–3540.
  82. Labani, B., J. Bonamy, D. Robert, J. M. Hartmann, and J. Taine (1986), Collisional broadening of rotation-vibration lines for asymmetric top molecules. I. Theoretical model for both distant and close collisionsJ. Chem. Phys., 84(8), 4256–4267.
  83. Labani, B., J. Bonamy, D. Robert, and J. M. Hartmann (1987), Collisional broadening of rotation-vibration lines for asymmetric top molecules.III. Self-broadening case; application to H2OJ. Chem. Phys., 87(5), 2781–2789.
  84. Latterty, W. L., A. M. Solodov, A. Weber, W. B. Olson, and J.-M. Hartmann (1996), Infrared collision-induced absorption by N2 near 4.3 μm for atmospheric applications: measurements and empirical modelingAppl. Opt., 35(30), 59911–5917.
  85. Lindzen, R. S., M.-D. Chou, and A. Y. Hou (2001), Does the Earth Have an Adaptive Infrared Iris?Bull. Amer. Met. Soc., 82(3), 417–432.
  86. Liu, G. and J. A. Curry (1999), Tropical Ice Water Amount and Its Relations to Other Atmospheric Hydrological Parameters as Inferred from Satellite DataJ. Appl. Meteorol., 38, 1182–1194.
  87. Mace, G. G., T. P. Ackerman, P. Minnis, and D. F. Young (1998), Cirrus Layer Microphysical Properties Derived From Surface-Based Millimeter Radar and Infrared Interferometer DataJ. Geophys. Res., 103, 23207–23216.
  88. Marteau, P., C. Boulet, and D. Robert (1984), Finite duration of collisions and vibrational dephasing effects on the Ar broadened HF infrared line shapes: Asymmetric profilesJ. Chem. Phys., 80(8), 3632–3639.
  89. Maryott, A. A. and G. Birnbaum (1967), Line Shape and Collision Effects in the Microwave Wing of Far-Infrared Rotational LinesJ. Chem. Phys., 47(9), 3200–3205.
  90. Marzano, F. S., M. Palmacci, D. Cimini, G. Giuliani, and F. J. Turk (2004), Multivariate Statistical Integration of Satellite Infrared and Microwave Radiometric Measurements for Rainfall Retrieval at the Geostationary ScaleIEEE T. Geosci. Remote, 42(5), 1018–1032, doi:10.1109/TGRS.2003.820312.
  91. Matrosov, S. Y., B.W. Orr, R. A. Kropfli, and J. B. Snider (1994), Retrieval of Vertical Profiles of Cirrus Cloud Microphysical Parameters from Doppler Radar and Infrared Radiometer MeasurementsJ. Appl. Meteorol., 33, 617–626.
  92. Matsushima, F., H. Nagase, T. Nakauchi, H. Odashima, and K. Takagi (1999), Frequency Measurement of Pure Rotational Transitions of H217O and H218O from 0.5 to 5 THzJ. Molec. Spectro., 193, 217–223.
  93. McKellar, A. R. W. (1988), Infrared spectra of the (N2)2 and N2-Ar van der Waals moleculesJ. Chem. Phys., 88(7), 4190–4196.
  94. Melchiorri, B. and F. Melchiorri (1995), Far infrared observations of travelling stratospheric disturbancesInfrared Phys. & Tech., 36, 893–907.
  95. Miller, P. F. and H. A. Gebbie (1993), Stimulated Emission of Atmospheric Water Vapour between 2cm-1 and 30cm-1 Photoinduced by Infrared RadiationInfrared Phys., 34(1), 23–31.
  96. Miller, P. F. and H. A. Gebbie (1993), Temporal Effects in Millimetre Wave Aerosol Spectra and the Influence of Infrared RadiationInfrared Phys., 34(2), 143–152.
  97. Minnis, P., K.-N. Liou, and Y. Takano (1993), Inference of Cirrus Cloud Properties Using Satellite-observed Visible and Infrared Radiances. Part I: Parameterization of Radiance FieldsJ. Atmos. Sci., 50(9), 1279–1304, doi:10.1175/1520-0469(1993)050<1279:IOCCPU>2.0.CO;2.
  98. Minnis, P., P. W. Heck, and D. F. Young (1993), Inference of Cirrus Cloud Properties Using Satellite-observed Visible and Infrared Radiances. Part II: Verification of Theoretical Cirrus Radiative PropertiesJ. Atmos. Sci., 50(9), 1305–1322, doi:10.1175/1520-0469(1993)050<1305:IOCCPU>2.0.CO;2.
  99. Mitchell, D. L., R. P. D'Entremont, and R. P. Lawson (2009), Inferring Cirrus Size Distributions through Satellite Remote Sensing and Microphysical DatabasesJ. Atmos. Sci., 67(4), 1106–1125, doi:10.1175/2009JAS3150.1.
  100. Mlawer, E. J., S. A. Clough, P. D. Brown, T. M. Stephen, J. C. Landry, A. Goldman, and F. J. Murcray (1998), Oberserved atmospheric collision-induced absorption in near-infrared oxygen bandsJ. Geophys. Res., 103(D4), 3859–3863.
  101. Muehler, D. and R. Weiss (1973), Balloon Measurements of the Far-Infrared Background RadiationPhys. Rev., 7(2), 326–344.
  102. Nasiri, S. L. and B. H. Kahn (2008), Limitations of Bispectral Infrared Cloud Phase Determination and Potential for ImprovementJ. Appl. Meteorol. Clim., 47(D34), 1–2000, doi:10.1175/2008JAMC1879.1.
  103. Naud, C., F. Di Guiseppe, J. E. Russell, R. Rizzi, and J. E. Harries (1111), Comparison of a two-stream parameterisation and high resolution full scattering calculation for cirrus effect on atmospheric heating rates in the far infrared, Space and Atmospheric Physics group, University of Bologna.
  104. Nolt, I. G., M. D. Vanek, N. D. Tappan, P. Minnis, J. L. Alltop, P. A. R. Ade, C. Lee, P. A. Hamilton, K. F. Evans, A. H. Evans, E. E. Evans, E. E. Clothiaux, and A. J. Baran (1999), Far infrared measurements of cirrus, xxxx, Remote Sensing of Clouds and Atmosphere.
  105. Paul, J. B., C. P. Collier, R. J. Saykally, J. J. Scherer, and A. O'Keefe (1997), Direct Measurement of Water Cluster Concentrations by Infrared Cavity Ringdown Laser Absorption SpectroscopyJ. Chem. Phys., 101, 5211–5214.
  106. Paynter, D. J. and V. Ramaswamy (2011), An assessment of recent water vapor continuum measurements upon longwave and shortwave radiative transferJ. Geophys. Res., 116, D20302, doi:10.1029/2010JD015505.
  107. Paynter, D. and V. Ramaswamy (2012), Variations in water vapor continuum radiative transfer with atmospheric conditionsJ. Geophys. Res., 117, D16310, doi:10.1029/2012JD017504.
  108. Pierrehumbert, R. T. (2011), Infrared radiation and planetary temperaturePhys. Today, January, 33–38.
  109. Plass, G. N. (1956), The influence of the 15μ carbon-dioxide band on the atmospheric infra-red cooling rateQ. J. R. Meteorol. Soc., 82(353), 310–324, doi:10.1002/qj.49708235307.
  110. Platt, C. M. R. (1979), Remote Sounding of High Clouds: I. Calculation of Visible and Infrared Optical Properties from Lidar and Radiometer MeasurementsJ. Appl. Meteorol., 18, 1130–1143.
  111. Poll, J. D. and J. L. Hunt (1981), Analysis of the far infrared spectrum of gaseous N2Can. J. Phys., 59, 1448–1458.
  112. Prabhakara, C., R. S. Fraser, G. Dalu, M.-L. C. Wu, and R. J. Curran (1988), Thin Cirrus Clouds: Seasonal Distribution over Oceans Deduced from Nimbus-4 IRISJ. Appl. Meteorol. Clim., 27(4), 379–399, doi:10.1175/1520-0450(1988)027<0379:TCCSDO>2.0.CO;2.
  113. Rädel, G., C. J. Stubenrauch, R. Holz, and D. L. Mitchell (2003), Retrieval of effective ice crystal size in the infrared: Sensitivity study and global measurements from TIROS-N Operational Vertical SounderJ. Geophys. Res., 108(D9), doi:10.1029/2002JD002801.
  114. Rapp, A. D., G. Elsaesser, and C. Kummerow (2009), A Combined Multisensor Optimal Estimation Retrieval Algorithm for Oceanic Warm Rain CloudsJ. Appl. Meteorol. Clim., 48, 2242–2256.
  115. Rathke, C., W. Armbruster, J. Fischer, E. Becker, and J. Notholf (2000), Comparison of stratus cloud properties derived from coincident airborne visible and ground-based infrared spectrometer measurementsGeophys. Res. Lett., 27(17), 2641–2644.
  116. Riviere, P., A. Soufiani, and J. Taine (1995), Correlated-k Fictious Gas Model for H2O Infrared Radiation in the Voight RegimeJ. Quant. Spectrosc. Radiat. Transfer, 53(3), 335–346.
  117. Rodrigues, R., K. W. Jucks, N. Lacombe, G. Blanquet, J. Walrand, W. A. Traub, B. Khalil, R. le Doucen, A. Valentin, C. Camy-Peyret, L. Bonamy, and J.-M. Hartmann (1999), Model, Software, and Database for Computation of Line-Mixing Effects in Infrared Q Branches of Atmospheric CO2- I.Symmetric IsotopomersJ. Quant. Spectrosc. Radiat. Transfer, 61(2), 153–184.
  118. Rosenfeld, D. and G. Gutman (1994), Retrieving microphysical properties near the tops of potential rain clouds by multispectral analysis of AVHRR dataAtmos. Res., 34, 259–283.
  119. Sheu, R.-S., J. A. Curry, and G. Liu (1996), Satellite retrieval of tropical precipitation using combined International Satellite Cloud Climatology Project DX and SSM/I DataJ. Geophys. Res., 101(D16), 21,291–21,301.
  120. Slingo, A., K. I. Hodges, and G. J. Robinson (2004), Simulation of the diurnal cycle in a climate model and its evaluation using data from Meteosat 7Q. J. R. Meteorol. Soc., 130, 1449–1467, doi:10.1256/qj.03.165.
  121. Smith, K. M. and D. A. Newnham (2000), Near-infrared absorption cross sections and integrated absorption intensities of molecular oxygen (O2, O2-O2, and O2-N2)J. Geophys. Res., 105(D6), 7383–7396.
  122. Smith, G. J., D. A. Naylor, and P. A. Feldman (2001), Measurements of Atmospheric Water Vapor above Mauna Kea using an infrared RadiometerInt. J. Inf. Millim. Waves, 22(5), 661–678.
  123. Smith Sr., W. L., H. Revercomb, G. Bingham, A. Larar, H. Huang, D. Zhou, J. Li, X. Liu, and S. Kireev (2009), Technical Note: Evolution, current capabilities, and future advance in satellite nadir viewing ultra-spectral IR sounding of the lower atmosphereAtmos. Chem. Phys., 9, 5563–5574, doi:10.5194/acp-9-5563-2009.
  124. Smith, W. L., S. Ackerman, H. Revercomb, H. Huang, D. H. DeSlover, W. Feltz, L. Gumley, and A. Collard (1998), Infrared spectral absorption of nearly invisible cirrus cloudsGeophys. Res. Lett., 25(8), 1137–1140.
  125. Sorooshian, S., K.-L. Hsu, X. Gao, H. V. Gupta, B. Imam, and D. Braithwaite (2000), Evaluation of PERSIANN System Satellite-Based Estimates of Tropical RainfallBull. Amer. Met. Soc., 81(9), 2035–2046.
  126. Sourdeval, O., L. C.-Labonnote, A. J. Baran, and G. Brogniez (2015), A methodology for simultaneous retrieval of ice and liquid water cloud properties. Part I: Information content and case studyQ. J. R. Meteorol. Soc., 141(688), 870–882, doi:10.1002/qj.2405.
  127. Stockmann, P. A., R. E. Bumgarner, S. Suzuki, and G. A. Blake (1992), Microwave and tunable far-infrared laser spectroscopy of the ammonia-water dimerJ. Chem. Phys., 96(4), 2496–2509.
  128. Strow, L. L., H. E. Motteler, R. G. Benson, S. E. Hannon, and S. De Souza-Machado (1998), Fast Computation Of Monochromatic Infrared Atmospheric Transmittances Using Compressed Look-up TablesJ. Quant. Spectrosc. Radiat. Transfer, 59(3–5), 481–493, doi:10.1016/S0022-4073(97)00169-6.
  129. Strow, L. L., D. C. Tobin, W. W. McMillan, S. E. Hannon, W. L. Smith, H. E. Revercomb, and R. O. Knuteson (1998), Impact of a new Water Vapor Continuum and Line Shape Model on Observed High Resolution Infrared RadiancesJ. Quant. Spectrosc. Radiat. Transfer, 59(3–5), 303–317.
  130. Stubenrauch, C. J., W. B. Rossow, N. A. Scott, and A. Chedin (1999), Clouds as Seen by Satellite Sounders (3I) and Imagers (ISCCP). Part III: Spatial Heterogeneity and Radiative EffectsJ. Climate, 12, 3419–3442.
  131. Sussmann, R., T. Borsdorff, M. Rettinger, C. Camy-Peyret, P. Demoulin, P. Duchatelet, E. Mahieu, and C. Servais (2009), Technical Note: Harmonized retrieval of column-integrated atmospheric water vapor from the FTIR network — First examples for long-term records and station trendsAtmos. Chem. Phys., 9(22), 8987–8999, doi:10.5194/acp-9-8987-2009.
  132. Svishchev, I. M. and R. J. Boyd (1998), van der Waals Complexes of Water with Oxygen and Nitrogen: Infrared Spectra and Atmospheric ImplicationsJ. Phys. Chem., 102, 7294–7296.
  133. Taylor, J. P. and S. J. English (1995), The retrieval of cloud radiative and microphysical properties using combined near-infrared and microwave radiometryQ. J. R. Meteorol. Soc., 121, 1083–1112.
  134. Thibault, F., V. Menoux, R. Le Doucen, L. Rosenmann, J.-M. Hartmann, and C. Boulet (1997), Infrared collision-induced absorption by O2 near 6.4 μm for atmospheric applications: measurements and empirical modelingAppl. Opt., 36(3), 563–567.
  135. Tobin, D. C. (1996), Infrared Spectral Lineshapes of Water Vapor and Carbon Dioxid, University of Maryland, PhD Thesis.
  136. Ushio, T., D. Katagami, K. Okamoto, and T. Inoue (2007), On the Use of Split Window Data in Deriving the Cloud Motion Vector for Filling the Gap of Passive Microwave Rainfall EstimationSci. Onl. Let. Atm., 3, 1–4, doi:10.2151/sola.2007-001.
  137. Vanek, M. D., I. G. Nolt, N. D. Tappan, P. A. R. Ade, F. C. Gannaway, P. A. Hamilton, C. Lee, J. E. Davis, and S. Predko (2001), Far-Infrared sensor for cirrus (FIRSC): an aircraft-based Fourier-transform spectrometer to measure cloud radianceAppl. Opt., 40(13).
  138. Vogel, R. L., Q. Liu, Y. Han, and F. Weng (2011), Evaluating a satellite derived global infrared land surface emissivity data set for use in radiative transfer modelingJ. Geophys. Res., 116, 1–11, doi:10.1029/2010JD014679.
  139. Wales, D. J. (1996), Rearrangements of Water Dimer and Hexamer, University Chemical Laboratories.
  140. Wales, D. J. (1998), Rearrangements and Tunneling Splittings in small Water Clusters, University Chemical Laboratories.
  141. Wilheit, T. T. (1997), Water vapour profile retrieval from SSMT-2 data constrained by infrared-based cloud parametersInt. J. Remote Sensing, 18(15), 3263–3277.
  142. Wiscombe, W. J. (1977), The Delta-M Method: Rapid Yet Accurate Radiative Flux Calculations for Strongly Asymmetric Phase FunctionsJ. Atmos. Sci., 34, 1408–1422.
  143. Wishnow, E. H., H. P. Gush, and I. Ozier (1996), Far-infrared spectrum of N2 and N2-noble gas mixtures near 80 KJ. Chem. Phys., 104(10), 3511–3516.
  144. Wylie, D. P. and P.-H. Wang (1997), Comparison of cloud frequency data from the high-resolution infrared radiometer sounder and the Stratospheric Aerosol and Gas Experiment IIJ. Geophys. Res., 102, 29893–29900.
  145. Ku, L., X. Gao, S. Sorooshian, P. A. Arkin, and B. Imam (1999), A Microwave Infrared Threshold Technique to Improve the GOES Precipitation IndexJ. Appl. Meteorol., 38, 569–579.
  146. Yang, P., B.-C. Gao, B. A. Baum, Y. X. Hu, W. J. Wiscombe, S.-C. Tsay, D. M. Winker, and S. L. Nasiri (2001), Radiative properties of cirrus clouds in the infrared (8–13μm) spectral regionJ. Quant. Spectrosc. Radiat. Transfer, 70, 473–504.
  147. Zhang, Z., P. Yang, G. W. Kattawar, S. Tsay, B. A. Baum, Y. Hu, A. J. Heymsfield, and J. Reichardt (2004), Geometrical-optic solution to light scattering by droxtal ice crystalsAppl. Opt., 43(12).
  148. Zhang, Z., S. Platnick, P. Yang, A. K. Heidinger, and J. M. Comstock (2010), Effects of ice particle size vertical inhomogeneity on the passive remote sensing of ice cloudsJ. Geophys. Res., 115, D17203, doi:10.1029/2010JD013835.
  149. Zhong, W. and J. D. Haigh (2000), An efficient and accurate correlated-k parameterization of infrared radiative transfer for troposphere-stratosphere-mesosphere GCMsAtm. Sci. Lett., 1(2), doi:10.1006/asle.2000.0014.
  150. Zink, L. R. and M. Mizushima (1987), Pure Rotational Far-Infrared Transitions of 16O2 in Its Electronic and Vibrational Ground StateJ. Molec. Spectro., 125, 154–158.