| a-train | abs lookup | absorption | aerosols | aggregation | airs | albedo | algorithm | amsu | annual cycle | anomalies | aqua | ar4 | ar5 | arctic | arm | arts | arts-dev | asr | assimilation | astrophysics | atmosphere | atmospheric composition | atmospheric dynamics | atmospheric profiles | atsr-2 | avhrr | backscattering | basics | bayes | book | calculation | calculations | calibration | calipso | ccn | cdr | ceres | cfmip | chemistry | cia | ciraclim | cirrus | cirrus anvil sublimation | cirrus cloud | cirrus clouds | cirrusstudy | ciwsir/cloudice | claus | climate | climate change | climate dynamics | climate feedbacks | climate sensitivity | climate sensivity | climate variability | climatology | cloud feedback | cloud forcing | cloud fraction | cloud ice | cloud properties | cloud radiative effects | cloud radiative forcing | cloud regimes | clouds | cloudsat | cmip3 | cmip5 | cmip6 | cmsaf | co2 | collocation | comparison | computer science | continua | contrail | convection | convective clouds | convective processes | convective self-aggregation | correlated k | cosmic background | cosmic rays | cosp | cross-calibration | cth | cumulus | dardar | data bases | dda | deep convection | delta m | dimer | disort | diurnal cycle | dmsp | documentation | droplet size | dynamics | earth | earthcare | echam | ecmwf | effective radius | electromagnetism | electron content | elevation | elevation satellite-2 | emd | emissivity | enso | eof-pca-svd | erbe | error assessment | ers | eruption | esa planetary | exoplanets | extraterrestrial | fall speed | far-infrared | faraday-voigt | fcdr | feedback | feedbacks | fingerprinting | flux uav | forcing | forest fire | fox19_airborne_amt.pdf | friend | fun | gcm | genesis | geostationary | gerrit_erca | global warming | gnss | goes | gps | gras | graupel | greenhouse effect | groundbased | hadley circulation | hail | heating rate | heating rates | herschel | hiatus | hirs | history | hsb | humidity | hydrological sensitivity | hydrological sensivity | iasi | ice | ice clouds | ice crystal growth | ice nucleation | ice water | icesat-2 | ici | icon | icz | in situ | infrared | instruments | intercalibration | intercomparison | interference | inverse modelling | ipcc | ir/vis | iris | isccp | ismar | isotopes | itcz | iwc | iwp | iwv | jupiter | kessler scheme | lblrtm | lidar | limb effect | limb sounding | limb-correction | linemixing | lineshape | liquid water | liquid water path | longwave radiation | low-cloud feedback | magnetic field | magnetism | mars | mas | mass-dimension relation | masters thesis | math | megha-tropiques | mendrok | mesoscale organization | meteorology | meteosat | metop | mhs | microphysics | microwave | mipas | mirs | misr | mixed phase | mls | model | modeling | models | modis | monte carlo | mspps | msu | mth | multi-moment scheme | multisensor | mwhs | mwi | net radiation | neural network | nicam | nlte | noaa | nonsphericity | npoess | observation | ocean | ocean reflection | ocean-atmosphere interactions | odin | olr | one-moment scheme | open loop | optical | optical depth | optical properties | optics | orbital drift | orbits | ozone | pacific ocean | particle orientation | particle shape | particle size | particle size distribution | patmos-x | phase function | phd thesis | polarimetry | polarization | polder | potss | precipitation | profile datasets | programming | projection | promet | propagation modeling | python | radar | radiation | radiation profiles | radiative convective equilibrium | radiative equilibrium | radiative feedback | radiative fluxes | radiative forcing | radiative processes | radiative transfer | radiative-convective equilibrium | radiative-equilibrium | radio occultation | radiometers | radiosonde | radiosonde cloud liquid | radiosonde correction | rain | reanalysis | refractive index | relative humidity | remote sensing | retrieval | review | rodgers | rttov | sahara | sahel | sampling | sand/dust | sar | satellite | satellite missions | satellite observations | satellite simulator | sbuehler_habil | scattering | scattering databases | scintillations | scout-amma | self-aggregation | sensor geometry | seviri | shallow convection | simulated annealing | single scattering | smiles | sno | snow | snowfall | software | soil | solar | soot | sounders | spectral information | spectroscopy | split window technique | ssm/i | ssm/t | ssmis | ssmt2 | stability | statistics | ste | stereo | stratosphere | submillimeter | submm | sun | supersaturation | surface | synergies | task2 | tempera | temperature | terra | thermodynamics | time series | titan | toa radiation | top of the atmosphere | total column | tovs | trade-wind clouds | trajectory analysis | trend | trmm | tropical circulation | tropical convection | tropical meteorology | tropics | tropopause | troposphere | ttl | turbulence | tutorial | two-moment scheme | upper troposphere | uth | utls | validation | vater vapor | venus | visualization | volcanic ash | walker circulation | walker rirculation | water | water cycle | water dimer | water vapor | water vapor continuum | water vapour | water vapour path | water-vapour | wind | zeeman |

Hide tag cloud

Filter by author:
Filter by year:
Filter by bibtex key:
Filter by type:
Filter by keyword:
and
and
 

Filtered by keyword:enso

There is currently a filter applied. To see the complete list of publications, clear the filter.
  1. Bayr, T., D. Dommenget, T. Martin, and S. B. Power (2014), The eastward shift of the Walker Circulation in response to global warming and its relationship to ENSO variabilityClimate Dynamics, 43(9), 2747–2763, doi:10.1007/s00382-014-2091-y.
  2. Blankenship, C. B. and T. T. Wilheit (2001), SSM/T-2 measurements of regional changes in three-dimensional water vapor fields during ENSO eventsJ. Geophys. Res., 106(D6), 5239–5254, doi:10.1029/2000JD900706.
  3. Cai, W., S. Borlace, M. Lengaigne, P. van Rensch, M. Collins, G. Vecchi, A. Timmermann, A. Santoso, M. J. McPhaden, L. Wu, M. H. England, G. Wang, E. Guilyardi, and F.-F. Jin (2014), Increasing frequency of extreme El Niño events due to greenhouse warmingNature Clim. Change, 4, 111–116, doi:10.1038/NCLIMATE2100.
  4. Chiodi, A. M. and D. E. Harrison (2010), Characterizing Warm-ENSO Variability in the Equatorial Pacific: An OLR PerspectiveJ. Climate, 23(9), 2428–2439, doi:10.1175/2009JCLI3030.1.
  5. England, M. H., S. McGregor, P. Spence, G. A. Meeh, A. Timmermann, W. Cai, A. Sen Gupta, M. J. McPhaden, A. Purich, and A. Santoso (2014), Recent intensification of wind-driven circulation in the Pacific and the ongoing warming hiatusNature Clim. Change, 4, 222–227, doi:10.1038/nclimate2106.
  6. Fedorov, A. V., P. S. Dekens, M. McCarthy, A. C. Ravelo, P. B. deMenocal, M. Barreiro, R. C. Pacanowski, and S. G. Philander (2006), The Pliocene Paradox (Mechanisms for a Permanent El Niño)Science, 312(5779), 1485–1489, doi:10.1126/science.1122666.
  7. Graf, H.-F. and D. Zanchettin (2012), Central Pacific El Niño, the "subtropical bridge," and Eurasian climateJ. Geophys. Res., 117, D01102, doi:10.1029/2011JD016493.
  8. Hall, A. and S. Manabe (2000), Suppression of ENSO in a coupled model without water vapor feedbackClimate Dynamics, 16, 393–403.
  9. Kumar, K. K., B. Rajagopalan, and M. A. Cane (1999), On the Weakening Relationship Between the Indian Monsoon and ENSOScience, 284, 2156–2159.
  10. Nakamura, T., Y. Tachibana, and H. Shimoda (2007), Importance of cold and dry surges in substantiating the NAM and ENSO relationshipGeophys. Res. Lett., 34, 1–4, doi:10.1029/2007GL031220.
  11. Rädel, G., T. Mauritsen, B. Stevens, D. Dommenget, D. Matei, K. Bellomo, and A. Clement (2016), Amplification of El Niño by cloud longwave coupling to atmospheric circulationNature Geosci., 9(2), 106–110, doi:10.1038/NGEO2630.
  12. Schwendike, J., P. Govekar, M. J. Reeder, R. Wardle, G. J. Berry, and C. Jakob (2014), Local partitioning of the overturning circulation in the tropics and the connection to the Hadley and Walker circulationsJ. Geophys. Res., 119(3), 1322–1339, doi:10.1002/2013JD020742.
  13. Soden, B. J. (2000), The Sensitivity of the Tropical Hydrological Cycle to ENSOJ. Climate, 13, 538–549.
  14. Thompson, D. W. J., J. M. Wallace, P. D. Jones, and J. J. Kennedy (2009), Identifying Signatures of Natural Climate Variability in Time Series of Global-Mean Surface Temperature: Methodology and InsightsJ. Climate, 22(22), 6120–6141, doi:10.1175/2009JCLI3089.1.
  15. Trenberth, K. E. and J. T. Fasullo (2010), Simulation of Present-Day and Twenty-First-Century Energy Budgets of the Southern OceansJ. Climate, 23(2), 1272–1282, doi:10.1175/2009JCLI3152.1.
  16. Tsonis, A. A., A. G. Hunt, and J. B. Elsner (2003), On the relation between ENSO and global climate changeMeteorol. Atmos. Phys, 84, doi:10.1007/s00703-003-0001-7.
  17. Veiga, J. A. P., A. B. Pezza, T. Ambrizzi, V. B. Rao, S. H. Franchito, and M. C. Yoshida (2013), The Energy Cycle Associated to the Pacific Walker Circulation and Its Relationship to ENSOAtm. Clim. Sci., 3, 627–642, doi:10.4236/acs.2013.34065.
  18. Yu, B. and G. J. Boer (2002), The role of radiation and dynamical processes in the El Nino-like response to global warmingClimate Dynamics, 19, 539–553, doi:10.1007/s00382-002-0244-x.