Show tag cloud

Filter by author:
Filter by year:
Filter by bibtex key:
Filter by type:
Filter by keyword:
and
and
 

Filtered by keyword:feedbacks

There is currently a filter applied. To see the complete list of publications, clear the filter.
  1. Allan, R. P., V. Ramaswamy, and A. Slingo (2002), Diagnostic analysis of atmospheric moisture and clear-sky radiative feedback in the Hadley Centre and Geophysical Fluid Dynamics Laboratory GFDL climate modelsJ. Geophys. Res., 107(D17), doi:10.1029/2001JD001131.
  2. Bony, S., J.-L. Dufresne, H. Le Treut, J.-J. Morcrette, and C. Senior (2004), On dynamic and thermodynamic components of cloud changesClimate Dynamics, 22(2), 71–86, doi:10.1007/s00382-003-0369-6.
  3. Bony, S., et al. (2005), How Well do we Understand Climate Change Feedback Processes?J. Climate.
  4. Bony, S., R. Colman, V. M. Kattsov, R. P. Allan, C. S. Bretherton, J.-L. Dufresne, A. Hall, S. Hallegatte, M. M. Holland, W. Ingram, D. A. Randall, B. J. Soden, G. Tselioudis, and M. J. Webb (2006), How Well Do We Understand and Evaluate Climate Change Feedback Processes?J. Climate, 19, 3445–3482.
  5. Bony, S., B. Stevens, D. Coppin, T. Becker, K. A. Reed, A. Voigt, and B. Medeiros (2016), Thermodynamic control of anvil cloud amountProc. Nat. Aca. Sci., doi:10.1073/pnas.1601472113.
  6. Cess, R. D. (2005), Water Vapor Feedback in Climate ModelsScience, 310, 795–796.
  7. Chou, C. and J. D. Neelin (1999), Cirrus Detrainment-Temperature FeedbackGeophys. Res. Lett., 26(9), 1295–1298.
  8. Colman, R. A. (2001), On the vertical extent of atmospheric feedbacksClimate Dynamics, 17, 391–405.
  9. Colman, R. (2003), Seasonal contributions to climate feedbacksClimate Dynamics, 80, 825–841, doi:10.1007/s00382-002-0301-5.
  10. Feldl, N. and S. Bordoni (2016), Characterizing the Hadley Circulation Response through Regional Climate FeedbacksJ. Climate, 29(2), 613-622, doi:10.1175/JCLI-D-15-0424.1.
  11. de F. Forster, P. M. and M. Collins (2003), Quantifying the water vapour feedback associated with post-Pinatubo global coolingClimate Dynamics, 25(2), 207–214.
  12. Gettelman, A. and Q. Fu (2008), Observed and Simulated Upper-Tropospheric Water Vapor FeedbackJ. Climate, 21, 3282–3289, doi:10.1175/2007JCLI2142.1.
  13. Hall, A. and S. Manabe (2000), Effect of water vapor feedback on internal and anthropogenic variations of the global hydrologic cycleJ. Geophys. Res., 105(D5), 6935–6944.
  14. Hall, A. and S. Manabe (2000), Suppression of ENSO in a coupled model without water vapor feedbackClimate Dynamics, 16, 393–403.
  15. Hall, A. and S. Manabe (1998), The Role of Water Vapor Feedback in Unperturbed Climate Variability and Global WarmingJ. Climate, 12(8), 2327–2346.
  16. Held, I. M. and B. J. Soden (2000), Water Vapor Feedback and Global WarmingAnnu. Rev. Energy Environ., 25, 441–475.
  17. Ingram, W. (2010), A very simple model for the water vapour feedback on climate changeQ. J. R. Meteorol. Soc., 136(646), 30–40, doi:10.1002/qj.546.
  18. Klein, S. A. and A. Hall (2015), Emergent Constraints for Cloud FeedbacksCurr. Clim. Change Rep., 1(4), 267–287, doi:10.1007/s40641-015-0027-1.
  19. Lin, B., B. A. Wielicki, L. H. Chambers, Y. Hu, and K. Xu (2002), The iris hypothesis: a negative or positive cloud feedback?J. Climate, 15, 3–7.
  20. Millan, M. M., et al. (2005), Climate Feedbacks and Desertification: The Mediterranean ModelJ. Climate, 18, 684–701.
  21. Minschwaner, K. and A. E. Dessler (2004), Water Vapor Feedback in the Tropical Upper Troposphere: Model Results and ObservationsJ. Climate, 17, 1272–1282, doi:10.1175/1520-0442(2004)017<1272:WVFITT>2.0.CO;2.
  22. Noda, A. T., T. Seiki, M. Satoh, and Y. Yamada (2016), High cloud size dependency in the applicability of the fixed anvil temperature hypothesis using global nonhydrostatic simulationsGeophys. Res. Lett., 43(5), 2307–2314, doi:10.1002/2016GL067742.
  23. Ou, S.-C. and K.-N. Liou (1995), Ice microphysics and climate temperature feedbackAtmos. Res., 35, 127–138.
  24. Ou, S. C. and K. N. Liou (1995), Ice microphysics and climatic temperature feedbackAtmos. Res., 35, 127–138.
  25. Philipona, R., B. Duerr, A. Ohmura, and C. Ruckstuhl (2005), Anthropogenic greenhouse forcing and strong water vapor feedback increase temperature in EuropeGeophys. Res. Lett., 32, doi:10.1029/2006GL023624.
  26. Raval, A. and V. Ramanathan (1989), Observational determination of the greenhouse effectNature, 342, 758–761.
  27. Rieck, M., L. Nuijens, and B. Stevens (2012), Marine Boundary Layer Cloud Feedbacks in a Constant Relative Humidity AtmosphereJ. Atmos. Sci., 69(8), 2538–2550, doi:10.1175/JAS-D-11-0203.1.
  28. Slingo, A., J. A. Pamment, R. P. Allan, and P. S. Wilson (2000), Water Vapor Feedbacks in the ECMWF Reanalyses and Hadley Centre Climate ModelJ. Climate, 13, 3080–3098.
  29. Soden, B. J., R. T. Wetherald, G. L. Stenchikov, and A. Robock (2002), Global Cooling After the Eruption of Mount Pinatubo: A Test of Climate Feedback by Water VaporScience, 296, 727–730.
  30. Soden, B. J. and I. M. Held (2006), An assessment of climate feedbacks in coupled ocean-atmosphere modelsJ. Climate, 19(14), 3354–3360, doi:10.1175/JCLI3799.1.
  31. Soden, B. J. and R. Fu (1995), A Satellite Analysis of Deep Convection, Upper-Tropospheric Humidity, and the Greenhouse EffectJ. Climate, 8, 2333–2351.
  32. Stainforth, D. A., T. Aina, C. Christensen, M. Collins, N. Faull, D. J. Frame, J. A. Kettleborough, S. Knight, A. Martin, J. M. Murphy, C. Piani, D. Sexton, L. A. Smith, R. A. Spicer, A. J. Thorpe, and M. R. Allen (2005), Uncertainty in predictions of the climate response to rising levels of greenhouse gasesNature, 433, 403–406.
  33. Stephens, G. L. (2005), Cloud feedbacks in the climate system: A critical reviewJ. Climate, 18(2), 237–273, doi:10.1175/JCLI-3243.1.
  34. Stephens, G. L., S. Tsay, P. W. Stackhouse Jr., and P. J. Flatau (1990), The relevance of the microphysical and radiative properties of cirrus clouds to climate and climatic feedbackJ. Atmos. Sci., 47(14), 1742–1753, doi:10.1175/1520-0469(1990)047<1742:TROTMA>2.0.CO;2.
  35. Su, H., R. W. Read, J. H. Jiang, J. W. Waters, D. L. Wu, and E. J. Fetzer (2006), Enhanced positive water vapor feedback associated with tropical deep convection: New evidence from Aura MLSGeophys. Res. Lett., 33, L05709, doi:10.1029/2005GL025505.
  36. Watterson, I. G., M. R. Dix, and R. A. Colman (1999), A comparison of present and doubled CO2 climates and feedbacks simulated by three general circulation modelsJ. Geophys. Res., 104(D2), 1943–1956.
  37. Wetherald, R. T. and S. Manabe (1987), Cloud Feedback Processes in a General Circulation ModelJ. Atmos. Sci., 45(8), 1397–1416, doi:10.1175/1520-0469(1988)045<1397:CFPIAG>2.0.CO;2.
  38. Zelinka, M. D. and D. L. Hartmann (2010), Why is longwave cloud feedback positive?J. Geophys. Res.: Atm., 115(D16), D16117, doi:10.1029/2010JD013817,.
  39. Zelinka, M. D. and D. L. Hartmann (2011), The observed sensitivity of high clouds to mean surface temperature anomalies in the tropicsJ. Geophys. Res., 116(D23), D23103, doi:10.1029/2011JD016459,.
  40. Zelinka, M. D., S. A. Klein, K. E. Taylor, T. Andrews, M. J. Webb, J. M. Gregory, and P. M. Forster (2013), Contributions of Different Cloud Types to Feedbacks and Rapid Adjustments in CMIP5J. Climate, 26(14), 5007–5027, doi:10.1175/JCLI-D-12-00555.1.