| a-train | abs lookup | absorption | aerosols | aggregation | airs | albedo | algorithm | amsu | annual cycle | anomalies | aqua | ar4 | ar5 | arctic | arm | arts | arts-dev | asr | assimilation | astrophysics | atmosphere | atmospheric composition | atmospheric dynamics | atmospheric profiles | atsr-2 | avhrr | backscattering | basics | bayes | book | calculation | calculations | calibration | calipso | ccn | cdr | ceres | cfmip | chemistry | cia | ciraclim | cirrus | cirrus anvil sublimation | cirrus cloud | cirrus clouds | cirrusstudy | ciwsir/cloudice | claus | climate | climate change | climate dynamics | climate feedbacks | climate sensitivity | climate sensivity | climate variability | climatology | cloud feedback | cloud forcing | cloud fraction | cloud ice | cloud properties | cloud radiative effects | cloud radiative forcing | cloud regimes | clouds | cloudsat | cmip3 | cmip5 | cmip6 | cmsaf | co2 | collocation | comparison | computer science | continua | contrail | convection | convective clouds | convective processes | convective self-aggregation | correlated k | cosmic background | cosmic rays | cosp | cross-calibration | cth | cumulus | dardar | data bases | dda | deep convection | delta m | dimer | disort | diurnal cycle | dmsp | documentation | droplet size | dynamics | earth | earthcare | echam | ecmwf | effective radius | electromagnetism | electron content | elevation | elevation satellite-2 | emd | emissivity | enso | eof-pca-svd | erbe | error assessment | ers | eruption | esa planetary | exoplanets | extraterrestrial | fall speed | far-infrared | faraday-voigt | fcdr | feedback | feedbacks | fingerprinting | flux uav | forcing | forest fire | fox19_airborne_amt.pdf | friend | fun | gcm | genesis | geostationary | gerrit_erca | global warming | gnss | goes | gps | gras | graupel | greenhouse effect | groundbased | hadley circulation | hail | heating rate | heating rates | herschel | hiatus | hirs | history | hsb | humidity | hydrological sensitivity | hydrological sensivity | iasi | ice | ice clouds | ice crystal growth | ice nucleation | ice water | icesat-2 | ici | icon | icz | in situ | infrared | instruments | intercalibration | intercomparison | interference | inverse modelling | ipcc | ir/vis | iris | isccp | ismar | isotopes | itcz | iwc | iwp | iwv | jupiter | kessler scheme | lblrtm | lidar | limb effect | limb sounding | limb-correction | linemixing | lineshape | liquid water | liquid water path | longwave radiation | low-cloud feedback | magnetic field | magnetism | mars | mas | mass-dimension relation | masters thesis | math | megha-tropiques | mendrok | mesoscale organization | meteorology | meteosat | metop | mhs | microphysics | microwave | mipas | mirs | misr | mixed phase | mls | model | modeling | models | modis | monte carlo | mspps | msu | mth | multi-moment scheme | multisensor | mwhs | mwi | net radiation | neural network | nicam | nlte | noaa | nonsphericity | npoess | observation | ocean | ocean reflection | ocean-atmosphere interactions | odin | olr | one-moment scheme | open loop | optical | optical depth | optical properties | optics | orbital drift | orbits | ozone | pacific ocean | particle orientation | particle shape | particle size | particle size distribution | patmos-x | phase function | phd thesis | polarimetry | polarization | polder | potss | precipitation | profile datasets | programming | projection | promet | propagation modeling | python | radar | radiation | radiation profiles | radiative convective equilibrium | radiative equilibrium | radiative feedback | radiative fluxes | radiative forcing | radiative processes | radiative transfer | radiative-convective equilibrium | radiative-equilibrium | radio occultation | radiometers | radiosonde | radiosonde cloud liquid | radiosonde correction | rain | reanalysis | refractive index | relative humidity | remote sensing | retrieval | review | rodgers | rttov | sahara | sahel | sampling | sand/dust | sar | satellite | satellite missions | satellite observations | satellite simulator | sbuehler_habil | scattering | scattering databases | scintillations | scout-amma | self-aggregation | sensor geometry | seviri | shallow convection | simulated annealing | single scattering | smiles | sno | snow | snowfall | software | soil | solar | soot | sounders | spectral information | spectroscopy | split window technique | ssm/i | ssm/t | ssmis | ssmt2 | stability | statistics | ste | stereo | stratosphere | submillimeter | submm | sun | supersaturation | surface | synergies | task2 | tempera | temperature | terra | thermodynamics | time series | titan | toa radiation | top of the atmosphere | total column | tovs | trade-wind clouds | trajectory analysis | trend | trmm | tropical circulation | tropical convection | tropical meteorology | tropics | tropopause | troposphere | ttl | turbulence | tutorial | two-moment scheme | upper troposphere | uth | utls | validation | vater vapor | venus | visualization | volcanic ash | walker circulation | walker rirculation | water | water cycle | water dimer | water vapor | water vapor continuum | water vapour | water vapour path | water-vapour | wind | zeeman |

Hide tag cloud

Filter by author:
Filter by year:
Filter by bibtex key:
Filter by type:
Filter by keyword:
and
and
 

Filtered by keyword:gps

There is currently a filter applied. To see the complete list of publications, clear the filter.
  1. Bar-Sever, Y. E., P. M. Kroger, and J. A. Borjesson (1998), Estimating horizontal gradients of tropospheric path delay with a single GPS receiverJ. Geophys. Res., 103(B3), 5019–5035.
  2. Bevis, M., S. Businger, T. A. Herring, C. Rocken, R. A. Anthes, and R. H. Ware (1992), GPS Meteorology: Remote Sensing of Atmospheric Water Vapor Using the Global Positioning SystemJ. Geophys. Res., 97(D14), 15,787–15,801.
  3. Choy, S., K. Zhang, C.-S. Wang, Y. Li, and Y. Kuleshov (2010), Remote Sensing of the Earth's Lower Atmosphere During Severe Weather Events using GPS Technology: a Study in Victoria, Australia, In: Proceedings of the 24th International Technical Meeting of The Satellite Division of the Institute of Navigation (ION GNSS 2011), September 20 - 23, 2010 Oregon Convention Center, Portland, Oregon Portland, OR.
  4. Davis, J. L., T. A. Herring, I. I. Shapiro, A. E. E. Rogers, and G. Elgered (1985), Geodesy by radio interferometry: Effects of atmospheric modeling errors on estimates of baseline lengthRadio Sci., 20(6), 1593–1607.
  5. Davis, J. L., G. Elgered, A. E. Niell, and C. E. Kuehn (1993), Ground-based measurement of gradients in the 'wet' radio refractivity of airRadio Sci., 28(6), 1003–1018.
  6. Elgered, G., J. M. Johansson, B. O. Roennaeng, and J. L. Davis (1997), Measuring regional atmospheric water vapor using the Swedish permanent GPS networkGeophys. Res. Lett., 24(21), 2663–2666.
  7. Elosegui, P., J. L. Davis, L. P. Gradinarsky, G. Elgered, J. M. Johansson, D. A. Tahmoush, and A. Rius (1999), Sensing atmospheric structure using small-scale space geodetic networksGeophys. Res. Lett., 26(16), 2445–2448.
  8. Emardson, T. R. and J. M. Johansson (1998), Spatial interpolation of the atmospheric water vapor content between sites in a ground-based GPS networkGeophys. Res. Lett., 25(17), 3347–3350.
  9. Johnsen, K.-P., J. Miao, and S. Q. Kidder (2004), Comparison of atmospheric water vapor over Antarctica derived from CHAMP/GPS and AMSU-B dataPhys. Chem. Earth, 29, 251–255, doi:10.1016/j.pce.2004.01.005.
  10. Keihm, S. J., Y. Bar-Sever, and J. C. Liljegren (2002), WVR-GPS Comparison Measurements and Calibration of the 20–32 GHz Tropospheric Water Vapor Absorption ModelIEEE Geosci. Remote Sens., 40(6), 1199–1210.
  11. Kursinski, E. R., G. A. Hajj, S. S. Leroy, and B. Herman (2000), The GPS radio occultation techniqueTerr. Atmos. and Ocean. Sci. J., 11(1), 53–114, doi:10.3319/TAO.2000.11.1.53(COSMIC).
  12. Kursinski, E. R., G. A. Hajj, T. Schofield, R. P. Linfield, and K. R. Hardy (1997), Observing Earth's atmosphere with radio occultation measurements using the Global Positioning SystemJ. Geophys. Res., 102(D19), 23429–23465, doi:10.1029/97JD01569.
  13. Liou, Y.-A., Y.-T. Teng, T. van Hove, and J. C. Liljegren (2001), Comparison of Precipitable Water Observations in the Near Tropics by GPS, Microwave Radiometer, and RadiosondesJ. Appl. Meteorol., 40, 5–15.
  14. Memmo, A., E. Fionda, T. Paolucci, D. Cimini, R. Ferretti, S. Bonafoni, and P. Ciotti (2005), Comparison of MM5 Integrated Water Vapor With Microwave Radiometer, GPS, and Radiosonde MeasurementsIEEE T. Geosci. Remote, 43(5), 1050–1058.
  15. Nakamura, H., H. Seko, and Y. Shoji (2004), Dry Biases of Humidity Measurements from the Vaisala RS80-A and Meisei RS2-91 Radiosondes from Ground-Based GPSJ. Meteorol. Soc. Jpn., 82(1B), 277–299.
  16. Niell, A. E., A. J. Coster, F. S. Solheim, V. B. Mendes, P. C. Toor, R. B. Langley, and C. A. Ruggles (1996), Measurements of Water Vapor by GPS, WVR, and Radiosonde, Haystack Observatory, Lincoln Laboratory, Radiometrics Corp., University of New Brunswick.
  17. Nilsson, T. and G. Elgered (2008), Long-term trends in the atmospheric water vapor content estimated from ground-based GPS dataJ. Geophys. Res., 113, D19101, doi:10.1029/2008JD010110.
  18. Ning, T., G. Elgered, and J.M. Johansson (2011), The impact of microwave absorber and radome geometries on GNSS measurements of station coordinates and atmospheric water vapourAdv. Space. Res., 47(2), 186–196, doi:10.1016/j.asr.2010.06.023.
  19. Ning, T. (2012), GPS Meteorology: With Focus on Climate Applications, Ph.D. thesis, Chalmers University of Technology, ISBN 978-91-7385-675-1.
  20. Ning, T. and G. Elgered (2012), Trends in the Atmospheric Water Vapor Content From Ground-Based GPS: The Impact of the Elevation Cutoff AngleIEEE J. Sel. Top. Appl. Rem. Sens., 5(3), 744–751, doi:10.1109/JSTARS.2012.2191392.
  21. Pramualsakdikul, S., R. Haas, G. Elgered, and H.-G. Scherneck (2007), Sensing of diurnal and semi-diurnal variability in the water vapour content in the tropics using GPS measurementsMet. Appl., 14, 403–412, doi:10.1002/met.39.
  22. Rocken, C., T. van Hove, and R. Ware (1997), Near real-time GPS sensing of atmospheric water vaporGeophys. Res. Lett., 24(24), 3221–3224.
  23. Ware, R., C. Alber, C. Rocken, and F. Solheim (1997), Sensing integrated water vapor along GPS ray pathsGeophys. Res. Lett., 24, 417–420.
  24. Yang, S. and X. Zou (2012), Assessments of cloud liquid water contributions to GPS radio occultation refractivity using measurements from COSMIC and CloudSatJ. Geophys. Res., 117, D06219, doi:10.1029/2011JD016452.
  25. Zou, X., S. Yang, and P. S. Ray (2012), Impacts of Ice Clouds on GPS Radio Occultation MeasurementsJ. Atmos. Sci., 69, 3670–3682, doi:10.1175/JAS-D-11-0199.1.