Show tag cloud

Filter by author:
Filter by year:
Filter by bibtex key:
Filter by type:
Filter by keyword:
and
and
 

Filtered by keyword:absorption

There is currently a filter applied. To see the complete list of publications, clear the filter.
  1. Abraham, E. and S. D. Smith (1982), Nonlinear Fabry-Perot interferometersJ. of Phys. E: Sci. Instrum., 15, 33–39.
  2. Afsar, M. N., X. Li, and H. Chi (1990), An Automated 60 GHz Open Resonator System for Precision Dielectric MeasurementIEEE T. Microw. Theory, 38(12), 1845–1853.
  3. Allen, K. C. and H. J. Liebe (1983), Tropospheric Absorption and Dispersion of Millimeter and Submillimeter WavesIEEE Trans. Antennas Propag., AP-31(1), 221–223.
  4. Anderson, R. S., C. M. Johnson, and W. Gordy (1951), Resonant Absorption of Oxygen at 2.5-Millimeter Wavelength, Duke University.
  5. Anthony, R. (1952), Atmospheric Absorption of Solar Infrared RadiationPhys. Rev., 85(4), 672.
  6. Poires Baptista, J. P. V. and P. G. Davies (ed.) (unknown), Reference Book on Attenuation Measurement and Prediction, OPEX.
  7. Aref'Yev, V. N. (1991), Molecular Absorption in the 8–13 μm Atmospheric Window, Institute of Experimental meteorology and the Typhoon Corporation.
  8. Armstrong, B. H. (1967), Spectrum line profiles: the Voigt functionJ. Quant. Spectrosc. Radiat. Transfer, 7, 61–88.
  9. Artman, J. O. and J. P. Gordon (1954), Absorption of Microwaves ob Oxygen in the Millimeter Wavelenght RegionPhys. Rev., 96(5), 1237–1245.
  10. Barton, I. J. (1991), Infrared continuum water vapor absorption coefficients derived from satellite dataAppl. Opt., 30(21), 2929–2934.
  11. Bauer, A. and M. Godon (2001), Continuum for H2O-X mixtures in the H2O spectral window at 239 GHz; X=C2H4, C2H6 Are collision-induced absorption processes involved?J. Quant. Spectrosc. Radiat. Transfer, 69, 277–290.
  12. Bauer, A., B. Duterage, and M. Godon (1986), Temperature dependence of water-vapor absorption in the wing of the 183 GHz lineJ. Quant. Spectrosc. Radiat. Transfer, 36(4), 307–318.
  13. Bauer, A. and M. Godon (1991), Temperature dependence of water-vapor absorption in linewings at 190 GHzJ. Quant. Spectrosc. Radiat. Transfer, 46(3), 211–220.
  14. Bauer, A., M. Godon, J. Carlier, Q. Ma, and R. H. Tipping (1993), Absorption by H2O and H2O-N2 Mixtures at 153 GHzJ. Quant. Spectrosc. Radiat. Transfer, 50(5), 463–475.
  15. Bauer, A., M. Godon, and Q. Ma (1995), Water vapor absorption in the atmospheric window at 239 GHzJ. Quant. Spectrosc. Radiat. Transfer, 53(4), 411–423.
  16. Bauer, A., M. Godon, J. Carlier, and R. R. Gamache (1996), Absorption of a H2O-CO2 Mixture in the Atmospheric Windows at 239 GHz; H2O-CO2 Linewidths and ContinuumJ. Molec. Spectro., 45–57.
  17. Bauer, A., M. Godon, J. Carlier, and R. R. Gamache (1998), Continuum in the Windows of the Water Vapor Spectrum. Absorption of H2O-Ar at 239 GHz and Linewidth CalculationsJ. Quant. Spectrosc. Radiat. Transfer, 59(3–5), 273–285.
  18. Becker, G. E. and S. H. Autler (1946), Water Vapor Absorption of Electromagnetic Radiation in the Centimeter Wave-Length RangePhys. Rev., 70(5–6), 300–307.
  19. Belmiloud, D., R. Schermaul, K. S. Smith, N. F. Zobov, J. W. BRault an R. C. M. Learner, D. A. Newnham, and J. Tennyson (2000), New Studies of the Visible and Near-Infrared Absorption by Water Vapour and Some Problems with the HITRAN databaseGeophys. Res. Lett., 27(22), 3703–3706.
  20. Ben-Reuven, A. (1965), Transition from Resonant to Nonresonant Line Shape in Microwave AbsorptionPhys. Rev., 14(10), 349–351.
  21. Bennartz, R. and U. Lohmann (2001), Impact of improved near infrared water vapor line data on absorption of solar radiation in GCMsGeophys. Res. Lett., 28(24), 4591–4594.
  22. Beringer, R. (1946), The Absorption of One-Half Centimeter Electromagnetic Waves in OxygenPhys. Rev., 70(1 and 2), 53–57.
  23. Bernath, P., M. Carleer, S. Fally, A. Jenouvrier, A. C. Vandaele, C. Hermans, M.-F. Merienne, and R. Colin (1998), The Wulf bands of oxygenChem. Phys. Lett., 297, 293–299.
  24. Betzler, K. (2002), Fabry-Perot Interferometer, Universitaet Osnabrueck.
  25. Birnbaum, G. and A. A. Maryott (1962), Collision-Induced Microwave Absorption in Compressed Gases. II. Molecular Electric Quadrupole MomentsJ. Chem. Phys., 36(8), 2032–2036.
  26. Birnbaum, G. (1966), Theory of Microwave Nonresonant Absorption and Relaxation in GasesPhys. Rev., 150(1), 101–109.
  27. Birnbaum, G. and E. R. Cohen (1976), Theory of line shape in pressure-induced absorptionCan. J. Phys., 54, 593–602.
  28. Birnbaum, G., A. Borysow, and A. Buechele (1993), Collision-induced absorption in mixtures of symmetrical linear and tetrahedral molecules: Methane-nitrogenJ. Chem. Phys., 99(5), 3234–3243.
  29. Birnbaum, G., A. Borysow, and G. S. Orton (1996), Collision-Induced Absorption of H2-H2 and H2-He in the Rotational and Fundamental Bands for Planetary ApplicationsIcarus, 123, 4–22.
  30. Birnbaum, G. (1111), Collision Induced Spectroscopy: Absorption and Light Scattering, Gaithersburg MD, University of Texas at Austin, University of Manitoba.
  31. Bohren, C. and D. R. Huffman (1998), Absorption and Scattering of Light by Small Particles, Wiley Science Paperback Series.
  32. Boissoles, J., C. Boulet, R. H. Tipping, A. Brown, and Q. Ma (2003), Theoretical calculation of the translation-rotation collision-induced absorption in N2-N2, O2-O2, and N2-O2 pairsJ. Quant. Spectrosc. Radiat. Transfer, 82, 505–516.
  33. Boissoles, J., R. H. Tipping, and C. Boulet (1994), Theoretical Study of the Collision-Induced Fundamental Absorption Spectra of N2-N2 Pairs for Temperatures between 77 and 297 KJ. Quant. Spectrosc. Radiat. Transfer, 51(4), 615–627.
  34. Borysow, A. (2002), Collision-induced absorption in the infrared: A data base for modelling planetary and stellar atmospheres, University of Copenhagen.
  35. Borysow, A. and L. Frommhold (1986), Collision-Induced Rototranslational Absorption Spectra of N2-N2 Pairs for Temperatures from 50 to 300 KAstrophys. J., 311, 1043–1057.
  36. Borysow, A. and L. Frommhold (1986), Theoretical Collision-Induced Rototranslational Absorption Spectra for Modeling Titan's Atmosphere: H2-N2 PairsAstrophys. J., 303, 495–510.
  37. Borysow, A. and L. Frommhold (1986), Theoretical Collision-Induced Rototranslational Absorption Spectra for the outer Planets: H2-CH4 PairsAstrophys. J., 304, 849–865.
  38. Borysow, A. and M. Moraldi (1992), Effects of Anisotropic Interaction on Collision-Induced Absorption by Pairs of Linear MoleculesPhys. Rev. L, 68(25), 3686–3689.
  39. Bosisio, A. V. and G. Drufuca (2003), Retrieval of two-dimensional absorption coefficient structure from a scanning radiometer at 23.8 GHzRadio Sci., 38(3), doi:10.1029/2002RS002628.
  40. Bosomworth, D. R. and H. P. Gush (1965), Collision-Induced Absorption of Compressed Gases in the far infrared, Part ICan. J. Phys., 43, 729–750.
  41. Bosomworth, D. R. and H. P. Gush (1965), Collision-Induced Absorption of Compressed Gases in the far infrared, Part IICan. J. Phys., 43, 751–769.
  42. Boulet, C. and D. Robert (1982), Short time behavior of the dipole autocorrelation function and molecular gases absorption spectrumJ. Chem. Phys., 77(8), 4288–4299.
  43. Boulet, C. (1111), On some Aspects of Molecular Broadening, from Resonance to the far Wings, Universite de Rennes.
  44. Brindley, H. E. and J. E. Harries (1998), The Impact of Far I.R. Absorption on clear sky greenhouse forcing: sensitivity studies at high spectral resolutionJ. Quant. Spectrosc. Radiat. Transfer, 60(2), 151–180.
  45. Brown, W. B. and H. A. Gebbie (1992), Millimetre Wave Absorption by Aqueous Aerosol ClustersInfrared Phys., 33(5), 359–371.
  46. Buffey, I. P., W. B. Brown, and H. A. Gebbie (1990), A Theoretical Study of the Infrared Absorption Spectra of Large Water ClustersJ. Chem. Soc. Far. Trans., 86(13), 2357–2360.
  47. Buontempo, U., S. Cunsolo, and G. Jacucci (1975), The far infrared absorption spectrum of N2 in the gas and liquid phasesJ. Chem. Phys., 63(6), 2570–2576.
  48. Burch, D. E. (1968), Absorption of Infrared Radiant Energy by CO2 and H2O. III. Absorption by H2O between 0.5 and 36 cm-1 ( 287 μ – 2 cm)J. Optical Soc. o. Am., 58(10), 1383–1394.
  49. Burkhalter, J. H., R. S. Anderson, W. V. Smith, and W. Gordy (1949), A Preliminary Report on the Fine Structue of the Microwave Absoprtion Spectrum of Oxygen, Duke University.
  50. Burkhalter, J. H., R. S. Anderson, W. V. Smith, and W. Gordy (1950), The Fine Structur of the Microwave Absorption Spectrum of OxygenPhys. Rev., 79(4), 651–655.
  51. Carlon, H. R. (1978), Phase transition changes in the molecular absorption coefficient of water in the infrared: evidence for clustersAppl. Opt., 17(20), 3192–3193.
  52. Carlon, H. R. (1981), Infrared water vapor continuum absorption: equilibria of ions and neutral water clustersAppl. Opt., 20(8), 1316–1322.
  53. Cavalieri, S., E. Arimondo, and M. Matera (1992), Modification of the far-wing absorption profile due to collisional coherencePhys. Rev., 45(11), 8005–8010.
  54. Cheruy, F. and N. A. Scott (1995), Contribution to the development of radiative transfer models for high spectral resolution observations in infraredJ. Quant. Spectrosc. Radiat. Transfer, 53(6), 597–611.
  55. Chylek, P. and D. J. W. Geldart (1997), Water vapor dimers and atmospheric absorption of electromagnetic radiationGeophys. Res. Lett., 24(16), 2015–2018.
  56. Chylek, P., Q. Fu, H. C. W. Tso, and D. J. W. Geldart (1999), Contribution of water vapor dimers to clear sky absorption of solar radiationTellus, 51, 304–313.
  57. Clough, S. A., M. W. Shephard, E. J. Mlawer, J. S. Delamere, M. Iacono, K. Cady-Pereira, S. Boukabara, and P. D. Brown (2005), Atmospheric radiative transfer modeling: a summary of the AER codesJ. Quant. Spectrosc. Radiat. Transfer, 91(2), 233–244, doi:10.1016/j.jqsrt.2004.05.058.
  58. Clough, S. A., F. X. Kneizys, and R. W. Davies (1989), Line Shape and the Water Vapor ContinuumAtmos. Res., 23, 229–241, doi:10.1016/0169-8095(89)90020-3.
  59. Collins, W. D., J. K. Hackney, and D. P. Edwards (2002), An updated parameterization for infrared emission and absorption by water vapor in the National Center for Atmospheric Research Community Atmosphere ModelJ. Geophys. Res., 107(D22), doi:10.1029/2001JD001365.
  60. Crawford, M. F., H. L. Welsh, and J. L. Locke (1949), Infra-Red Absorption of Oxygen and Nitrogen Induced by Intermolecular Forces, University of Toronto.
  61. Dagg, I. R., G. E. Reesor, and J. L. Urbaniak (1975), Collision Induced Absorption in N2, CO2, and H2 at 2.3 cm-1Can. J. Phys., 53, 1764–1776.
  62. Dagg, I. R., G. E. Reesor, and M. Wong (1978), A microwave cavity measurement of collision-induced absorption in N2 and CO2 at 4.6 cm-1Can. J. Phys., 56, 1037–1045.
  63. Dagg, I. R., A. Anderson an S. Yan, W. Smith, and L. A. A. Read (1985), Collision-induced absorption in nitrogen at low temperaturesCan. J. Phys., 63, 625–631.
  64. Daniel, J. S., S. Solomon, R. W. Sanders, R. W. Portmann, D. C. Miller, and W. Madsen (1999), Implications for water monomer and dimer solar absorption from observations at Boulder, ColoradoJ. Geophys. Res., 104(D14), 16,785–16,791.
  65. Danos, M. and S. Geschwind (1953), Broadening of Microwave Absorption Lines Due to Wall CollisionsPhys. Rev., 91(5), 1159–1162.
  66. Davis, G. R. (1993), The far infrared continuum absorption of water vaporJ. Quant. Spectrosc. Radiat. Transfer, 50(6), 673–694.
  67. de Pater, I. and S. T. Massie (1985), Models of the Millimeter-Centimeter Spectra of the Giant PlanetsIcarus, 62(1), 143–171, doi:10.1016/0019-1035(85)90177-0.
  68. Drayson, S. R. (1976), Rapid computation of the Voigt profileJ. Quant. Spectrosc. Radiat. Transfer, 16, 611–614.
  69. Dudhia, A., P. E. Morris, and R. J. Wells (2002), Fast monochromatic radiative transfer calculations for limb soundingJ. Quant. Spectrosc. Radiat. Transfer, 74(6), 745–756, doi:10.1016/S0022-4073(01)00285-0.
  70. Dumesh, B. S. and L. A. Surin (1996), Two highly sensitive microwave cavity spectrometersRev. Sci. Inst., 67(10), 3458–3465.
  71. Elsasser, W. M. (1938), Far Infrared Absorption of Atmospheric Water VaporAstrophys. J., 87(5), 497–507.
  72. Elsasser, W. M. (1938), Note on Atmospheric Absorption Caused by the Rotational Water BandPhys. Rev., 53, 768.
  73. Emery, R. J., P. Moffat, R. A. Bohlander, and H. A. Gebbie (1975), Measurements of anomalous atmospheric absorption in the wavenumber range 4 cm-1–15cm-1J. Atm. Terr. Phys., 37, 587–594.
  74. Emery, R. J., A. M. Zavody, and H. A. Gebbie (1980), Measurements of atmospheric absorption in the range 5-17 cm-1 and its temperature dependenceJ. Atm. Terr. Phys., 42, 801–807.
  75. English, S. J., C. Guillou, C. Prigent, and D. C. Jones (1994), Aircraft measurements of water vapour continuum absorption millimetre wavelengthsQ. J. R. Meteorol. Soc., 120, 603–625.
  76. English, S. J., D. C. Jones, P. J. Rayer, T. J. Hewison, R. W. Saunders, C. Guillou, C. Prigent, J. Wang, and G. Anderson (1995), Observations of water vapour absorption using airborne microwave radiometers at 89 and 157 GhzIEEE, 1395–1404.
  77. Erukhimova, T. L. and E. V. Suvorov (2001), Retrieval of Ozone-Denisty and Atmospheric-Temperature Profiles using the Spectra of Microwave Absorption in two Rotational Ozone LinesRadiophys. Quant. Elec., 44(1–2), 129–136.
  78. Evans, G. T. and V. Vaida (2000), Aggregation of water molecules: Atmospheric implicationsJ. Chem. Phys., 113(16), 6652–6659.
  79. Filippov, N. N., V. P. Ogibalov, and M. V. Tonkov (2002), Line mixing effect on the pure CO2 absorption in the 15 μm regionJ. Quant. Spectrosc. Radiat. Transfer, 72, 315–325.
  80. Fogarty, W. E. (1975), Total Atmospheric Absorption at 22.2 GHzIEEE Trans. Antennas Propag., 441–445.
  81. Fomin, B. A. (1995), Effective Interpolation Technique for Line-by-Line Calculations of Radiation Absorption in GasesJ. Quant. Spectrosc. Radiat. Transfer, 53(6), 663–669, doi:10.1016/0022-4073(95)00029-K.
  82. Fowler, B. W. and C. C. Sung (1976), Inadequacy of the statistical many-body model for molecular infrared absorption in the far wingsPhys. Rev., 13(6), 2318–2321.
  83. Gagliardi, G., G. Rusciano, and L. Gianfrani (2000), Narrow H218O lines and new absolute frequency references in the near-IRJ. Opt. A: Pure Appl. Opt., 2, 310–313.
  84. Gaiduk, V. I. (2003), The Theory of the Second Relaxation Region in Liquid WaterOpt. Spectro., 94(2), 199–208.
  85. Gamache, R.R., S. Kennedy, R. Hawkins, and L.S. Rothman (2000), Total internal partition sums for molecules in the terrestrial atmosphereJ. Molec. Struct., 407–425.
  86. Gao, B.-C., K. Meyer, and P. Yang (2004), A new concept on remote sensing of cirrus optical depth and effective ice particle size using strong water vapor absorption channels near 1.38 and 1.88 micrometerIEEE T. Geosci. Remote, 42(9), 1891–1899.
  87. Godon, M., A. Bauer, and R. R. Gamache (2000), The Continuum of Water Vapor Mixed with Methane: Absolute Absorption at 239 GHz and Linewidth CalculationsJ. Molec. Spectro., 202, 293–202.
  88. Godon, M., J. Carlier, and A. Bauer (1992), Laboratory studies of water vapor absorption in the atmospheric window at 213 GHzJ. Quant. Spectrosc. Radiat. Transfer, 47(4), 275–285.
  89. Gokhale, B. V. and M. W. P. Strandberg (1951), Line Breadths in the 5-mm Microwave Absorption of Oxygen, Massachusetts Institute of Technology.
  90. Golovko, V. F. (2000), Dispersion formula and continuous absorption of water vaporJ. Quant. Spectrosc. Radiat. Transfer, 65, 621–644.
  91. Golovko, V. F. (2001), Continuous absorption of water vapor and a problem of the absorption enhancement in the humid atmosphereJ. Quant. Spectrosc. Radiat. Transfer, 69, 431–446.
  92. Golubiatnikov, G. Y., M. A. Koshelev, and A. F. Krupnov (2003), Reinvestigation of pressure broadening parameters at 60-GHz band and single 118.75 GHz oxygen lines at room temperatureJ. Molec. Spectro., 222, 191–197.
  93. Grant, W. B. (1990), Water vapor absorption coefficients in the 8–13 μm spectral region: a critical reviewAppl. Opt., 29(4), 451–463.
  94. Greenblatt, G. D., J. J. Orlando, J. B. Burkholder, and A. R. Ravishankara (1990), Absorption Measurements of Oxygen Between 330 and 1140 nmJ. Geophys. Res., 95(D11), 18,577–18,582.
  95. Groenenboom, G. C., E. M. Mas, R. Bukowski, K. Szalewicz, P. E. S. Wormer, and A. van der Avoird (2000), Water Pair and Three-Body Potential of Spectroscopic Quality from Ab Initio CalculationsPhys. Rev. L, 84(18), 4072–4075.
  96. Gross, E. P. (1955), Inertial Effects and Dielectric RelaxationJ. Chem. Phys., 23(8), 1415–1423.
  97. Gross, E. P. and J. Otieno-Malo (1972), Collision Broadening of Rotational SpectrumJ. Chem. Phys., 57(6), 2229–2239.
  98. Gruszka, M. and A. Borysow (1997), Roto-Translational Collision-Induced Absorption of CO2 for the Atmosphere of Venus at Frequencies from 0 to 250 cm-1, at Temperatures from 200 to 800 KIcarus, 172–177.
  99. Hannon, S., L. L. Strow, and W. W. McMillan (1996), Atmospheric Infrared Fast Transmittance Models: A Comparison of Two Approaches, University of Maryland Baltimore Country.
  100. Harries, J. E. (1979), The temperature dependence of collision-induced absorption in gaseous N2J. Optical Soc. o. Am., 69(3), 386–393.
  101. Harries, J. E. (1996), The greenhouse Earth: A view from SpaceJ. Quant. Spectrosc. Radiat. Transfer, 122(532), 799–818.
  102. Hartmann, J. M., C. Brodbeck, P.-M. Flaud, R. H. Tipping, A. Brown, Q. Ma, and J. Lievin (2002), Collision-induced absorption in the ν2 fundamental band of CH4.II. Dependence on the perturber gasJ. Chem. Phys., 116(1), 123–127.
  103. Hartmann, J. M. (1989), Measurements and calculations of CO2 room-temperature high-pressure spectra in the 4.3 μm regionJ. Chem. Phys., 90, 2944–2950.
  104. Hartmann, J.-M., J.-P. Bouanich, K. W. Jucks, G. Blanquet, J. Walrand, D. Bermejo, J.-L. Domenech, and N. Lacome (1999), Line-mixing effects in N2O Q branches: Model, laboratory, and atmospheric spectraJ. Chem. Phys., 110(4), 1959–1968.
  105. Harvey, J. N., J. O. Jung, and R. B. Gerber (1998), Ultraviolet spectroscopy of water clusters: Excited electronic states and absorption line shape of (H2O)n, n=2-6J. Chem. Phys., 109(20), 8747–8750.
  106. Headrick, J. E. and V. Vaida (2001), Signification of Water Complexes in the AtmospherePhys. Chem. Earth, 26(7), 479–486.
  107. Heastie, R. and D. H. Martin (1962), Collision-Induced Absorption of Submillimeter Radiation by Non-Polar Atmospheric GasesCan. J. Phys., 40, 122–127.
  108. Hill, R. J. (1986), Water vapor-absorption line shape comparison using 22-GHz line: The Van Vleck-Weisskopf shape affirmedRadio Sci., 21(3), 447–451.
  109. Hill, R. J. (1987), Absorption by the Tails of the Oxygen Microwave Resonances at Atmospheric PressuresIEEE Trans. Antennas Propag., AP-35(2), 198–204.
  110. Hinderling, J., M. W. Sigrist, and F. K. Kneubuehl (1987), Laser-photoacoustic spectroscopy of water-vapor continuum and line absorption in the 8 to 14 μm atmospheric windowInfrared Phys., 27(2), 63–120.
  111. Ho, W., I. A. Kaufman, and P. Thaddeus (1966), Laboratory measurement of microwave absorption in models of the atmosphere of VenusJ. Geophys. Res., 71(21), 5091–5108.
  112. Ho, W., I. A. Kaufman, and P. Thaddeus (1968), Pressure-Induced Microwave Absorption in N2J. Chem. Phys., 49(8), 3627–3631.
  113. Holdaway, M. A. and J. R. Pardo (1997), Modeling of the Submillimeter Opacity on Chajnanto, , MMA Memo 187.
  114. Hollweg, H.-D. (1993), A k Distribution Method Consindering Centres and Wings of Atmospheric Absorption LinesJ. Geophys. Res., 98(D2), 2747–2756.
  115. Hong, G. (2007), Parameterization of scattering and absorption properties of nonspherical ice crystals at microwave frequenciesJ. Geophys. Res., 112, D11208, doi:10.1029/2006JD008364.
  116. Hopponen, J. D. and H. J. Liebe (1986), A Computational Model for the Simulation of Millimeter-Wave Propagation Through the Clear Atmosphere, NTIA.
  117. Hudis, E., Y. Ben-Aryeh, and U. P. Oppenheim (1991), Third-order linear absorption by pairs of moleculesPhys. Rev., 43(7), 3631–3639.
  118. Hudis, E., Y. Ben-Aryeh, and U. P. Oppenheim (1992), The Contribution of Third Order Linear Absorption to the Water Vapor ContinuumJ. Quant. Spectrosc. Radiat. Transfer, 47(5), 319–323.
  119. Jacquinet-Husson, N., et al. (1999), The 1997 spectroscopic GEISA databankJ. Quant. Spectrosc. Radiat. Transfer, 205–254.
  120. Jones, D. T. Llewellyn, R. J. Knight, and H. A. Gebbie (1978), Absorption by water vapour at 7.1 cm-1 and its temperature dependenceNature, 247, 876–878.
  121. Kalmykov, Y. P. and S. V. Titov (1993), Molecular absorption by water vapor in the millimeter and submillimeter rangesOpt. Spectro., 75(3), 361–364.
  122. Karmakar, P. K., M. Maiti, S. Chattopadhyay, and M. Rahaman (2002), Effects of Water Vapor and Liquid Water on Microwave Absorption, and their ApplicationRadio Sci., 32–36.
  123. Karmakar, P. K., S. Chattopadhyay, and A. K. Sen (1999), Estimates of water vapour absorption over Calcutte at 22.235 GHzInt. J. Remote Sensing, 20(13), 2637–2651.
  124. Karman, T., I.E. Gordon, A. van der Avoird, Y. I. Baranov, C. Boulet, B. J. Drouin, G. C. Groenenboom, M. Gustafsson, J.-M. Hartmann, R. L. Kurucz, L. S. Rothman, K. Sun, K. Sung, R. Thalman, H. Tran, E. H. Whishnow, R. Wordsworth, A. A. Vigasin, R. Volkamer, and W. J. van der Zande (in press 2019), Update of the HITRAN collision-induced absorption sectionIcarus, doi:10.1016/j.icarus.2019.02.034.
  125. Katkov, V. Y. (1997), A Semiempirical Model of Millimeter and Submillimeter Radio Wave Absorption by Atmospheric Water VaporJournal of Communications and Electronics, 42(12), 1344–1349.
  126. Keihm, S. J., Y. Bar-Sever, and J. C. Liljegren (2002), WVR-GPS Comparison Measurements and Calibration of the 20–32 GHz Tropospheric Water Vapor Absorption ModelIEEE Geosci. Remote Sens., 40(6), 1199–1210.
  127. Kempkens, H., R. Mann, and J. Uhlenbusch (1979), Measruements of absorption coefficient of water vapor by means of an H2O laser in the far-infraredInfrared Phys., 19, 585–592.
  128. Kilsby, C. G., D. P. Edwards, R. W. Saunders, and J. S. Foot (1992), Water-vapour continuum absorption in the tropics: Aircraft measurements and model comparisonsQ. J. R. Meteorol. Soc., 118, 715–748.
  129. Kitai, S. D., A. P. Naumov, and N. N. Osharina (2002), Structure of Thermal Radio Emission from the Atmosphere in the middle Part of the Submillimeter Wavelength RangeRadiophys. Quant. Elec., 45(2), 147–152.
  130. Klein, M. and A. J. Gasiewski (2000), Nadir sensitivity of passive millimeter and submillimeter wave channels to clear air temperature and water vapor variationsJ. Geophys. Res., 105(D13), 17,481–17,511.
  131. Koshelev, M. A., I. N. Vilkov, D. S. Makarov, M. Yu. Tretyakov, B. Vispoel, R. R. Gamache, D. Cimini, F. Romano, and P.W. Rosenkranz (2021), Water vapor line profile at 183-GHz: Temperature dependence of broadening, shifting, and speed-dependent shape parametersJ. Quant. Spectrosc. Radiat. Transfer, 262, 107472, doi:10.1016/j.jqsrt.2020.107472.
  132. Krupnov, A. F., V. N. Markov, G. Y. Golubyatnikov, I. I. Leonov, Y. N. Konoplev, and V. V. Parshin (1999), Ultra-Low Absorption Measurement in Dielectrics in Millimeter- and Submillimeter-Wave RangeIEEE T. Microw. Theory, 47(3), 284–289.
  133. Kunde, V., R. Hanel, W. Maguire, D. Gautier, J. P. Baluteau, A. Marten, A. Chedin, N. Husson, and N. Scott (1982), The tropospheric gas composition of Jupiter's north equatorial belt (NH3, PH3, GeH4, H2O) and the Jovian D/H isotopic ratioAstrophys. J., 263, 443–467.
  134. Kuntz, M. and M. Höpfner (1999), Efficient line-by-line calculation of absorption coefficientsJ. Quant. Spectrosc. Radiat. Transfer, 63(1), 97–114, doi:10.1016/S0022-4073(98)00140-X.
  135. Kutuza, B. G. (2003), Spatial and temporal fluctuations of atmospheric microwave emissionRadio Sci., 38(3), doi:10.1029/2002RS02650.
  136. Kuz'menko, V. A. (2002), Problem of water vapor absorption continuum in atmospheric windows. Return of dimer hypothesis, Troitsk Institute for Fusion Research.
  137. Lacis, A., Q. Ma, and R. Tipping (1998), Theoretical Calculation of Water Vapor Continuum Absorption, Biological and Environmental Research.
  138. Latterty, W. L., A. M. Solodov, A. Weber, W. B. Olson, and J.-M. Hartmann (1996), Infrared collision-induced absorption by N2 near 4.3 μm for atmospheric applications: measurements and empirical modelingAppl. Opt., 35(30), 59911–5917.
  139. Learner, R. C. M., W. Zhong, J. D. Haigh, D. Belmiloud, and J. Clarke (1999), The Contribution of Unknown Weak Water Vapor Lines to the Absorption of Solar RadiationGeophys. Res. Lett., 26(24), 3609–3612, doi:10.1029/1999GL003681.
  140. Lenoir, W. B. (1967), Propagation of Partially Polarized Waves in a Slightly Anisotropic MediumJ. Appl. Phys., 38(13), 5283–5290.
  141. Lenoir, W. B. (1968), Microwave Spectrum of Molecular Oxygen in the MesosphereJ. Geophys. Res., 73(1), 361–376.
  142. Levine, H. B. and G. Birnbaum (1967), Classical Theory of Collision-Induced Absorption in Rare-Gas MixturesPhys. Rev., 154(1), 86–92.
  143. Levine, H. B. (1967), Quantum Theory of Collision-Induced Absorption in Rare-Gas MixturesPhys. Rev., 160(1), 159–169.
  144. Lewis, B. R., S. T. Gibson, and K. Yoshino (1999), Comment on "Ab initio dynamic dipole polarizabilities for CO2, its photoabsorption spectrum in the Schumann-Runge region, and long-range interaction coefficients for its dimer"J. Chem. Phys., 111(24), 11236–11237.
  145. Li, W., T. W. Tong, D. Dobranich, and L. A. Gritzo (1995), A Combined Narrow- and Wide-Band Model for Computing the Spectral Absorption Coefficient of CO2,CO, H2O, CH4, C2H2, and NOJ. Quant. Spectrosc. Radiat. Transfer, 54(6), 961–970.
  146. Liebe, H., T. Dillon, M. Vetter, and M. C. Thompson Jr. (1968), Dispersion Studies of Moist Air Near 1.35 cm Wavelength, Conference of Propospheric Wave Propagation.
  147. Liebe, H. J. (1969), Calculated Troposheric Dispersion and Absorption Due to the 22-GHz Water Vapor LineIEEE Trans. Antennas Propag., AP-17(5), 621–627.
  148. Liebe, H. J., W. M. Welch, and R. Chandler (1973), Laboratory Measurements of Electromagnetic Properties of Atmospheric Gases at Millimeter Wavelengths, Electronics Division of the Institution of Electrical Engineers.
  149. Liebe, H. J. (1975), Molecular Transfer Characteristics of Air Between 40 and 140 GHzIEEE T. Microw. Theory, MTT-23(4), 380–386.
  150. Liebe, H. J., G. G. Gimmestad, and J. D. Hopponen (1977), Atmospheric Oxygen Microwave Spectrum- Experiment versus TheoryIEEE Trans. Antennas Propag., AP-25(3), 327–335.
  151. Liebe, H. J. (1977), Variability of EHF Air Refractivity with Respect to Temperature, Pressure, and FrequencyIEEE Trans. Antennas Propag., AP-25(3), 336–354.
  152. Liebe, H. J. (1981), Modeling attenuation and phase of radio waves in the air frequencies below 1000 GHzRadio Sci., 16(6), 1183–1199.
  153. Liebe, H. J. (1983), Atmospheric EHF Window Transparencies near 35, 90, 140, and 220 GHzIEEE Trans. Antennas Propag., AP-31(1), 127–135.
  154. Liebe, H. J. (1983), An Atmospheric Millimeter Wave Propagation Model, NTIA.
  155. Liebe, H. J. (1984), The Atmospheric Water Vapor Continuum Below 300 GHzInt. J. Inf. Millim. Waves, 5(2), 207–227.
  156. Liebe, H. J., K. C. Allen, G. R. Hand, R. H. Espeland, and E. J. Violette (1985), Millimeter-Wave Propagation in Moist Air: Model Versusu Path Data, NTIA.
  157. Liebe, H. J. (1985), An updated model for millimeter wave propagation in moist airRadio Sci., 20(5), 1069–1089.
  158. Liebe, H. J. (1987), A Contribution to Modeling Atmospheric Millimeter-wave PropertiesFrequenz, 41, 31–36.
  159. Liebe, H. J. and D. H. Layton (1987), Millimeter-Wave Properties of the Atmosphere: Laboratory Studies and Propagation Modeling, NTIA.
  160. Liebe, H. J., T. Manabe, and G. A. Hufford (1989), Millimeter-Wave Attenuation and Delay Rates Due to Fog/Cloud ConditionsIEEE Trans. Antennas Propag., 37(12), 1617–1623.
  161. Liebe, H. J. and G. A. Hufford (1989), Modeling Millimeter-Wave Propagation Effects In The Atmosphere, AGARD.
  162. Liebe, H. J. (1989), MPM — An atmospheric millimeter-wave propagation modelInt. J. Inf. Millim. Waves, 10(6), 631–650.
  163. Liebe, H. J., G. A. Hufford, and R. O. DeBolt (1991), The Atmospheric 60-GHz Oxygen Spectrum: Modeling and Laboratory Measurements, NTIA.
  164. Liebe, H. J., P. W. Rosenkranz, and G. A. Hufford (1992), Atmospheric 60-GHz Oxygen Spectrum: New Laboratory Measurements and Line ParametersJ. Quant. Spectrosc. Radiat. Transfer, 48(5/6), 629–643.
  165. Liebe, H. J., G. A. Hufford, and M. G. Cotton (1993), Propagation modeling of moist air and suspended water/ice particles at frequencies below 1000 GHz, In: AGARD 52nd Specialists' Meeting of the Electromagnetic Wave Propagation Panel, pp. 3-1–3-10.
  166. Low, G. R. and H. G. Kjaergaard (1999), Calculation of OH-stretching band intensities of the water dimer and trimerJ. Chem. Phys., 110(18), 9104–9115.
  167. Lyon, W. D. and C. A. Mead (1970), Emission versus Absorption in Resonance Pressure BroadeningPhys. Rev., 1(3), 659–671.
  168. Ma, Q. and R. H. Tipping (2003), A simple analytical parameterization for the water vapor millimeter wave foreign continuumJ. Quant. Spectrosc. Radiat. Transfer, 82, 517–531.
  169. Ma, Q. and R. H. Tipping (1991), A far wing line shape theory and its application to the water continuum absorption in the infrared region.IJ. Chem. Phys., 95(9), 6290–6301.
  170. Ma, Q. and R. H. Tipping (1992), A far wing line shape theory and its application to the foreign-broadened water continuum absorption. IIIJ. Chem. Phys., 97(2), 818–828.
  171. Ma, Q. and R. H. Tipping (1994), The Detailed Balance Requirement and General Empirical Formalisms for Continuum AbsorptionJ. Quant. Spectrosc. Radiat. Transfer, 51(5), 751–757.
  172. Manabe, T., Y. Furuhama, T. Ihara, S. Saito, H. Tanaka, and A. Ono (1985), Measurements of attenuation and refractive dispersion due to atmospheric water vapor at 80 and 240 GHzInt. J. Inf. Millim. Waves, 6(4), 313–322.
  173. Manabe, T., R. O. Debolt, and H. J. Liebe (1989), Moist-Air Attenuation at 96 GHz Over 21-km Line-of-Sight-PathIEEE Trans. Antennas Propag., 37(2), 262–266.
  174. Marchand, R., T. Ackerman, E. R. Westwater, S. A. Clough, K. Cady-Pereira, and J. C. Liljegren (2003), An assessment of microwave absorption models and retrievals of cloud liquid water using clear-sky dataJ. Geophys. Res., 108(D24), doi:10.1029/2003JD003843.
  175. Maric, D. and J. P. Burrow (1996), Application of a Gaussian Distribution Function To Describe Molecular UV-Visible Absorption Continua. 1. TheoryJ. Phys. Chem., 100(21), 8645–8659.
  176. Maric, D. and J. P. Burrow (1999), Analysis of the UV absorption spectrum of Cl0:a comparative study of four methods for spectral computationsJ. Quant. Spectrosc. Radiat. Transfer, 62, 345–369.
  177. Maryott, A. A. and G. Birnbaum (1960), Microwave Absorption in Compressed OxygenJ. Chem. Phys., 32(3), 686–697.
  178. Maryott, A. A. and G. Birnbaum (1962), Collision-Induced Microwave Absorption in Compressed Gases. I. Dependence on Density, Temperature, and Frequency in CO2J. Chem. Phys., 36(8), 2026–2036.
  179. Mate, B., C. L. Lugez, A. M. Solodov, G. T. Fraser, and W. J. Latterty (2000), Investigation of the collision-induced absorption by O2 near 6.4 μm in pure O2 and O2/N2 mixturesJ. Geophys. Res., 105(D17), 22,225–22,230.
  180. Mate, B., C Lugez, G. T. Fraser, and W. J. Latterty (1999), Absolute intensities for the O2 1.27 μm continuum absorptionJ. Geophys. Res., 104(D23), 30,585–30,590.
  181. Menoux, V., R. Le Doucen, C. Boulet, A. Roblin, and A. M. Bouchardy (1993), Collision-induced absorption in the fundamental band of N2: temperature dependence of the absorption for N2-N2 and N2-O2 pairsAppl. Opt., 32(3), 263–268.
  182. Meyer, W., A. Borysow, and L. Frommhold (1989), Absorption spectra of H2-H2 pairs in the fundamental bandPhys. Rev., 40(12), 6931–6949.
  183. Miller, S. L. and C. H. Townes (1953), The Microwave Absorption Spectrum of (O16)2 and O16O17Phys. Rev., 90(4), 537–541.
  184. Miller, P. F. and H. A. Gebbie (1993), Stimulated Emission of Atmospheric Water Vapour between 2cm-1 and 30cm-1 Photoinduced by Infrared RadiationInfrared Phys., 34(1), 23–31.
  185. Mishchenko, M. I., L. D. Travis, and A. A. Lacis (2002), Scattering, Absorption, and Emission of Light by Small Particles, Cambridge University Press, ISBN 0-521-78252-X.
  186. Mitsel, A. A., S. A. Tashkun, I. G. Okladnikov, and A. V. Milyakov (2001), Methodological problems of compiling the data bank of atmospheric gas absorption coefficientsProc. of SPIE, 4341, 616–625, 7th International Symposium on Atmospheric and Ocean Optics; Tomsk; 19 July 2000 through 22 July 2000; Code 58035, doi:10.1117/12.412007.
  187. Mlawer, E. J., V. H. Payne, J.-L. Moncet, J. S. Delamere, M. J. Alvarado1, and D. C. Tobin (2012), Development and recent evaluation of the MT_CKD model of continuum absorptionPhil. Trans. R. Soc. A, 370(1968), 2520–2556, doi:10.1098/rsta.2011.0295.
  188. Mlawer, E. J., S. A. Clough, P. D. Brown, and D. C. Tobin (1998), Collision-Induced Effects and the Water Vapor Continuum, Atmospheric and Environmental Research and the University of Wisconsin.
  189. Mlawer, E. J., S. A. Clough, P. D. Brown, T. M. Stephen, J. C. Landry, A. Goldman, and F. J. Murcray (1998), Oberserved atmospheric collision-induced absorption in near-infrared oxygen bandsJ. Geophys. Res., 103(D4), 3859–3863.
  190. Moreau, G., J. Boissoles, C. Boulet, R. H. Tipping, and Q. Ma (2000), Theoretical study of the collision-induced fundamental absorption spectra of O2-O2 pairs for temperatures between 193 and 273 KJ. Quant. Spectrosc. Radiat. Transfer, 64, 87–107.
  191. Moreau, G., J. Boissoles, R. Le Doucen, C. Boulet, R. H. Tipping, and Q. Ma (2001), Experimental and theoretical study of the collision-induced fundamental absorption spectra of N2-O2 and O2-N2 pairsJ. Quant. Spectrosc. Radiat. Transfer, 69, 254–256.
  192. Moreau, G., J. Boissoles, R. Le Doucen, C. Boulet, R. H. Tipping, and Q. Ma (2001), Metastable dimer contributions to the collision-induced fundamental absorption spectra of N2 and O2 pairsJ. Quant. Spectrosc. Radiat. Transfer, 70, 99–113.
  193. Murphy, J. S. and J. E. Boggs (1969), Collision Broadening of Rotational Absorption Lines. V. Pressure Broadening of Microwave Absorption Spectra Involving Asymmetric-Top MoleculesJ. Chem. Phys., 51(9), 3891–3901.
  194. Naus, H. and W. Ubachs (1999), Visible absorption bands of the (O22)2 collision complex at pressure below 760 TorrAppl. Opt., 38(15), 3423–3428.
  195. Neshyba, S.P., T. C. Grenfell, and S. G. Warren (2003), Representation of a nonspherical ice particle by a collection of independent spheres for scattering and absorption of radiation: 2. Hexagonal columns and platesJ. Geophys. Res., 108(D15), doi:10.1029/2002JD003302.
  196. Newnham, D. A. and J. Ballard (1998), Visible absorption cross sections and intergrated absorption intensities of molecular oxygen (O2 and O4)J. Geophys. Res., 103(D22), 28,801–28,816.
  197. Nguyen, A. V. (2000), Improved Approximation of Water Dielectric Permittivity for Calculation of Hamaker ConstantsJournal of Colliod and Interface Science, 229(2), 648–651, doi:10.1006/jcis.2000.7010.
  198. Occelli, R., H. Chaaban, J. M. Moynault, R. Coulon, and A. Balsamo (1991), Submillimetric and millimetric collision-induced absorption spectra in compressed gaseous nitrogen using very low-frequency optical sourceCan. J. Phys., 69, 1264–1272.
  199. Olsen, R., D. V. Rogers, and D. B. Hodge (1978), The aRbrelation in the calculation of rain attenuationIEEE Trans. Antennas Propag., 26(2), 318–329, doi:10.1109/TAP.1978.1141845.
  200. Orlando, J. J., G. S. Tyndall, K. E. Nickerson, and J. G. Calvert (1991), The Temperature Dependence of Collision-Induced Absorption by Oxygen Near 6 μmJ. Geophys. Res., 96(D11), 20,755–10,760.
  201. Orr, B. W. and T. Uttal (2001), Microwave Radiometer Observations of Integrated Atmospheric Water Vapor and Cloud Liquid Water at Sheba and ARM'sNSA Site using new Absorption ModelsJ. Geophys. Res., 106(D6).
  202. Palmer, I. J., W. B. Brown, and I. H. Hillier (1996), Simulation of the charge transfer absorption of the H2O/O2 van der Waals complex using high level ab initio calculationsJ. Chem. Phys., 104(9), 3198–3204.
  203. Pardo, J. R., J. Cernicharo, and E. Serabyn (2001), Atmospheric Transmission at Microwaves (ATM): An Improved Model for Millimeter/Submillimeter ApplicationsIEEE Trans. Antennas Propag., 49(12), 1683–1694.
  204. Pardo, J. R., E. Serabyn, and J. Cernicharo (2001), Submillimeter atmospheric transmission measurements on Mauna Kea during extremely dry El Nino conditions: implications for broadband opacity contributionsJ. Quant. Spectrosc. Radiat. Transfer, 68, 419–433.
  205. Pardo, J. R., J. Cernicharo, E. Lellouch, T. Encrenaz, and G. Paubert (1995), Ground-based measurements of middle atmospheric water vapor at 183 GHz during very dry tropospheric conditionsUnknown IEEE journal, 1401–1403.
  206. Parker, J. (2001), Practical inclusion CO2 line mixing effects in a line-by-line atmospheric retrieval systemJ. Quant. Spectrosc. Radiat. Transfer, 69, 327–349.
  207. Paul, J. B., L. Lapson, and J. G. Anderson (2001), Ultrasensitive absorption spectroscopy with a high-finesse optical cavity and off-axis alignmentAppl. Opt., 40(27), 4904–4910.
  208. Paul, J. B., C. P. Collier, R. J. Saykally, J. J. Scherer, and A. O'Keefe (1997), Direct Measurement of Water Cluster Concentrations by Infrared Cavity Ringdown Laser Absorption SpectroscopyJ. Chem. Phys., 101, 5211–5214.
  209. Payne, V. H., J. S. Delamere, K. E. Cady-Pereira, R. R. Gamache, J.-L. Moncet, E. J. Mlawer, and S. A. Clough (2008), Air-Broadened Half-Widths of the 22- and 183-GHz Water-Vapor LinesIEEE T. Geosci. Remote, 46(11), 3601–3617, doi:10.1109/TGRS.2008.2002435.
  210. Paynter, D. J. and V. Ramaswamy (2011), An assessment of recent water vapor continuum measurements upon longwave and shortwave radiative transferJ. Geophys. Res., 116, D20302, doi:10.1029/2010JD015505.
  211. Pol, S. L. C., C. S. Ruf, and S. J. Keihm (1998), Improved 20- to 32-GHz atmospheric absorption modelRadio Sci., 33(5), 1319–1333.
  212. Poll, J. D. and J. L. Hunt (1976), On the moments of the pressure-induced spectra of gasesCan. J. Phys., 54(5), 461–471.
  213. Protis, A. M. (1953), Electronic Structure of F Centers: Saturation on the Electron Spin ResonancePhys. Rev., 91(5), 1071–1078.
  214. Ray, P. S. (1972), Broadband Complex Refractive Indices of Ice and WaterAppl. Opt., 11(8), 1836–1844, doi:10.1364/AO.11.001836.
  215. Read, W. R., K. W. Hillig II., E. A. Cohen, and H. M. Pickett (1988), The Measurement of Absolute Absorption of Millimeter Radiation in Gases: The Absorption of CO and O2IEEE Trans. Antennas Propag., 36(8), 1136–1143.
  216. Reber, E. E., R. L. Mitchell, and C. J. Carter (1970), Attenuation to the 5-mm Wavelength Band in a Variable AtmosphereIEEE Trans. Antennas Propag., AP-18(4), 472–490.
  217. Rice, D. P. and P. A. Ade (1979), Absolute measurements of the atmospheric transparency at short millimetre wavelengthsInfrared Phys., 19, 575–584.
  218. Richard, C., I. E. Gordon, L. S. Rothman, M. Abel, L. Frommhold, M. Gustafsson, J.-M. Hartmann, C. Hermans, W. J. Lafferty, G. S. Orton, K.M. Smith, and H. Tran (2012), New section of the HITRAN database: Collision-induced absorption (CIA)J. Quant. Spectrosc. Radiat. Transfer, 113, 1276–1285, doi:10.1016/j.jqsrt.2011.11.004.
  219. Rosenkranz, P. W. (2002), Radiative Transfer Solution Using Initial Values in a Scattering and Absorbing Atmosphere With Surface ReflectionIEEE Geosci. Remote Sens., 40(8), 1889–1892.
  220. Rosenkranz, P. W. (2005), Comment on "Uncertainties in the Temperature Dependence of the Line-Coupling Parameters of the Microwave Oxygen Band: Impact StudyIEEE Geosci. Remote Sens., 43(9), 2160–2161.
  221. Rosenkranz, P. W. (1982), Comment on "Absorption and dispersion in the O2 microwave spectrum at atmospheric pressures"J. Chem. Phys., 72(4), 2216–2217.
  222. Rosenkranz, P. W. (1993), Absorption of microwaves by atmospheric gases, In: Atmospheric remote sensing by microwave radiometry, pp. 37–90, Edited by Janssen, M. A., John Wiley and Sons, Inc., ISBN 0-471-62891-3.
  223. Rosenkranz, P. W. (1995), A Rapid Atmospheric Transmittance Algorithm for Microwave Sounding ChannelsIEEE Geosci. Remote Sens., 33(5), 1135–1140.
  224. Rosenkranz, P. W. (1998), Water vapor microwave continuum absorption: A comparison of measurements and modelsRadio Sci., 33(4), 919–928, (correction in 34, 1025, 1999).
  225. Rothman, L. S., I. E. Gordon, R. J. Barber, H. Dothe R. R. Gamache, A. Goldman, V. I. Perevalov, S. A. Tashkun, and J. Tennyson (2010), HITEMP, the high-temperature molecular spectroscopic databaseJ. Quant. Spectrosc. Radiat. Transfer, 111, 2139–2150, doi:10.1016/j.jqsrt.2010.05.001.
  226. Rudman, S. D., R. W. Saunders, C. G. Kilsby, and P. J. Minnett (1994), Water vapour continuum absorption in mid-latitudes: Aircraft measurements and model comparisonsQ. J. R. Meteorol. Soc., 120, 795–807.
  227. Ruzhentsev, N. V. (2003), Peculiarities of vertical atmosphere absorption in the millimeter wave bandRadio Sci., 38(3), doi:10.1029/2002RS002668.
  228. Saykally, R. J. (2013), Viewpoint: Simplest Water Cluster Leaves Behind its Spectral FingerprintPhysics, 6(22), doi:10.1103/Physics.6.22.
  229. Schwartz, M. J. (1997), Observation and Modeling of Atmospheric Oxygen Milimeter-wave Transmittance, , Department of Physics.
  230. Scott, N. A. and A. Chedin (1981), A fast line-by-line method for atmospheric absorption computations: the automatized atmospheric absorption atlasJ. Appl. Meteorol., 20(7), 802–812.
  231. Shapiro, M. M. and H. P. Gush (1966), The Collision-Induced Fundamental and First Overtone Bands of Oxygen and NitrogenCan. J. Phys., 44, 949–963.
  232. Slanina, Z. (1988), A Theoretical Evaluation of Water Oligomer Populations in the Earth's AtmosphereJ. Atmos. Chem., 6, 185–190.
  233. Smith, K. M. and D. A. Newnham (2000), Near-infrared absorption cross sections and integrated absorption intensities of molecular oxygen (O2, O2-O2, and O2-N2)J. Geophys. Res., 105(D6), 7383–7396.
  234. Smith, K. M., I. Ptashnik, D. A. Newnham, and K. P. Shine (2004), Absorption by water vapour in the 1 to 2 μm regionJ. Quant. Spectrosc. Radiat. Transfer, 83, 735–749.
  235. Smith, E. W. (1981), Absorption and dispersion in the O2 microwave spectrum at atmospheric pressuresJ. Chem. Phys., 74(12), 6658–6673.
  236. Smith, W. L., S. Ackerman, H. Revercomb, H. Huang, D. H. DeSlover, W. Feltz, L. Gumley, and A. Collard (1998), Infrared spectral absorption of nearly invisible cirrus cloudsGeophys. Res. Lett., 25(8), 1137–1140.
  237. Solomon, S., R. W. Portmann, R. W. Sanders, and J. S. Daniel (1998), Absorption of solar radiation by water vapor, oxygen, and related collision pairs in the Earth's atmosphereJ. Geophys. Res., 103(D4), 3847–3858.
  238. Sparks, L. (1997), Efficient line-by-line calculation of absorption coefficients to high numerical accuracyJ. Quant. Spectrosc. Radiat. Transfer, 57(7), 631–650.
  239. Spelsberg, D. and W. Meyer (1998), Ab initio dynamic dipole polarizabilities for CO2, its photoabsorption spectrum in the Schumann-Runge region, and long-range interaction coefficients for its dimerJ. Chem. Phys., 109(22), 9802–9810.
  240. Spelsberg, D. and W. Meyer (1999), Response to "Comment on 'Ab initio dynamic dipole polarizabilities for CO2, its photoabsorption spectrum in the Schumann-Runge region, and long-range interaction coefficients for its dimer'"J. Chem. Phys., 111(24), 11238–11239.
  241. Stenholm, S. (1111), Absorption and Gain Spectra, University of Helsinki.
  242. Stiller, G. P., M. Hoepfner, M. Kuntz, T. von Clarmann, G. Echle, H. Fischer, B. Funke, N. Glatthor, F. Hase, H. Kemnitzer, and S. Zorn (1998), Karlsruhe optimized and precise radiative transfer algorithm. Part I: requirements, justification, and model error estimation, In: Optical Remote Sensing of the Atmosphere and Clouds, pp. 257–256, Edited by Wang, Jinxue, Beiying Wu, Toshihiro Ogawa, and Zheng-hua Guan, SPIE, doi:10.1117/12.317754.
  243. Stone, N. W. B., L. A. A. Read, A. Anderson, I. R. Dagg, and W. Smith (1984), Temperature dependent collision-induced absorption in nitrogenCan. J. Phys., 62, 338–347.
  244. Szudy, J. and W. E. Baylis (1996), Influence of atomic coherence induced by laser-assisted near-resonant collisions on the far-wing absorption profilePhys. Rev., 53(4), 2539–2546.
  245. Taylor, J. P., S. M. Newman, T. J. Hewison, and A. McGrath (2003), Water vapour line and continuum absorption in the thermal infrared-reconciling models and observationsQ. J. R. Meteorol. Soc., 129, 2949–2696, doi:10.1256/qj.03.08.
  246. Thibault, F., V. Menoux, R. Le Doucen, L. Rosenmann, J.-M. Hartmann, and C. Boulet (1997), Infrared collision-induced absorption by O2 near 6.4 μm for atmospheric applications: measurements and empirical modelingAppl. Opt., 36(3), 563–567.
  247. Thomas, M. E. and R. J. Nordstrom (1982), The N2-broadened water vapor absorption line shape and infrared continuum absorption- I. Theoretical developmentJ. Quant. Spectrosc. Radiat. Transfer, 28(2), 81–101.
  248. Thomas, M. E. and R. J. Nordstrom (1982), The N2-broadened water vapor absorption line shape and infrared continuum absorption- II. Implementation of the line shapeJ. Quant. Spectrosc. Radiat. Transfer, 28(2), 102–112.
  249. Thomas, M. E. and R. J. Nordstrom (1985), Line shape model for describing infrared absorption by water vaporAppl. Opt., 24(21), 3526–3530.
  250. Thomas, M. E. (1990), Atmospheric absorption model from 0.01 to 10 wave numbers, In: Propagation Engineering: Third in a Series, pp. 355–363, Edited by Bissonnette, Luc R. and Walter B. Miller, SPIE, doi:10.1117/12.21892.
  251. Thomas, M. E. (1990), Infrared- and millimeter-wavelength continuum absorption in the atmospheric windows: Measurements and modelsInfrared Phys., 30(2), 161–174.
  252. Tinkham, M. and M. W. P. Strandberg (1955), Line Breadths in the Microwave Magnetic Resonance Spectrum of OxygenPhys. Rev., 99(2), 537–539.
  253. Tonkov, M. V., N. N. Filippov, V. V. Bertsev, J. P. Bouanich, N. Van-Thanh, C. Brodbeck, J. M. Hartmann, C. Boulet, F. Thibault, and R. Le Doucen (1996), Measurements and empirical modeling of pure CO2 absorption in the 2.3-μ region at room temperature: far wings, allowed and collision-induced bandsAppl. Opt., 35(24), 4863–4870.
  254. Tretyakov, M. Y., G. Y. Golubiatnikov, V. V. Parshin, M. A. Koshelev, S. E. Myasnikova, A. F. Krupnov, and P. W. Rosenkranz (2004), Experimental study of the line mixing coefficient for 118.75 GHz oxygen lineJ. Molec. Spectro., 223, 31–38.
  255. Tso, H. C. W., D. J. W. Geldart, and P. Chylek (1998), Anharmonicity and cross section for absortion of radiation by water dimerJ. Chem. Phys., 108(13), 5319–5329.
  256. Turner, D. S. (1995), Absorption Coefficient Estimation using a Two-Dimensional Interpolation ProcedureJ. Quant. Spectrosc. Radiat. Transfer, 53(6), 633–637.
  257. Ulaby, F. T. and A. W. Straiton (1969), Atmospheric Attenuation Studies in the 183–325 GHz RegionIEEE Trans. Antennas Propag., 17(3), 337–342.
  258. Ulaby, F. T. (1973), Absorption in the 220 GHz Atmospheric WindowIEEE Trans. Antennas Propag., 266–269.
  259. Valipour, H. (2001), Messung druckinduzierter Effekte an Absorptionslinien von Acetylen, Technische Universitaet Berlin.
  260. van de Hulst, H. C. (1981), Light Scattering by Small Particles, Dover Publications.
  261. Van Kranendonk, J. (1980), Pressure-Narrowing in Induced Absorption, University of Toronto.
  262. Van Vleck, J. H. (1934), Magnetic Dipole Radiation and the Atmospheric Absorption Bands of OxygenAstrophys. J., 80(3), 161–170.
  263. VanVleck, J. H. and D. L. Huber (1977), Absorption, emission, and linebreadths: A semihistorical perspectiveRev. Mod. Phys., 49(4), 939–959, doi:10.1103/RevModPhys.49.939.
  264. Vigasin, A. A. (2000), Collision-Induced Absorption in the Region of the O2 Fundamental: Bandshapes and Dimeric FeaturesJ. Molec. Spectro., 202, 59–66.
  265. Vigasin, A. A. (2000), Water vapor continuous absorption in various mixtures: possible role of weakly bound complexesJ. Quant. Spectrosc. Radiat. Transfer, 64, 25–40.
  266. Vigasin, A. A., Y. I. Baranov, and G. V. Chlenova (2002), Temperature Variations of the Interaction Induced Absorption of CO2 in the ν1, 2ν2 Region: FTIR Measurements and Dimer ContributionsJ. Molec. Spectro., 213, 51–56, doi:10.1006/jmsp.2002.8529.
  267. Vigasin, A. A., E. G. Tarakanova, and G. V. Tchlenova (1993), IR-spectra of (CO2)2 dimers and collision-induced absorption of carbon dioxide in the region of the Fermi doublet (ν1,2ν2)J. Quant. Spectrosc. Radiat. Transfer, 50(5), 695–703.
  268. Vigasin, A. A., T. G. Adiks, E. G. Tarakanov, and G. V. Yukhnevich (1994), Simultaneous Infrared Absorption in a Mixture of CO2 and H2O: The Role of Hydrogen-Bonded AggregatesJ. Quant. Spectrosc. Radiat. Transfer, 52(3/4), 295–301.
  269. Vigasin, A. A. (1996), On the nature of collision-induced absorption in gaseous homonuclear diatomicsJ. Quant. Spectrosc. Radiat. Transfer, 56(3), 409–422.
  270. van Vleck, J. H. (1947), The Absorption of Microwaves by OxygenPhys. Rev., 71(7), 413–424.
  271. Warren, S. (1984), Optical Constants of Ice from the Ultraviolet to the MicrowaveAppl. Opt., 23, 1206–1225, doi:10.1364/AO.23.001206.
  272. Waters, J. W. (1976), Absorption and Emission by Atmospheric GasesMethods of Experimental Physics, 142–176.
  273. Welsh, H. L. (1111), Pressure-induced Absorption Spectra of Hydrogen, University of Toronto.
  274. West, B. G. and M. Mizushima (1966), Absorption Spectrum of the Oxygen Molecule in the 55–65-Gc/sec RegionPhys. Rev., 143(1), 31–32.
  275. Whaley Jr., T. W. and B. M. Fannin (1969), Characteristics of Free-Space Propagation near the 183-GHz H2O LineIEEE Trans. Antennas Propag., 682–684.
  276. Wilheit, T. T. and A. H. Barrett (1970), Microwave Spectrum of Molecular OxygenPhys. Rev., 1(1), 213–215.
  277. Wiscombe, W. J. and J. W. Evans (1977), Exponential-sum fitting of radiative transfer functionsJ. of Comp. Phys., 24, 416–444.
  278. Wittke, J. P. and R. H. Dicke (1956), Redetermination of the Hyperfine Splitting in the Ground State of Atomic HydrogenPhys. Rev., 103(3), 620–631.
  279. Yasmin, K. and R. L. Armstrong (1990), Theoretical modeling of microwave absorption by water vaporAppl. Opt., 29(13), 1979–1983.
  280. Zammit, C. C. and P. A. R. Ade (1981), Zenith atmospheric attenuation measurements at millimetre and sub-millimetre wavelengthsNature, 293, 550–552.
  281. Zelsmann, H. R. (1995), Temperature dependence of the optical constants for liquid H2O and D2O in the far IR regionJ. Molec. Struct., 350, 95–114.
  282. Zender, C. S. and P. Chylek (1998), A Global Climatology of O2 O2, O2 N2, and (H2O)2 Abundance and Absorption, National Center for Atmospheric Research, Dalhouse University, Eight ARM Science Team Meeting Proceedings.
  283. Zender, C. S. (1999), Global climatology of abundance and solar absorption of oxygen collision complexesJ. Geophys. Res., 104(D20), 24,471–24,484.
  284. Zhou, P. and S. Swain (1998), Collisional-dephasing and Doppler-broadening effects on quantum interference in a Vee atomic systemJ. Optical Soc. o. Am., 15(10), 2593–2598.
  285. Zhu, Z., I. P. Matthews, and A. H. Samuel (1995), A microwave spectrometer with a frequency control system employing a frequency "scanning window" locked to the rotational absorption peakRev. Sci. Inst., 66(10), 4817–4823.
  286. Zhu, Z., I. P. Matthews, and A. H. Samuel (1996), Quantitative measurement of analyte gases in a microwave spectrometer using a dynamic sampling methodRev. Sci. Inst., 67(7), 2496–2501.
  287. Zimmerer, P. W. and M. Mizushima (1961), Precise Measurements of the Microwave Absorption Frequencies of the Oxygen Molecule and the Velocity of LightPhys. Rev., 121(1), 152–155.
  288. Zipf, E. C. and S. S. Prasad (2001), O2 N2 photochemistry in the present and Precambrian atmosphereJ. Chem. Phys., 115(13), 5703–5706.
  289. Zvereva, N. A. (2001), Theoretical Description of the Photodissociation Spectrum of Monomer and Dimer Forms of WaterOpt. Spectro., 91(4), 640–644.