Show tag cloud

Filter by author:
Filter by year:
Filter by bibtex key:
Filter by type:
Filter by keyword:
and
and
 

Filtered by keyword:cloudsat

There is currently a filter applied. To see the complete list of publications, clear the filter.
  1. Austin, R. T. and G. L. Stephens (2001), Retrieval of stratus cloud microphysical parameters using millimeter-wave radar and visible optical depth in preparation for CloudSat 1. Algorithm formulationJ. Geophys. Res., 106(D22), 28,233–28,242.
  2. Austin, R. T., A. J. Heymsfield, and G. L. Stephens (2009), Retrieval of ice cloud microphysical parameters using the CloudSat millimeter-wave radar and temperatureJ. Geophys. Res., 114, D00A23, doi:10.1029/2008JD010049.
  3. Baran, A. J., A. Bodas-Salcedo, R. Cottona, and C. Lee (2011), Simulating the equivalent radar reflectivity of cirrus at 94 GHz using an ensemble model of cirrus ice crystals: a test of the Met Office global numerical weather prediction modelQ. J. R. Meteorol. Soc., Not published yet, doi:10.1002/qj.870.
  4. Benedetti, A., G. L. Stephens, and J. M. Haynes (2003), Ice cloud microphysics retrievals from millimeter radar and visible optical depth using an estimation theory approachJ. Geophys. Res., 108(D11), 4335, doi:10.1029/2002JD002693.
  5. Bodas-Salcedo, A., M. J. Webb, M. E. Brooks, M. A. Ringer, K. D. Williams, S. F. Milton, and D. R. Wilson (2008), Evaluating cloud systems in the Met Office global forecast model using simulated CloudSat radar reflectivitiesJ. Geophys. Res., 113, D00A13, doi:10.1029/2007JD009620.
  6. Chen, W. T., C. P. Woods, J.L. Li, D. Waliser, J. D. Chern, W. K. Tao, J. Jiang, and A. M. Tompkins (2010), Partitioning CloudSat Ice Water Content for Comparison with Upper-Tropospheric Ice in Global Atmospheric Models, In: AGU fallmeeting.
  7. Chen, W. T., C. P. Woods, J.L. Li, D. Waliser, J. D. Chern, W. K. Tao, J. Jiang, and A. M. Tompkins (2011), Partitioning CloudSat ice water content for comparison with upper tropospheric ice in global atmospheric modelsJ. Geophys. Res., 116, D19206, doi:10.1029/2010JD015179.
  8. Wang, Z. and K. Sassen (2007), Level 2 cloud scenario classification product process description and interface controll document, Cooperative institute for research in the atmosphere, Colorado State University, CloudSat project document.
  9. Cooper, S. J., T. S. L'Ecuyer, and G. L. Stephens (2003), The impact of explicit cloud boundary information on ice cloud microphysical property retrievals from infrared radiancesJ. Geophys. Res., 108, doi:10.1029/2002JD002611.
  10. Cooper, S. J., T. S. L'Ecuyer, P. Gabriel, A. J. Baran, and G. L. Stephens (2006), Objective Assessment of the Information Content of Visible and Infrared Radiance Measurements for Cloud Microphysical Property Retrievals over the Global Oceans. Part II: Ice CloudsJ. Appl. Meteorol. Clim., 45, 42–62, doi:10.1175/JAM2327.1.
  11. Delanoë, J. and R. J. Hogan (2008), A variational scheme for retrieving ice cloud properties from combined radar, lidar, and infrared radiometerJ. Geophys. Res., 113, D07204, doi:10.1029/2007JD009000.
  12. Delanoë, J. and R. J. Hogan (2010), Combined CloudSat-CALIPSO-MODIS retrievals of the properties of ice cloudsJ. Geophys. Res., 115, D00H29, doi:10.1029/2009JD012346.
  13. Delanoë, J., R. J. Hogan, R. M. Forbes, A. Bodas-Salced, and T. H. M Stein (2011), Evaluation of ice cloud representation in the ECMWF and UK Met Office models using CloudSat and CALIPSO dataQ. J. R. Meteorol. Soc., Not published yet, doi:10.1002/qj.882.
  14. Devasthale, A. and M. A. Thomas (2012), Sensitivity of cloud liquid water content estimates to the temperature dependent thermodynamic phase: a global study using CloudSAT dataJ. Climate, doi:10.1175/JCLI-D-11-00521.1.
  15. Durden, S. and R. Boain (2004), Orbit and Transmit Characteristics of the CloudSat Cloud Profiling Radar (CPR), Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109.
  16. Eriksson, P., M. Ekström, B. Rydberg, D. L. Wu, R. T. Austin, and D. P. Murtagh (2008), Comparison between early Odin-SMR, Aura MLS and CloudSat retrievals of cloud ice mass in the upper tropical troposhereAtmos. Chem. Phys., 8(7), 1937–1948, doi:10.5194/acp-8-1937-2008.
  17. Gong, J. and D. L. Wu (2013), CloudSat-constrained cloud ice water path and cloud top height retrievals from MHS 157 and 183.3 GHz radiancesAtmos. Meas. Tech. Discuss., 6, 8187–8233, doi:10.5194/amtd-6-8187-2013.
  18. Hashino, T., M. Satoh, Y. Hagihara, T. Kubota, T. Matsui, T. Nasuno, and H. Okamoto (2012), Evaluation of cloud distribution and bulk microphysics simulated by a global cloud-resolving model with combined use of CloudSat and CALIPSO measurementsJ. Geophys. Res., to be submitted.
  19. Haynes, J. M., R. T. Marchand, Z. Luo, A. Bodas-Salcedo, and G. L. Stephens (2007), A Multipurpose Radar Simulation Package: QuickBeamBull. Amer. Met. Soc., 1723–1727, doi:10.1175/BAMS-88-11-1723.
  20. Haynes, John M., Tristan S. L'Ecuyer, Graeme L. Stephens, Steven D. Miller, Cristian Mitrescu, Norman B. Wood, and Simone Tanelli (2009), Rainfall retrieval over the ocean with spaceborne W-band radarJ. Geophys. Res., 114, D00A22, doi:10.1029/2008JD009973.
  21. Haynes, J. M., T. H. Vonder Haar, T. L'Ecuyer, and D. Henderson (2013), Radiative heating characteristics of Earth's cloudy atmosphere from vertically resolved active sensorsGeophys. Res. Lett., 40, doi:10.1002/GRL.50145.
  22. Heymsfield, A. J., D. Winker, and G.-J. van Zadelhoff (2005), Extinction-ice water content-effective radius algorithms for CALIPSOGeophys. Res. Lett., 32, doi:10.1029/2005GL022742.
  23. Heymsfield, A. J., Z. Wang, and S. Matrosov (2005), Improved Radar Ice Water Content Retrieval Algorithms Using Coincident Microphysical and Radar MeasurementsJ. Appl. Meteorol., 44, 1391–1412, doi:10.1175/JAM2282.1.
  24. Heymsfield, A. J., A. Protat, R. Austin, D. Bouniol, R. Hogan, J. Delanoë, H. Okamoto, K. Sato, G.-J. van Zadelhoff, D. Donovan, and Z. Wang (2008), Testing IWC Retrieval Methods Using Radar and Ancillary Measurements with In Situ DataJ. Appl. Meteorol. Clim., 47(1), 135–163, doi:10.1175/2007JAMC1606.1.
  25. Hudak, D., H. Barker, P. Rodriguez, and D. Donovan (2006), The Canadian CloudSat Validation Project, In: Proceedings of the 4th European Conference on Radar in Meteorology and Hydrology, Barcelona, Spain, September 18-22, 2006.
  26. Kahn, B. H., M. T. Chahine, G. L. Stephens, G. G. Mace, R. T. Marchand, Z. Wang, C. D. Barnet, A. Eldering, R. E. Holz, R. E. Kuehn, and D. G. Vane (2008), Cloud type comparisons of AIRS, CloudSat, and CALIPSO cloud height and amountAtmos. Chem. Phys., 8, 1231–1248, doi:10.5194/acp-8-1231-2008.
  27. Kato, S., F. G. Rose, S. Sun-Mack, W. F. Miller, Y. Chen, D. A. Rutan, G. L. Stephens, N. G. Loeb, P. Minnis, B. A. Wielicki, D. M. Winkler, T. P. Charlock, P. W. Stackhouse Jr., K.-M. Xu, and W. D. Collins (2011), Improvements of top-of-atmosphere and surface irradiance computations with CALIPSO-, CloudSat-, and MODIS- derived cloud and aerosol propertiesJ. Geophys. Res., 116(D19), D19209, doi:10.1029/2011JD016050.
  28. L'Ecuyer, T. S., G. L. Stevens, and R. T. Austin (2004), Mapping clouds and precipitation with CloudSat and the afternoon A-Train, In: Proceedings of the 3rd European Conference on Radar Meteorology and COST-717 Final Seminar, Visby, Sweden, September 6-10, 2004, pp. 144–149.
  29. L'Ecuyer, T. S., N. B. Wood, T. Haladay, G. L. Stephens, and P. W. Stackhouse Jr. (2008), Impact of clouds on atmospheric heating based on the R04 CloudSat fluxes and heating rates data setJ. Geophys. Res., 113, D00A15, doi:10.1029/2008JD009951.
  30. L'Ecuyer, T. S. and J. H. Jiang (2010), Touring the atmosphere aboard the A-TrainPhys. Today, 63(7), 36–41.
  31. Li, L., G. M. Heymsfield, L. Tian, and P. E. Racette (2005), Measurements of Ocean Surface Backscattering Using an Airborne 94-GHz Cloud Radar—Implication for Calibration of Airborne and Spaceborne W-Band RadarsJ. Atmos. Oceanic Technol., 22, 1033–1045, doi:10.1175/JTECH1722.1.
  32. Liu, C., E. J. Zipser, G. G. Mace, and S. Benson (2008), Implications of the differences between daytime and nighttime CloudSat observations over the tropicsJ. Geophys. Res., 113, 1–11, doi:10.1029/2008JD009783.
  33. Mace, G. G., Q. Zhang, M. Vaughan, R. Marchand, G. Stephens, C. Trepte, and D. Winker (2009), A description of hydrometeor layer occurrence statistics derived from the first year of merged CloudSat and CALIPSO dataJ. Geophys. Res., 114, 1–17, doi:10.1029/2007JD009755.
  34. Mace, G. G. (2009), Cloud properties and radiative forcing over the maritime storm tracks of the Southern Ocean and North Atlantic derived from A-TrainJ. Geophys. Res., 115, D10201, doi:10.1029/2009JD012517.
  35. Matrosov, S. Y. and A. J. Heymsfield (2008), Estimating ice content and extinction in precipitating cloud systems from CloudSat radar measurementsJ. Geophys. Res., 113, 1–8, doi:10.1029/2007JD009633.
  36. Mitrescu, C., S. Miller, J. Hawkins, T L'Ecuyer, J. Turk, P. Partain, and G. Stephens (2007), Near-Real-Time Applications of CloudSat DataJ. Appl. Meteorol. Clim., 47, 1982–1994, doi:10.1175/2007JAMC1794.1.
  37. Molthan, A. L. and W. A. Petersen (2011), Incorporating Ice Crystal Scattering Databases in the Simulation of Millimeter-Wavelength Radar ReflectivityJ. Atmos. Oceanic Technol., 28, 337–351, doi:10.1175/2010JTECHA1511.1.
  38. Pittman, J. V., F. R. Robertson, R. J. Atkinson, and C. Blankenship (2008), Understanding Differences Between Co-Incident CloudSat, Aqua/MODIS and NOAA18 MHS Ice water Path Retrievals Over the Tropical Oceans, In: AGU Fall Meeting Abstracts.
  39. Protat, A., D. Bouniol, J. Delanoe, P. T. May, A. Plana-Fattori, A. Hasson, E. O?Connor, U. Gorsdorf, and A. J. Heymsfield (2009), Assessment of Cloudsat Reflectivity Measurements and Ice Cloud Properties Using Ground-Based and Airborne Cloud Radar ObservationsJ. Atmos. Oceanic Technol., 26, 1717–1741, doi:10.1175/2009JTECHA1246.1.
  40. Protat, A., J. Delanoe, E. J. O'Connor, and T. S. L'Ecuyer (2010), The Evaluation of CloudSat and CALIPSO Ice Microphysical Products Using Ground-Based Cloud Radar and Lidar ObservationsJ. Atmos. Oceanic Technol., 27, 793–810, doi:10.1175/2009JTECHA1397.1.
  41. Reitter, S., K. Fröhlich, A. Seifert, S. Crewell, and M. Mech (2011), Evaluation of ice and snow content in the global numerical weather prediction model GME with CloudSatGeosci. Model Dev., 4(3), 579–589, doi:10.5194/gmd-4-579-2011.
  42. Sassen, K., Z. Wang, V. I. Khvorostyanov, G. L. Stephens, and A. Bennedetti (2002), Cirrus Cloud Ice Water Content Radar Algorithm Evaluation Using an Explicit Cloud Microphysical ModelJ. Appl. Meteorol., 41, 620–628.
  43. Sassen, K., S. Matrosov, and J. Campbell (2007), CloudSat spaceborne 94 GHz radar bright bands in the melting layer: An attenuation-driven upside-down lidar analogGeophys. Res. Lett., 34, L16818, doi:10.1029/2007GL030291.
  44. Sassen, K., Z. Wang, and D. Liu (2008), Global distribution of cirrus clouds from CloudSat/Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) measurementsJ. Geophys. Res., 113, 1–12, doi:10.1029/2008JD009972.
  45. Stein, T. H. M., J. Delanoë, and R. J. Hogan (2011), A Comparison among Four Different Retrieval Methods for Ice-Cloud Properties Using Data from CloudSat, CALIPSO, and MODISJ. Appl. Meteorol. Clim., 50, 1952–1969, doi:10.1175/2011JAMC2646.1.
  46. Stephens, G. L., D. G. Vane, R. J. Boain, G. G. Mace, K. Sassen, Z. Wang, A. J. Illingworth, E. J. O'Connor, W. B. Rossow, S. L. Durden, S. D. Miller, R. T. Austin, A. Benedetti, C. Mitrescu, and the CloudSat Science Team (2002), The CloudSat mission and the A-trainBull. Amer. Met. Soc., 83(12), 1771–1790, doi:10.1175/BAMS-83-12-1771.
  47. Stephens, G. L., D. G. Vane, S. Tanelli, E. Im, S. Durden, M. Rokey, D. Reinke, P. Partain, G. G. Mace, R. Austin, T. L'Ecuyer, J. Haynes, M. Lebsock, K. Suzuki, D. Waliser, D. Wu, J. Kay, A. Gettelman ad Z. Wang, and R. Marchand (2008), CloudSat mission: Performance and early science after the first year of operationJ. Geophys. Res., 113, D00A18, doi:10.1029/2008JD009982.
  48. Stubenrauch, C. J., S. Cros, A. Guignard, and N. Lamquin (2010), A 6-year global cloud climatology from the Atmospheric InfraRed Sounder AIRS and a statistical analysis in synergy with CALIPSO and CloudSatAtmos. Chem. Phys., 10, 7197–7214, doi:10.5194/acp-10-7197-2010.
  49. Tanelli, S., S. L. Durden, E. Im, K. S. Pak, D. G. Reinke, P. Partain, J. M. Haynes, and R. T. Marchand (2008), CloudSat's Cloud Profiling Radar after Two Years in Orbit: Performance, Calibration, and ProcessingIEEE T. Geosci. Remote, 46(11), 3560–3573.
  50. Waliser, D. E., J-L. F. Li, C. P. Woods, R. T. Austin, J. Bacmeister, J. Chern, A. Del Genio, J. H. Jiang, Z. Kuang, H. Meng, P. Minnis, S. Platnick, W. B. Rossow, G. L. Stephens, S. Sun-Mack, W-K. Tao, A. M. Tompkins, D. G. Vane, C. Walker, and D. Wu (2009), Cloud ice: A climate model challenge with signs and expectations of progressJ. Geophys. Res., 114, D00A21, doi:10.1029/2008JD010015.
  51. Waliser, D. E., J.-L. F. Li, T. S. L'Ecuyer, and W.-T. Chen (2011), The impact of precipitating ice and snow on the radiation balance in global climate modelsGeophys. Res. Lett., 38, L06802, doi:10.1029/2010GL046478.
  52. Ward, A., C. Griner, D. Vane, C. Trepte, A. Buis, C. Rink, and K. Lorentz (2005), CloudSat and CALIPSO: Unveiling the Mysteries of Clouds and AerosolsThe Earth Observer, 17(5), 9–13.
  53. Woods, C. P., D. E. Waliser, J.-L. Li, R. T. Austin, G. L. Stephens, and D. G. Vane (2008), Evaluating CloudSat ice water content retrievals using a cloud- resolving model: Sensitivities to frozen particle propertiesJ. Geophys. Res., 113, D00A11, doi:10.1029/2008JD009941.
  54. Wu, D. L., R. T. Austin, M. Deng, S. L. Durden, A. J. Heymsfield, J. H. Jiang, A. Lambert, J.-L. Li, N. J. Livesey, G. M. McFarquhar, J. V. Pittman, G. L. Stephens, S. Tanelli, D. G. Vane, and D. E. Waliser (2009), Comparisons of global cloud ice from MLS, CloudSat, and correlative data setsJ. Geophys. Res., 114, D00A24, doi:10.1029/2008JD009946.
  55. Yang, S. and X. Zou (2012), Assessments of cloud liquid water contributions to GPS radio occultation refractivity using measurements from COSMIC and CloudSatJ. Geophys. Res., 117, D06219, doi:10.1029/2011JD016452.
  56. Young, A. H., J. J. Bates, and J. A. Curry (2013), Application of cloud vertical structure from CloudSat to investigate MODIS-derived cloud properties of cirriform, anvil, and deep convective cloudsJ. Geophys. Res., 118(10), 4689–4699, doi:10.1002/jgrd.50306.