| a-train | abs lookup | absorption | aerosols | aggregation | airs | albedo | algorithm | amsu | annual cycle | anomalies | aqua | ar4 | ar5 | arctic | arm | arts | arts-dev | asr | assimilation | astrophysics | atmosphere | atmospheric composition | atmospheric dynamics | atmospheric profiles | atsr-2 | avhrr | backscattering | basics | bayes | book | calculation | calculations | calibration | calipso | ccn | cdr | ceres | cfmip | chemistry | cia | ciraclim | cirrus | cirrus anvil sublimation | cirrus cloud | cirrus clouds | cirrusstudy | ciwsir/cloudice | claus | climate | climate change | climate dynamics | climate feedbacks | climate sensitivity | climate sensivity | climate variability | climatology | cloud feedback | cloud forcing | cloud fraction | cloud ice | cloud properties | cloud radiative effects | cloud radiative forcing | cloud regimes | clouds | cloudsat | cmip3 | cmip5 | cmip6 | cmsaf | co2 | collocation | comparison | computer science | continua | contrail | convection | convective clouds | convective processes | convective self-aggregation | correlated k | cosmic background | cosmic rays | cosp | cross-calibration | cth | cumulus | dardar | data bases | dda | deep convection | delta m | dimer | disort | diurnal cycle | dmsp | documentation | droplet size | dynamics | earth | earthcare | echam | ecmwf | effective radius | electromagnetism | electron content | elevation | elevation satellite-2 | emd | emissivity | enso | eof-pca-svd | erbe | error assessment | ers | eruption | esa planetary | exoplanets | extraterrestrial | fall speed | far-infrared | faraday-voigt | fcdr | feedback | feedbacks | fingerprinting | flux uav | forcing | forest fire | fox19_airborne_amt.pdf | friend | fun | gcm | genesis | geostationary | gerrit_erca | global warming | gnss | goes | gps | gras | graupel | greenhouse effect | groundbased | hadley circulation | hail | heating rate | heating rates | herschel | hiatus | hirs | history | hsb | humidity | hydrological sensitivity | hydrological sensivity | iasi | ice | ice clouds | ice crystal growth | ice nucleation | ice water | icesat-2 | ici | icon | icz | in situ | infrared | instruments | intercalibration | intercomparison | interference | inverse modelling | ipcc | ir/vis | iris | isccp | ismar | isotopes | itcz | iwc | iwp | iwv | jupiter | kessler scheme | lblrtm | lidar | limb effect | limb sounding | limb-correction | linemixing | lineshape | liquid water | liquid water path | longwave radiation | low-cloud feedback | magnetic field | magnetism | mars | mas | mass-dimension relation | masters thesis | math | megha-tropiques | mendrok | mesoscale organization | meteorology | meteosat | metop | mhs | microphysics | microwave | mipas | mirs | misr | mixed phase | mls | model | modeling | models | modis | monte carlo | mspps | msu | mth | multi-moment scheme | multisensor | mwhs | mwi | net radiation | neural network | nicam | nlte | noaa | nonsphericity | npoess | observation | ocean | ocean reflection | ocean-atmosphere interactions | odin | olr | one-moment scheme | open loop | optical | optical depth | optical properties | optics | orbital drift | orbits | ozone | pacific ocean | particle orientation | particle shape | particle size | particle size distribution | patmos-x | phase function | phd thesis | polarimetry | polarization | polder | potss | precipitation | profile datasets | programming | projection | promet | propagation modeling | python | radar | radiation | radiation profiles | radiative convective equilibrium | radiative equilibrium | radiative feedback | radiative fluxes | radiative forcing | radiative processes | radiative transfer | radiative-convective equilibrium | radiative-equilibrium | radio occultation | radiometers | radiosonde | radiosonde cloud liquid | radiosonde correction | rain | reanalysis | refractive index | relative humidity | remote sensing | retrieval | review | rodgers | rttov | sahara | sahel | sampling | sand/dust | sar | satellite | satellite missions | satellite observations | satellite simulator | sbuehler_habil | scattering | scattering databases | scintillations | scout-amma | self-aggregation | sensor geometry | seviri | shallow convection | simulated annealing | single scattering | smiles | sno | snow | snowfall | software | soil | solar | soot | sounders | spectral information | spectroscopy | split window technique | ssm/i | ssm/t | ssmis | ssmt2 | stability | statistics | ste | stereo | stratosphere | submillimeter | submm | sun | supersaturation | surface | synergies | task2 | tempera | temperature | terra | thermodynamics | time series | titan | toa radiation | top of the atmosphere | total column | tovs | trade-wind clouds | trajectory analysis | trend | trmm | tropical circulation | tropical convection | tropical meteorology | tropics | tropopause | troposphere | ttl | turbulence | tutorial | two-moment scheme | upper troposphere | uth | utls | validation | vater vapor | venus | visualization | volcanic ash | walker circulation | walker rirculation | water | water cycle | water dimer | water vapor | water vapor continuum | water vapour | water vapour path | water-vapour | wind | zeeman |

Hide tag cloud

Filter by author:
Filter by year:
Filter by bibtex key:
Filter by type:
Filter by keyword:
and
and
 

Filtered by keyword:snow

There is currently a filter applied. To see the complete list of publications, clear the filter.
  1. Barthazy, E., S. Göke, R. Schefold, and D. Högl (2004), An optical array instrument for shape and fall velocity measurements of hydrometeorsJ. Atmos. Oceanic Technol., 21(9), 1400–1416, doi:10.1175/1520-0426(2004)021<1400:AOAIFS>2.0.CO;2.
  2. Battaglia, A., E. Rustemeier, A. Tokay, U. Blahak, and C. Simmer (2010), PARSIVEL Snow Observations: A Critical AssessmentJ. Atmos. Oceanic Technol., 27(2), 333–344, doi:10.1175/2009JTECHA1332.1.
  3. Field, P. R., A. J. Heymsfield, and A. Bansemer (2007), Snow Size Distribution Parameterization for Midlatitude and Tropical Ice CloudsJ. Atmos. Sci., 64, 4346–4365, doi:10.1175/2007JAS2344.1.
  4. Geer, A. J. and F. Baordo (2014), Improved scattering radiative transfer for frozen hydrometeors at microwave frequenciesAtmos. Meas. Tech., 7, 1839–1860, doi:10.5194/amt-7-1839-2014.
  5. Gunn, K. L. S. and J. S. Marshall (1958), The distribution with size of aggregate snowflakesJ. Meteorol., 15, 452–461, doi:10.1175/1520-0469(1958)015<0452:TDWSOA>2.0.CO;2.
  6. Harlow, R. C. (2007), Airborne Retrievals of Snow Microwave Emissivity at AMSU Frequencies Using ARTS/SCEM-UAJ. Appl. Meteorol. Clim., 46, 23–35, doi:10.1175/JAM2440.1.
  7. Heymsfield, A. J. and C. D. Westbrook (2010), Advances in the Estimation of Ice Particle Fall Speeds Using Laboratory and Field MeasurementsJ. Atmos. Sci., 67, 2469–2482, doi:10.1175/2010JAS3379.1.
  8. Kidd, C. and V. Levizzani (2011), Status of satellite precipitation retrievalsHydrol. Earth Syst. Sci., 15(4), 1109–1116, doi:10.5194/hess-15-1109-2011.
  9. Kim, M.-J. (2006), Single scattering parameters of randomly oriented snow particles at microwave frequenciesJ. Geophys. Res., 111, D1420, doi:10.1029/2005JD006892.
  10. Kim, M.-J., M. S. Kulie, C. O'Dell, and R. Bennartz (2007), Scattering of Ice Particles at Microwave Frequencies: A Physically Based ParameterizationJ. Appl. Meteorol. Clim., 46(5), 615–633, doi:10.1175/JAM2483.1.
  11. Kneifel, Stefan, U. Löhnert, A. Battaglia, S. Crewell, and D. Siebler (2010), Snow scattering signals in ground-based passive microwave radiometer measurementsJ. Geophys. Res., 115, D16214, doi:10.1029/2010JD013856.
  12. Libbrecht, K. G. (2003), Growth rates of the principal facets of ice between −10°C and −40°CJ. Cryst. Growth, 247(3), 530–540, doi:10.1016/S0022-0248(02)01996-6.
  13. Libbrecht, K. G. (2005), The physics of snow crystalsRep. Prog. Phys., 68(4), 855–895, doi:10.1088/0034-4885/68/4/R03.
  14. Meneghini, R. and L. Liao (2000), Effective Dielectric Constants of Mixed-Phase HydrometeorsJ. Atmos. Oceanic Technol., 17(5), 628–640, doi:10.1175/1520-0426(2000)017<0628:EDCOMP>2.0.CO;2.
  15. Meneghini, R. and L. Liao (1996), Comparisons of Cross Sections for Melting Hydrometeors as Derived from Dielectric Mixing Formulas and a Numerical MethodJ. Appl. Meteorol., 35, 1658–1670, doi:10.1175/1520-0450(1996)035<1658:COCSFM>2.0.CO;2.
  16. Mitchell, D. L. (1996), Use of Mass- and Area Dimensional Power Laws for Determining Precipitation Particle Terminal VelocitiesJ. Atmos. Sci., 53(12), 1710–1723.
  17. Nakaya, U. (1954), Snow Crystals: Natural and Artificial, Harvard University Press, ASIN B0007DNW78.
  18. Newman, A. J., P. A. Kucera, and L. F. Bliven (2009), Presenting the Snowflake Video Imager (SVI)J. Atmos. Oceanic Technol., 26(2), 167–179, doi:10.1175/2008JTECHA1148.1.
  19. Petty, G. W. and W. Huang (2010), Microwave Backscatter and Extinction by Soft Ice Spheres and Complex Snow AggregatesJ. Atmos. Sci., 67, 769–787, doi:10.1175/2009JAS3146.1.
  20. Reitter, S., K. Fröhlich, A. Seifert, S. Crewell, and M. Mech (2011), Evaluation of ice and snow content in the global numerical weather prediction model GME with CloudSatGeosci. Model Dev., 4(3), 579–589, doi:10.5194/gmd-4-579-2011.
  21. Surussavadee, C. and D. H. Staelin (2009), Satellite Retrievals of Arctic and Equatorial Rain and Snowfall Rates Using Millimeter WavelengthsIEEE T. Geosci. Remote, 47, 3697–3707, doi:10.1109/TGRS.2009.2029093.
  22. Szyrmer, W. and I. Zawadzki (2010), Snow Studies. Part II: Average Relationship between Mass of Snowflakes and Their Terminal Fall VelocityJ. Atmos. Sci., 67, 3319–3335, doi:10.1175/2010JAS3390.1.
  23. Tomita, H. (2008), New Microphysical Schemes with Five and Six Categories by Diagnostic Generation of Cloud IceJ. Meteorol. Soc. Jpn., 86A, 121–142, doi:10.2151/jmsj.86A.121.
  24. Tyynelä, J., J. Leinonen, D. Moisseev, and T. Nousiainen (2011), Radar Backscattering from Snowflakes: Comparison of Fractal, Aggregate, and Soft Spheroid ModelsJ. Atmos. Oceanic Technol., 28, 1365–1372, doi:10.1175/JTECH-D-11-00004.1.
  25. Wood, N. B., T. S. L'Ecuyer, A. J. Heymsfield, and G. L. Stephens (2015), Microphysical Constraints on Millimeter-Wavelength Scattering Properties of Snow ParticlesJ. Appl. Meteorol. Clim., 54, 909–931, doi:10.1175/JAMC-D-14-0137.1.