Show tag cloud

Filter by author:
Filter by year:
Filter by bibtex key:
Filter by type:
Filter by keyword:
and
and
 

Filtered by keyword:single scattering

There is currently a filter applied. To see the complete list of publications, clear the filter.
  1. Baran, A. J. (2009), A review of the light scattering properties of cirrusJ. Quant. Spectrosc. Radiat. Transfer, 110, 1239–1260, doi:10.1016/j.jqsrt.2009.02.026.
  2. Baran, A. J. (2012), From the single-scattering properties of ice crystals to climate prediction: A way forwardAtmos. Res., 112, 45–69, doi:10.1016/j.atmosres.2012.04.010.
  3. Baum, B. A., P. Yang, A. J. Heymsfield, A. Bansemer, B. H. Cole, A. Merrelli, C. Schmitt, and C. Wang (2014), Ice cloud single-scattering property models with the full phase matrix at wavelengths from 0.2 to 100 μmJ. Quant. Spectrosc. Radiat. Transfer, 146, 123–139, doi:10.1016/j.jqsrt.2014.02.029.
  4. Berngardt, O. I. (2002), Towards a model of incoherent scatter signal spectra without averaging over sounding runs, Institute of Solar-Terrestrial Physics.
  5. Bozzo, A., T. Maestri, R. Rizzi, and E. Tosi (2008), Parameterization of single scattering properties of mid-latitude cirrus clouds for fast radiative transfer models using particle mixturesGeophys. Res. Lett., 35(16), 1–5, doi:10.1029/2008GL034695.
  6. Cornman, L. B., R. Frehlich, and E. Praskovskaya (1111), The Detection of Upper Level Turbulence Via GPS Occultation Methods, National Center for Atmospheric Research.
  7. Deeter, M. N. and K. F. Evans (1998), A Hybrid Eddington-Single Scattering Radiative Transfer Model for Computing Radiances from Thermally Emitting AtmospheresJ. Quant. Spectrosc. Radiat. Transfer, 60(4), 635–648.
  8. Draine, B. T. and P. J. Flatau (1994), Discrete dipole approximation for scattering calculationsJ. Optical Soc. o. Am. A, 11(4), 1491–1499, doi:10.1364/JOSAA.11.001491.
  9. Edwards, J. M., S. Havemann, J.-C. Telen, and A. J. Baran (2007), A new parametrization for the radiative properties of ice crystals: Comparison with existing schemes and impact in a GCMAtmos. Res., 83, 19–35, doi:10.1016/j.atmosres.2006.03.002.
  10. Evans, K. F. and G. L. Stephens (1995), Microwave Radiative Transfer through Clouds Composed of Realistically Shaped Ice Crystals. Part I: Single Scattering PropertiesJ. Atmos. Sci., 52(11), 2041–2057, doi:10.1175/1520-0469(1995)052<2041:MRTTCC>2.0.CO;2.
  11. Evans, K. F. and G. L. Stephens (1995), Microwave Radiative Transfer through Clouds Composed of Realistically Shaped Ice Crystals. Part II: Remote Sensing of Ice CloudsJ. Atmos. Sci., 52, 2058–2072, doi:10.1175/1520-0469(1995)052<2058:MRTTCC>2.0.CO;2.
  12. Fano, U. (1963), Pressure Broadening as a Prototype of RelaxationPhys. Rev., 131(1), 259–268.
  13. Havemann, S. and A. J. Baran (2001), Extension of T-matrix to scattering of electromagnetic plane waves by non-axisymmetric dielectric particles: application to hexagonal ice cylindersJ. Quant. Spectrosc. Radiat. Transfer, 70(2), 139–158, doi:10.1016/S0022-4073(00)00127-8.
  14. Havemann, S., A. J. Baran, and J. M. Edwards (2003), Implementation of the T-matrix method on a massively parallel machine: a comparison of hexagonal ice cylinder single-scattering properties using T-matrix and improved geometric optics methodJ. Quant. Spectrosc. Radiat. Transfer, 79, 707–720.
  15. Huang, J., Y. Li, and X. Ma (2002), Computation of the Backscattering Power Density for Rainfall in Millimeter Waves BandInt. J. Inf. Millim. Waves, 23(9), 1399–1405.
  16. Kim, M.-J. (2006), Single scattering parameters of randomly oriented snow particles at microwave frequenciesJ. Geophys. Res., 111, D1420, doi:10.1029/2005JD006892.
  17. Liu, G. (2008), A Database of Microwave Single-Scattering Properties for Nonspherical Ice ParticlesBull. Amer. Met. Soc., 89(10), 1563–1570, doi:10.1175/2008BAMS2486.1.
  18. Liu, C. C. and R. L. Dougherty (1999), Development of Radiative Transfer Equations for the Scattering of Polarized Light in a Plane-Parallel MediumJ. Quant. Spectrosc. Radiat. Transfer, 61(1), 1–18.
  19. Macke, A., J. Mueller, and E. Raschke (1996), Single Scattering Properties of Atmospheric Ice CrystalsJ. Atmos. Sci., 53(19), 2813–2825.
  20. Maetzler, C. (2002), Drop-Size Distribution and Mie Computations for Rain, University of Bern.
  21. Meneghini, R. and L. Liao (2000), Effective Dielectric Constants of Mixed-Phase HydrometeorsJ. Atmos. Oceanic Technol., 17(5), 628–640, doi:10.1175/1520-0426(2000)017<0628:EDCOMP>2.0.CO;2.
  22. Meneghini, R. and L. Liao (1996), Comparisons of Cross Sections for Melting Hydrometeors as Derived from Dielectric Mixing Formulas and a Numerical MethodJ. Appl. Meteorol., 35, 1658–1670, doi:10.1175/1520-0450(1996)035<1658:COCSFM>2.0.CO;2.
  23. Mishchenko, M. I., J. W. Hovenier, and L. D. Travis (ed.) (2000), Light Scattering by Nonspherical Particles, Academic Press, ISBN 0-12-498660-9.
  24. Mishchenko, M. I. (2009), Gustav Mie and the fundamental concept of electromagnetic scattering by particles: A perspectiveJ. Quant. Spectrosc. Radiat. Transfer, 110, 1210–1222, doi:10.1016/j.jqsrt.2009.02.002.
  25. Mishchenko, M. I., L. D. Travis, and D. W. Mackowski (1996), T-Matrix Computation of Light Scattering by Nonspherical Particles: A ReviewJ. Quant. Spectrosc. Radiat. Transfer, 55(5), 535–575, doi:10.1016/0022-4073(96)00002-7.
  26. Mishchenko, M. I. and L. D. Travis (1998), Capabilities and limitations of a current FORTRAN implementation of the T-matrix method for randomly oriented rotationally symmetric scatterersJ. Quant. Spectrosc. Radiat. Transfer, 60(3), 309–324, doi:10.1016/S0022-4073(98)00008-9.
  27. Mishchenko, M. I. and L. D. Travis (1999), Introduction to special section: Electromagnetic scattering by nonspherical particlesJ. Geophys. Res., 104, 31,671–31,672.
  28. Nousiainen, T., K. Muinonen, J. Avelin, and A. Sihvola (2001), Microwave backscattering by nonspherical ice particles at 5.6 GHz using second-order perturbation seriesJ. Quant. Spectrosc. Radiat. Transfer, 70, 639–661.
  29. Sioris, C. E. and W. E. J. Evans (2002), Modelling higher order radiation fields using iterated integrals of phase functionJ. Quant. Spectrosc. Radiat. Transfer, 72, 227–236.
  30. Taflove, A. and S. C. Hagness (2005), Computational Electrodynamics: The Finite-Difference Time-Domain Method, Artech House Publishers, ISBN 1-58053-832-0.
  31. Tyynelä, J., J. Leinonen, D. Moisseev, and T. Nousiainen (2011), Radar Backscattering from Snowflakes: Comparison of Fractal, Aggregate, and Soft Spheroid ModelsJ. Atmos. Oceanic Technol., 28, 1365–1372, doi:10.1175/JTECH-D-11-00004.1.
  32. Um, J. and G. M. McFarquhar (2011), Dependence of the single-scattering properties of small ice crystals on idealized shape modelsAtmos. Chem. Phys., 11, 3159–3171, doi:10.5194/acp-11-3159-2011.
  33. Wiscombe, W. J. (1977), The Delta-M Method: Rapid Yet Accurate Radiative Flux Calculations for Strongly Asymmetric Phase FunctionsJ. Atmos. Sci., 34, 1408–1422.
  34. Wiscombe, W. J. (1980), Improved Mie scattering algorithmsAppl. Opt., 19(9), 1505–1509, doi:10.1364/AO.19.001505.
  35. Wriedt, T. (2002), Using the T-Matrix Method for Light Scattering Computations by Non-axisymmetric Particles: Superellipsoids and Realstically Shaped ParticlesPart. Part. Syst. Charact., 19, 256–268.
  36. Wriedt, T. and U. Comberg (1998), Comparison of Computational Scattering MethodsJ. Quant. Spectrosc. Radiat. Transfer, 60(3), 411–423.
  37. Yakovlev, O. I., S. S. Matyugov, and V. A. Anufriev (2003), Scintillations of centimeter waves and the atmospheric irregularities from radio occultation dataRadio Sci., 38(2), doi:10.1029/2000RS002546.
  38. Yakovlev, O. I., S. S. Matyugov, and I. A. Vilkov (1995), Attenuation and scintillation of radio waves in the Earth's atmosphere from radio occultation experiments on satellite-to-satellite linksRadio Sci., 30(3), 591–602.
  39. Yan, Y. (2002), Measuring the Polarization Parameters of Rain by Inverse ScatteringInt. J. Inf. Millim. Waves, 23(7), 1109–1117.
  40. Yang, P., K. N. Liou, K. Wyser, and D. Mitchell (2000), Parameterization of the scattering and absorption properties of individual ice crystalsJ. Geophys. Res., 105(D4), 4699–4718.
  41. Yang, P., B.-C. Gao, B. A. Baum, Y. X. Hu, W. J. Wiscombe, S.-C. Tsay, D. M. Winker, and S. L. Nasiri (2001), Radiative properties of cirrus clouds in the infrared (8–13μm) spectral regionJ. Quant. Spectrosc. Radiat. Transfer, 70, 473–504.
  42. Yang, P., H. Wei, H.-L. Huang, B. A. Baum, Y. X. Hu, G. W. Kattawar, M. I. Mishchenko, and Q. Fu (2005), Scattering and absorption property database for nonspherical ice particles in the near- through far-infrared spectral regionAppl. Opt., 44(26), 5512–5523, doi:10.1364/AO.44.005512.
  43. Yang, P. and K. N. Liou (1996), Finite-difference time domain method for light scattering by small ice crystals in three-dimensional spaceJ. Optical Soc. o. Am. A, 13, 2072–2085, doi:10.1364/JOSAA.13.002072.
  44. Yang, P. and K. N. Liou (1998), Single-Scattering Properties of Complex Ice Crystals in Terrestrial AtmosphereContr. Atmos. Phys., 71(2), 223–248.
  45. Yeh, C., R. Woo, A. Ishimaru, and J. Armstrong (1982), Scattering by single ice needles and plates at 30 GHzRadio Sci., 17(6).
  46. Zhang, G., J. Vivekanandan, and M. K. Politovich (1999), Scattering Effects on Microwave Passive Remote Sensing of Cloud Parameters, National Center for Atmospheric Research.