There is currently a filter applied. To see the complete list of publications, clear the filter.
Group references
In the Pipeline
Articles
2014
Holl, G., S. Eliasson, J. Mendrok, and S. A. Buehler (2014), SPARE-ICE: synergistic Ice Water Path from passive operational sensors, J. Geophys. Res., 119(3), 1504–1523, doi:10.1002/2013JD020759.
Eliasson, S., G. Holl, S. A. Buehler, T. Kuhn, M. Stengel, F. Iturbe-Sanchez, and M. Johnston (2013), Systematic and random errors between collocated satellite ice water path observations, J. Geophys. Res., 118, 1–14, doi:10.1029/2012JD018381.
Johnston, M. S., P. Eriksson, S. Eliasson, C. Jones, R. Forbes, and D. P. Murtagh (2012), The representation of tropical upper tropospheric water in EC Earth V2, Climate Dynamics, 39(11), 2713–2731, doi:10.1007/s00382-012-1511-0.
Rydberg, B., P. Eriksson, S. A. Buehler, and D. P. Murtagh (2009), Non-Gaussian Bayesian retrieval of tropical upper tropospheric cloud ice and water vapour from Odin-SMR measurements, Atmos. Meas. Tech., 2, 621–637, doi:10.5194/amt-2-621-200.
Holl, G. (2013), Remote sensing of ice clouds: synergistic measurements and radiative transfer simulations, Ph.D. thesis, Luleå University of Technology, Department of Computer Science, Electrical and Space Engineering Division of Space Technology.
Eliasson, S. (2013), Ice clouds in satellite observations and climate models, Ph.D. thesis, Luleå University of Technology, Department of Computer Science, Electrical and Space Engineering Division of Space Technology, ISBN 978-91-7439-544-0 ISSN: 1402-1544.
Eliasson, S. (2011), Ice clouds in satellite observations and climate models, Luleå University of Technology, Department of Computer Science, Electrical and Space Engineering Division of Space Technology, Licentiate thesis, ISSN: 1402-1757, ISBN: 978-91-7439-312-5.
Articles in Conference Proceedings and Newsletters
Internal Reports
External references
Austin, R. T., A. J. Heymsfield, and G. L. Stephens (2009), Retrieval of ice cloud microphysical parameters using the CloudSat millimeter-wave radar and temperature, J. Geophys. Res., 114, D00A23, doi:10.1029/2008JD010049.
Baran, A. J., P. J. Connolly, A. J. Heymsfield, and A. Bansemer (2010), Using in situ estimates of ice water content, volume extinction coefficient, and the total solar optical depth obtained during the tropical ACTIVE campaign to test an ensemble model of cirrus ice crystals, Q. J. R. Meteorol. Soc., doi:10.1002/qj.731.
Boukabara, S.-A., K. Garrett, W. Chen, F. Iturbide-Sanchez, C. Grassotti, C. Kongoli, R. Chen, Q. Liu, B. Yan, F. Weng, R. Ferraro, T. J. Kleespies, and H. Meng (2011), MiRS: An All-Weather 1DVAR Satellite Data Assimilation and Retrieval System, IEEE T. Geosci. Remote, 49(9), 3249–3272, doi:10.1109/TGRS.2011.2158438.
Chen, W. T., C. P. Woods, J.L. Li, D. Waliser, J. D. Chern, W. K. Tao, J. Jiang, and A. M. Tompkins (2011), Partitioning CloudSat ice water content for comparison with upper tropospheric ice in global atmospheric models, J. Geophys. Res., 116, D19206, doi:10.1029/2010JD015179.
Choi, Y-S. and C-H. Ho (2006), Radiative effect of cirrus with different optical properties over the tropics in MODIS and CERES observations, Geophys. Res. Lett., 33, L21811, doi:10.1029/2006GL027403.
Deng, M., G. G. Mace, Z. Wang, and H. Okamoto (2010), Tropical Composition, Cloud and Climate Coupling Experiment validation for cirrus cloud profiling retrieval using CloudSat radar and CALIPSO lidar, J. Geophys. Res., 115, D00J15, doi:10.1029/2009JD013104.
Deng, M., G. G. Mace, Z. Wang, and R. P. Lawson (2013), Evaluation of Several A-Train Ice Cloud Retrieval Products with In Situ Measurements Collected during the SPARTICUS Campaign, J. Appl. Meteorol. Clim., 52(4), 1014–1030, doi:10.1175/JAMC-D-12-054.1.
Devasthale, A. and M. A. Thomas (2012), Sensitivity of cloud liquid water content estimates to the temperature dependent thermodynamic phase: a global study using CloudSAT data, J. Climate, doi:10.1175/JCLI-D-11-00521.1.
Evans, K. F. and G. L. Stephens (1995), Microwave Radiative Transfer through Clouds Composed of Realistically Shaped Ice Crystals. Part I: Single Scattering Properties, J. Atmos. Sci., 52(11), 2041–2057, doi:10.1175/1520-0469(1995)052<2041:MRTTCC>2.0.CO;2.
Evans, K. F. and G. L. Stephens (1995), Microwave Radiative Transfer through Clouds Composed of Realistically Shaped Ice Crystals. Part II: Remote Sensing of Ice Clouds, J. Atmos. Sci., 52, 2058–2072, doi:10.1175/1520-0469(1995)052<2058:MRTTCC>2.0.CO;2.
Guan, B., D. E. Waliser, J.-L. F. Li, and A. da Silva (2013), Evaluating the impact of orbital sampling on satellite-climate model comparisons, J. Geophys. Res., 118, 1–15, doi:10.1029/2012JD018590.
Guignard, A., C. J. Stubenrauch, A. J. Baran, and R. Armante (2012), Bulk microphysical properties of semi-transparent cirrus from AIRS: a six year global climatology and statistical analysis in synergy with geometrical profiling data from CloudSat-CALIPSO, Atmos. Chem. Phys., 12, 503–525, doi:10.5194/acp-12-503-2012.
Heymsfield, A. J., S. Matrosov, and B. Baum (2003), Ice water path - optical depth relationships for cirrus and deep stratiform ice cloud layers, J. Appl. Meteorol., 42(20), 1369–1390.
Hong, G., P. Yang, B.-C. Gao, B. A. Baum, Y. X. Hu, M. D. King, and S. Platnick (2007), High Cloud Properties from Three Years of MODIS Terra and Aqua Collection-4 Data over the Tropics, J. Appl. Meteorol. Clim., 46, doi:10.1175/2007JAMC1583.1.
Hong, G., P. Yang, H.-L. Huang, B. A. Baum, Y. Hu, and S. Platnick (2007), The Sensitivity of Ice Cloud Optical and Microphysical Passive Satellite Retrievals to Cloud Geometrical Thickness, IEEE T. Geosci. Remote, 45(5), doi:10.1109/TGRS.2007.894549.
Jiang, J. H., H. Su, C. Zhai, V. S. Perun, A. Del Genio, L. S. Nazarenko, L. J. Donner, L. Horowitz, C. Seman, J. Cole, A. Gettelman, M. A. Ringer, L. Rotstayn, S. Jeffrey, T. Wu, F. Brient, J.-L. Dufresne, H. Kawai, T. Koshiro, M. Watanabe, T. S. L'Ecuyer, E. M. Volodin, T. Iversen, H. Drange, M. D. S. Mesquita, W. G. Read, J. W. Waters, B. Tian, J. Teixeira, and G. L. Stephens (2012), Evaluation of cloud and water vapor simulations in CMIP5 climate models using NASA "A-Train" satellite observations, J. Geophys. Res., 117, D14105, doi:10.1029/2011JD017237.
Kristjánsson, J. E., J. M. Edwards, and D. L. Mitchell (2000), Impact of a new scheme for optical properties of ice crystals on climates of two GCMs, J. Geophys. Res., 105(D8), 10063–10079, doi:10.1029/2000JD900015.
L'Ecuyer, T. S., N. B. Wood, T. Haladay, G. L. Stephens, and P. W. Stackhouse Jr. (2008), Impact of clouds on atmospheric heating based on the R04 CloudSat fluxes and heating rates data set, J. Geophys. Res., 113, D00A15, doi:10.1029/2008JD009951.
Li, J.-L. F., D. E. Waliser, W.-T. Chen, B. Guan, T. Kubar, G. Stephens, H.-Y. Ma, M. Deng, L. Donner, C. Seman, and L. Horowitz (2012), An observationally based evaluation of cloud ice water in CMIP3 and CMIP5 GCMs and contemporary reanalyses using contemporary satellite data, J. Geophys. Res., 117, D16105, doi:10.1029/2012JD017640.
Liu, G. and E.-K. Seo (2013), Detecting snowfall over land by satellite high-frequency microwave observations: The lack of scattering signature and a statistical approach, J. Geophys. Res., 118(3), 1376–1387, doi:10.1002/jgrd.50172.
Liu, G. and J. A. Curry (1999), Tropical Ice Water Amount and Its Relations to Other Atmospheric Hydrological Parameters as Inferred from Satellite Data, J. Appl. Meteorol., 38, 1182–1194.
Meyer, K., P. Yang, and B.-C. Gao (2006), Tropical ice cloud optical depth, ice water path, and frequency fields inferred from the MODIS level-3 data, Atmos. Res., 85, 171–182, doi:10.1016/j.atmosres.2006.09.009.
Pittman, J. V., F. R. Robertson, R. J. Atkinson, and C. Blankenship (2008), Understanding Differences Between Co-Incident CloudSat, Aqua/MODIS and NOAA18 MHS Ice water Path Retrievals Over the Tropical Oceans, In: AGU Fall Meeting Abstracts.
Posselt, D. J., T. S. L'Ecuyer, and G. L. Stephens (2008), Exploring the error characteristics of thin ice cloud property retrievals using a Markov chain Monte Carlo algorithm, J. Geophys. Res., 113, D24206, doi:10.1029/2008JD010832.
Reitter, S., K. Fröhlich, A. Seifert, S. Crewell, and M. Mech (2011), Evaluation of ice and snow content in the global numerical weather prediction model GME with CloudSat, Geosci. Model Dev., 4(3), 579–589, doi:10.5194/gmd-4-579-2011.
Stein, T. H. M., J. Delanoë, and R. J. Hogan (2011), A Comparison among Four Different Retrieval Methods for Ice-Cloud Properties Using Data from CloudSat, CALIPSO, and MODIS, J. Appl. Meteorol. Clim., 50, 1952–1969, doi:10.1175/2011JAMC2646.1.
Sun, N. and F. Weng (2012), Retrieval of Cloud Ice Water Path from Special Sensor Microwave Imager/Sounder (SSMIS), J. Appl. Meteorol. Clim., 51(2), 366–379, doi:10.1175/JAMC-D-11-021.1.
Vivekanandan, J., J. Turk, and V. N. Bringi (1991), Ice Water Path Estimation and Characterization Using Passive Microwave Radiometry, J. Appl. Meteorol., 30, 1407–1421.
Walther, A. and A. K. Heidinger (2012), Implementation of the Daytime Cloud Optical and Microphysical Properties Algorithm (DCOMP) in PATMOS-x, J. Appl. Meteorol. Clim., doi:10.1175/JAMC-D-11-0108.1.
Wu, D. L., J. H. Jiang, W. G. Read, R. T. Austin, C. P. Davis, A. Lambert, G. L. Stephens, D. G. Vane, and J. W. Waters (2008), Validation of the Aurs MLS cloud ice water content measurements, J. Geophys. Res., 113, D15S10, doi:10.1029/2007JD008931.
Yang, P., K. N. Liou, K. Wyser, and D. Mitchell (2000), Parameterization of the scattering and absorption properties of individual ice crystals, J. Geophys. Res., 105(D4), 4699–4718.
Zhang, Z., S. Platnick, P. Yang, A. K. Heidinger, and J. M. Comstock (2010), Effects of ice particle size vertical inhomogeneity on the passive remote sensing of ice clouds, J. Geophys. Res., 115, D17203, doi:10.1029/2010JD013835.