All Publications
Below is the combined list of references from refs_sat.bib and
refs_external.bib. It is intended for our group's internal use.
|
2c-ice
|
a-train
|
abs lookup
|
absorption
|
active
|
aerosol
|
aerosols
|
age of air
|
aggregation
|
airs
|
albedo
|
algorithm
|
amsos
|
amsu
|
annual cycle
|
anomalies
|
aqua
|
ar4
|
ar5
|
arctic
|
arm
|
arts
|
arts-dev
|
asr
|
assimilation
|
astronomy
|
astrophysics
|
asymmetry
|
atmosphere
|
atmospheric composition
|
atmospheric dynamics
|
atmospheric profiles
|
atsr-2
|
avhrr
|
bachelor thesis
|
backscattering
|
basics
|
bayes
|
bias
|
biomass
|
book
|
calculation
|
calculations
|
calibration
|
calipso
|
ccn
|
cdr
|
ceres
|
cfmip
|
chemistry
|
cia
|
ciraclim
|
cirrus
|
cirrus anvil sublimation
|
cirrus cloud
|
cirrus clouds
|
cirrusstudy
|
ciwsir/cloudice
|
claus
|
cliccs
|
climate
|
climate change
|
climate dynamics
|
climate feedbacks
|
climate sensitivity
|
climate sensivity
|
climate variability
|
climatology
|
cloud feedback
|
cloud forcing
|
cloud fraction
|
cloud ice
|
cloud ice mission
|
cloud optical thickness
|
cloud properties
|
cloud radiative effects
|
cloud radiative forcing
|
cloud regimes
|
cloud top pressure
|
cloudice mission
|
clouds
|
cloudsat
|
clustering
|
cmip3
|
cmip5
|
cmip6
|
cmsaf
|
co2
|
collocation
|
collocations
|
comparison
|
computer science
|
continua
|
contrail
|
convection
|
convective clouds
|
convective processes
|
convective self-aggregation
|
correlated k
|
cosmic background
|
cosmic rays
|
cosp
|
cost 723 qjrms
|
cross-calibration
|
cth
|
cumulus
|
dardar
|
data assimilation
|
data bases
|
dda
|
deep convection
|
delta m
|
dimer
|
disort
|
diurnal cycle
|
dlr-smiles
|
dmsp
|
documentation
|
doppler
|
droplet size
|
dynamics
|
earth
|
earthcare
|
ec earth
|
echam
|
ecmwf
|
effective radius
|
electromagnetism
|
electron content
|
elevation
|
elevation satellite-2
|
emd
|
emde
|
emissivity
|
enso
|
eof-pca-svd
|
erbe
|
error assessment
|
ers
|
eruption
|
esa planetary
|
exoplanets
|
extraterrestrial
|
fall speed
|
far-infrared
|
faraday-voigt
|
fcdr
|
feedback
|
feedbacks
|
fingerprinting
|
flux uav
|
forcing
|
forest fire
|
fox19_airborne_amt.pdf
|
friend
|
fun
|
fuzzy inference system
|
fuzzy logic
|
gcm
|
genesis
|
geostationary
|
gerrit_erca
|
global warming
|
gnss
|
goes
|
gps
|
gras
|
graupel
|
gravitational lensing
|
greenhouse effect
|
ground-based
|
groundbased
|
habil
|
hadley circulation
|
hail
|
hamburg
|
heating rate
|
heating rates
|
herschel
|
hiatus
|
hirs
|
history
|
hsb
|
humidity
|
hydrological sensitivity
|
hydrological sensivity
|
hydrometeors
|
iasi
|
ice
|
ice clouds
|
ice crystal growth
|
ice nucleation
|
ice water
|
icesat-2
|
ici
|
icon
|
icz
|
in situ
|
infrared
|
infrared sounder
|
instruments
|
inter-calibration
|
intercalibration
|
intercomparison
|
interference
|
inverse modelling
|
ipcc
|
ir
|
ir/vis
|
iris
|
isccp
|
ismar
|
isotopes
|
itcz
|
iwc
|
iwp
|
iwv
|
john
|
jupiter
|
kalpana
|
kessler scheme
|
lblrtm
|
licentiate thesis
|
lidar
|
limb effect
|
limb sounding
|
limb-correction
|
linemixing
|
lineshape
|
liquid water
|
liquid water path
|
longwave radiation
|
low-cloud feedback
|
magnetic field
|
magnetism
|
mars
|
mas
|
mass-dimension relation
|
master thesis
|
masters thesis
|
math
|
megha-tropiques
|
mendrok
|
mesoscale organization
|
meteorology
|
meteosat
|
methane ocean
|
metop
|
mhs
|
microphysics
|
microwave
|
microwave humidity
|
microwave radiometry
|
milz
|
mipas
|
mirs
|
misr
|
mixed phase
|
mls
|
model
|
modeling
|
models
|
modis
|
monte carlo
|
moon
|
mspps
|
msu
|
mth
|
multi-moment scheme
|
multisensor
|
mwhs
|
mwi
|
net radiation
|
neural network
|
nicam
|
nlte
|
noaa
|
nonsphericity
|
npoess
|
observation
|
ocean
|
ocean reflection
|
ocean-atmosphere interactions
|
odin
|
olr
|
one-moment scheme
|
open loop
|
optical
|
optical depth
|
optical properties
|
optics
|
orbital drift
|
orbital drift correction
|
orbits
|
ozone
|
pacific ocean
|
particle orientation
|
particle shape
|
particle size
|
particle size distribution
|
passive
|
patmos-x
|
phase function
|
phd thesis
|
planetary evolution
|
polarimetry
|
polarization
|
polder
|
potss
|
precipitation
|
profile datasets
|
programming
|
projection
|
promet
|
propagation modeling
|
python
|
radar
|
radiation
|
radiation profiles
|
radiative convective equilibrium
|
radiative equilibrium
|
radiative feedback
|
radiative fluxes
|
radiative forcing
|
radiative processes
|
radiative transfer
|
radiative-convective equilibrium
|
radiative-equilibrium
|
radio occultation
|
radiometer
|
radiometers
|
radiosonde
|
radiosonde cloud liquid
|
radiosonde correction
|
radiosonde corrections
|
rain
|
reanalysis
|
refractive index
|
relative humidity
|
remote sensing
|
retrieval
|
retrievals
|
review
|
rodgers
|
rttov
|
sahara
|
sahel
|
sampling
|
sand/dust
|
sar
|
satellite
|
satellite missions
|
satellite observations
|
satellite simulator
|
sbuehler_habil
|
scattering
|
scattering databases
|
scintillations
|
scout-amma
|
self-aggregation
|
sensor geometry
|
seviri
|
shallow convection
|
simulated annealing
|
single scattering
|
smiles
|
sno
|
snow
|
snowfall
|
software
|
soil
|
solar
|
soot
|
sounders
|
spectral information
|
spectroscopy
|
split window technique
|
sreerekha
|
ssm/i
|
ssm/t
|
ssmis
|
ssmt2
|
stability
|
stars
|
statistics
|
ste
|
stereo
|
stratosphere
|
submillimeter
|
submm
|
sun
|
supersaturation
|
surface
|
synergies
|
synergy
|
task2
|
tempera
|
temperature
|
terra
|
thermodynamics
|
time series
|
titan
|
tkuhn
|
toa radiation
|
top of the atmosphere
|
total column
|
tovs
|
trade-wind clouds
|
trajectory analysis
|
trend
|
trmm
|
tropical circulation
|
tropical convection
|
tropical meteorology
|
tropics
|
tropopause
|
troposphere
|
ttl
|
turbulence
|
tutorial
|
two-moment scheme
|
upper troposphere
|
uth
|
uthmos
|
utls
|
validation
|
vater vapor
|
venus
|
visualization
|
volcanic ash
|
walker
|
walker circulation
|
walker rirculation
|
water
|
water cycle
|
water dimer
|
water vapor
|
water vapor continuum
|
water vapour
|
water vapour path
|
water-vapour
|
wind
|
zeeman
|
Hide tag cloud
Filtered by keyword:cirrusstudy
There is currently a filter applied. To see the complete list of publications,
clear the filter.
Group references
In the Pipeline
Articles
2003 
- Miao, J., K.-P. Johnsen, S. A. Buehler, and A. Kokhanovsky (2003), The potential of polarization measurements from space at mm and sub-mm wavelengths for determining cirrus cloud parameters, Atmos. Chem. Phys., 3, 39–48, doi:10.5194/acp-3-39-2003.
Books and Book Contributions
Theses
Technical Reports and Proposals
Articles in Conference Proceedings and Newsletters
2002 
- Heygster, G., J. Miao, and S. Buehler (2002), Single scattering of partly oriented aspherical cloud ice particles at sub-millimeter wavelenths, In: IGARSS Geoscience and Remote Sensing Symposium, Proceedings.
Internal Reports
External references
- Appleman, H. S. (1953), The formation of exhaust condensation trails by jet aircraft, Bull. Amer. Met. Soc., 34, 14–20.
- Arnott, W., W. P. Dong, Y. Ya, and J. Hallett (1995), Extinction efficiency in the IR (2-18 micron) of laboratory ice clouds: Observation of scattering minima in Christiansen bands of ice, J. Appl. Opt., 34, 541–551.
- Astin, I. (1997), A survey of studies into errors in large scale space-time averages of rainfall, cloud cover, sea surface processes and the earth's radiation budget as derived from low earth orbit satellite instruments because of their incomplete temporal and spatial coverage, Sur. Geophy., 18, 384–403.
- Aumann, H. H., M. T. Chahine, C. Gautier, M. D. Goldberg, E. Kalnay, L. M. McMillin, H. Revercomb, P. W. Rosenkranz, W. L. Smith, D. H. Staelin, L. L. Strow, and J. Susskind (2003), AIRS/AMSU/HSB on the Aqua mission: Design, science objectives, data products, and processing systems, IEEE T. Geosci. Remote, 41(2), 253–264.
- Bailey, M. and J. Hallet (2003), Growth rates and habits of ice crystals between -20° and -70°, J. Atmos. Sci., 61, 514–544.
- Baran, A. J., P. N. Francis, L.C. Labonnote, and M. Doutriaux-Boucher (2001), A scattering phase function for ice cloud : Tests of applicability using aircraft and satellite multi-angle multi-wavelength radiance measurements of cirrus, Q. J. R. Meteorol. Soc., 127, 2395–2416.
- Baran, A. J., S. Havemann, P. N. Francis, and P. D. Watts (2003), A consistent set of single-scattering properties for cirrus cloud: tests using radiance measurements from a dual-viewing multi-wavelength satellite-based instrument, J. Quant. Spectrosc. Radiat. Transfer, 79–80, 549–567.
- Baran, A. J. (2003), Simulation of infrared scattering from ice aggregates using a size/shape distribution of ice cylinders, Appl. Opt., 42, 2811–2818.
- Baran, A. J. and P. N. Francis (2004), On the radiative properties of cirrus cloud at solar and thermal wavelengths: A test of model consistency using high-resolution airborne radiance measurements, Q. J. R. Meteorol. Soc., 130, 1–16.
- Baran, A. J. (2005), The dependence of cirrus infrared radiative properties in ice crystal geometry and shape of the size-distribution function, Q. J. R. Meteorol. Soc., 131, 1129–1142.
- Baran, A. J., P. D. Watts, and J. S. Foot (1998), Potential retrieval of dominating crystal habit and size using radiance data from a dual-view and multiwavelength instrument: A tropical cirrus anvil case, J. Geophys. Res., 103, 6075–6082.
- Baran, A. J., P. D. Watts, and P. N. Francis (1999), Testing the coherence of microphysical and bulk properties retrieved from dual-viewing multispectral satellite radiance measurements, J. Geophys. Res., 104, 31673–31683.
- Barkstrom, B. R. (1984), The Earth Radiation Budget Experiment (ERBE), Bull. Amer. Met. Soc., 74.
- Baum, B. A., A. J. Heymsfield, P. Yang, and S. T. Bedka (2005), Bulk Scattering Properties for the Remote Sensing of Ice Clouds. Part I: Microphysical Data and Models, J. Appl. Meteorol., 44, 1885–1895.
- Baum, B. A., P. Yang, A. J. Heymsfield, S. Platnick, M. D.King, Y.-X. Hu, and S. T. Bedka (2005), Bulk Scattering Properties for the Remote Sensing of Ice Clouds. Part II: Narrowband Models, J. Appl. Meteorol., 44, 1896–1911.
- Bizzarri, B., et al. (2005), Geostationary Observation for Microwave Atmospheric Sounding (GOMAS), CNR Istiuto di Scienze dell'Atmosfera e del Clima (ISAC).
- Boucher, O. (1999), Air traffic may increase cirrus cloudiness, Nature, 397, 30–31.
- Boudala, F. S., G. A. Isaac, Q. Fu, and S. G. Cober (2002), Parameterization of effective ice particle size for high-latitude clouds, Int. J. Climatol., 22(10), 1267–1284.
- Breon, F.-M. and B. Dubrulle (2004), Horizontally Oriented Plates in Clouds, J. Atmos. Sci., 61, 2888–2898.
- Chandrasekar, V., W. Li, and B. Zafar (2005), Estimation of raindrop size distribution from spaceborne radar observations, IEEE T. Geosci. Remote, 43(5), 1078–1086, doi:10.1109/TGRS.2005.846130.
- Charlton, J., M. L. Jarrett, M. E. Humphries, R. K. Child, N. L. Atkinson, T. J. Hewison, A. Slingo, D. A. V. Spilling, J. M. Higgins, M. A. Bray, P. R. Foster, and D. N. Matheson. (2002), Study on Future Microwave and Millimetre-wave Radiometer Requirements and Concepts, Final Report, ESTEC Contract No 14841/01/NL/MM.
- Charlton, J., B. Moyna, C. Lee, and E. Defer (2010), Study of a Sub-millimetre Wave Airborne Demonstrator for Observations of Precipitation and Ice Clouds, Final Report, ESTEC Contract No. 20927/07/NL/JA.
- Chen, T., W. B. Rossow, and Y. Zhang (2000), Radiative Effects of Cloud-Type Variations, J. Climate, 13(1), 264–286.
- Chepfer, H., P. Goloub, J. Riedi, J. F. De Haan, J. W. Hovenier, and P. H. Flamant (2001), Ice crystal shapes in cirrus clouds derived from POLDER/ADEOS-1, J. Geophys. Res., 106(D8), 7955–7966, doi:10.1029/2000JD900285.
- Chepfer, H., G. Brogniez, and Y. Fouquart (1998), Cirrus coulds' microphysical properties deduced from POLDER observations, J. Quant. Spectrosc. Radiat. Transfer, 60(3), 375–390.
- Chepfer, H., G. Brogniez, P. Goloub, F. M. Breon, and P. H. Flamant (1999), Observations of horizontally oriented ice crystals in cirrus clouds with POLDER-1/ADEOS-1, J. Quant. Spectrosc. Radiat. Transfer, 63, 521–543.
- Clark, H. L., R. S. Harwood, A. Billingham, and H. C. Pumphrey (2003), Cirrus and water vapor in the tropical tropopause layer observed by Upper Atmosphere Research Satellite (UARS), J. Geophys. Res., 108(D24), doi:10.1029/2003JD003748.
- Crutzen, P. J. (2006), Albedo enhancement by stratospheric sulfur injections: A contribution to resolve a policy dilemma?, Max-Planck-Institute for Chemistry Department of Atmospheric Chemistry and University of California.
- Curry, J. A., et al. (2000), FIRE Arctic Clouds Experiment, Bull. Amer. Met. Soc., 81(1).
- Deeter, M. N. and K. F. Evans (2000), A Novel Ice-Cloud Retrieval Algorithm Based on the Millimeter-Wave Imaging Radiometer (MIR) 150- and 220-GHz Channels, J. Appl. Meteorol., 39, 623–633.
- DelGenio, A. D. (2002), GCM simulations of cirrus for climate studies, In: Cirrus, pp. 310–326, Edited by Lynch, D. K., K. Sassen, D. Starr, and G. Stephens, Oxford University Press.
- DelGenio, A. D., M.-S. Yao, W. Kovari, and K. K.-W. Lo (1996), A Prognostic Cloud Water Parameterization for Global Climate Models, J. Climate, 9(2), 270–304.
- Deschamps, P. Y., F. M. Breon, M. Leroy, A. Podaire, A. Bricaud, J. C. Buriez, and G. Seze (1994), The POLDER mission - Instrument characteristics and scientific objectives, IEEE T. Geosci. Remote, 32(3), 598–615.
- Doms, G. and U. Schaettler (1999), The nonhydrostatic Limited-Area Model LM (Lokal-Modell) of DWD. Part I: Scientific Documentation. DWD, GB Forschung und Entwicklung, DWD.
- Donner, L. J., C. J. Seman, B. J. Soden, R. S. Hemler, J. C. Warren, J. Stroem, and K.-N. Liou (1997), Large-scale ice clouds in the GFDL SKYHI general circulation model, J. Geophys. Res., 102, 21745–21768.
- Donovan, D. P. (2003), Ice-cloud effective particle size parameterization based on combined lidar, radar reflectivity, and mean Doppler velocity measurements, J. Geophys. Res., 108(D18), doi:10.1029/2003JD003469.
- Dowling, D. R. and L. F. Radke (1990), A summary of the physical properties of cirrus clouds, J. Appl. Meteorol., 29, 970–978.
- Duda, P.D., P. Minnis, L. Nguyen, and R. Palikonda (2004), A case study of the development of contrail clusters over the Great lakes, J. Atmos. Sci., 61, 1132–1146.
- Eguchi, N. and M. Shiotani (2004), Intraseasonal variations of water vapor and cirrus clouds in the tropical upper troposphere, J. Geophys. Res., 109(D18), doi:10.1029/2003JD004314.
- ESA (2001), The Five Candidate Earth Explorer Core Missions - EarthCARE- Earth Clouds, Aerosols and Radiation Explorer, European Space Agency Agence spatiale europeenne.
- Evans, K. F., S. J. Walter, A. J. Heymsfield, and G. M. McFarquhar (2002), Submillimeter-Wave Cloud Ice Radiometer: Simulations of retrieval algorithm performance, J. Geophys. Res., 107(D3), doi:10.1029/2001JD000709.
- Evans, K. F. and W. J. Wiscombe (2004), An algorithm for generating stochastic cloud fields from radar profile statistics, Atmos. Res., 72, 263–289.
- Evans, K. F. (2004), Submillimeter-wave Ice Cloud Radiometry Channel Selection Study, Univerity of Colorado, Boulder.
- Evans, K. F. and G. L. Stephens (1995), Microwave Radiative Transfer through Clouds Composed of Realistically Shaped Ice Crystals. Part I: Single Scattering Properties, J. Atmos. Sci., 52(11), 2041–2057, doi:10.1175/1520-0469(1995)052<2041:MRTTCC>2.0.CO;2.
- Evans, K. F. and G. L. Stephens (1995), Microwave Radiative Transfer through Clouds Composed of Realistically Shaped Ice Crystals. Part II: Remote Sensing of Ice Clouds, J. Atmos. Sci., 52, 2058–2072, doi:10.1175/1520-0469(1995)052<2058:MRTTCC>2.0.CO;2.
- Evans, K. F., S. J. Walter, A. J. Heymsfield, and M. N. Deeter (1998), Modeling of Submillimeter Passive Remote Sensing of Cirrus Clouds, J. Appl. Meteorol., 37, 184–205.
- Evans, K. F., A. H., I. G. Nolt, and B. T. Marshall (1999), The Prospect for Remote Sensing of Cirrus Clouds with a Submillimeter-Wave Spectrometer, J. Appl. Meteorol., 38, 514–525.
- Ferraro, R. R., N. C. Grody, F. Weng, and A. Basist (1996), An Eight-Year (1987–1994) Time Series of Rainfall, Clouds, Water Vapor, Snow Cover, and Sea Ice Derived from SSM/I Measurements, Bull. Amer. Met. Soc., 77, 891–906.
- Field, P. R., R. J. Hogan, P. R. A. Brown, A. J. Illingworth, T. W. Choularton, and R. J. Cotton (2005), Parametrization of Ice Particle Size Distributions For Mid-latitude Stratiform Cloud, Q. J. R. Meteorol. Soc., 131, 1997–2019.
- Fowler, L. D., D. A. Randall, and S. A. Rutledge (1996), Liquid and Ice Cloud Microphysics in the CSU General Circulation Model. Part I: Model Description and Simulated Microphysical Processes, J. Climate, 9(3), 489–529.
- Fu, Q. and K. N. Liou (1993), Parameterization of the Radiative Properties of Cirrus Clouds, J. Atmos. Sci., 50, 2008–2025, doi:10.1175/1520-0469(1993)050<2008:POTRPO>2.0.CO;2.
- Fu, Q. and Y. Takano (1994), On the limitation of using asymmetry factor for radiative transfer in cirrus clouds, Atmos. Res., 34, 299–308.
- Fu, Q. (1996), An Accurate Parameterization of the Solar Radiative Properties of Cirrus for Climate Models, J. Climate, 9(9), 2058–2082, doi:10.1175/1520-0442(1996)009<2058:AAPOTS>2.0.CO;2.
- Fu, Q., P. Yang, and W. B. Sun (1998), An Accurate Parameterization of the Infrared Radiative Properties of Cirrus Clouds for Climate Models, J. Climate, 11, 2223–2237, doi:10.1175/1520-0442(1998)011<2223:AAPOTI>2.0.CO;2.
- Gallagher, M. W., P. J. Connolly, J. Whiteway, D. Figueras-Nieto, M. Flynn, T. W. Choularton, K. N. Bower, and J. Hacker (2005), An overview of the microphysical structure of cirrus clouds observed during EMERALD-1, Q. J. R. Meteorol. Soc., 131, 1143–1169, doi:10.1256/qj.03.138.
- Gasiewski, A. J., A. Voronovich, B. L. Weber, B. Stankov, M. Klein, R. J. Hill, and J. W. Bao (2003), Geosynchronous Microwave (GEM) Sounder/Imager Observation System Simulation, In: IGARSS Geoscience and Remote Sensing Symposium, Proceedings.
- Gayet, J.-F., J. Ovarlez, V. Shcherbakov, J. Strom, U. Schumann, A. Minikin, F. Auriol, A. Petzold, and M. Monier (2004), Cirrus cloud microphysical and optical properties at southern and northern midlatitudes during the INCA experiment, J. Geophys. Res., 109, doi:10.1029/2004JD004803.
- Goldfarb, L., P. Keckhut, M-L. Chanin, and A. Hauchecorne (2001), Cirrus climatological results from lidar measurements at OHP (44°N, 6°E), Geophys. Res. Lett., 28, 1687–1690, doi:10.1029/2000GL012701.
- Golding, B. W. and N. C. Atkinson (2002), Study of Future Microwave Sounders on Geostationary and Medium Earth Orbits. Task 1 Report: Review of Preliminary List of Products and Corresponding Requirements, ESA study STN/PR72/002, MGO-MET-RP-001.
- Goodman, J., R. F. Pueschel, E. J. Jensen, S. Verma, G. V. Ferry, S. D. Howard, S. A. Kinne, and D. Baumgardner (1998), Shape and Size of Contrails Ice Particles, Geophys. Res. Lett., 25(9), 1327–1330, doi:10.1029/97GL03091.
- Gultepe, I., G. A. Isaac, and S. G. Cober (2001), Ice crystal number concentration versus temperature for climate studies, Int. J. Climatol., 21, 1281–1302.
- Gultepe, I. and G. A. Isaac (2004), Aircraft observations of cloud droplet number concentration: Implications for climate studies, Q. J. R. Meteorol. Soc., 130, 2377–2390, doi:10.1256/qj.03.120.
- Guo, G., Q. Ji, P. Yang, and S.-C. Tsay (2005), Remote Sensing of Cirrus Optical and Microphysical Properties From Ground-Based Infrared Radiometric Measurements- Part II: Retrievals From CRYSTAL-FACE Measurements, IEEE Geosci. Remote Sens. Let., 2(2), 132–135.
- Hahn, C. J., W. B. Rossow, and S. G. Warren (2001), ISCCP Cloud Properties Associated with Standard Cloud Types Identified in Individual Surface Observations, J. Climate, 14, 11–28.
- Hallar, A. Gannet, L. M. Avallone, R. L. Herman, B. E. Anderson, and A. J. Heymsfield (2004), Measurements of ice water content in tropopause region Arctic cirrus during the SAGE III Ozone Loss and Validation Experiment (SOLVE), J. Geophys. Res., 109, D17203, doi:10.1029/2003JD004348.
- Han, Q.-Y, W. B. Rossow, and A. A. Lacis (1994), Near-global survey of effective cloud droplet radii in liquid water clouds using ISCCP data, J. Climate, 7, 465–497.
- Han, Q.-Y., W. B. Rossow, J. Chou, K.-S. Kuo, and R. M. Welch (1999), The effects of aspect ratio and surface roughness on satellite retrievals of ice-cloud properties, J. Quant. Spectrosc. Radiat. Transfer, 63, 559–583.
- Hanesch, M. (1999), Fall Velocity and Shape of Snowflakes, Swiss Federal Institute of Technology.
- Hartmann, D. L., J. R. Holton, and Q. Fu (2001), The heat balance of the tropical tropopause, cirrus, and stratospheric dehydration, University of Washington.
- Hartmann, D. L. and D. A. Short (1980), On the use of earth radiation budget statistics for studies of clouds and climate, J. Atmos. Sci., 37, 1233–1249.
- Havemann, S., A. J. Baran, and J. M. Edwards (2003), Implementation of the T-matrix method on a massively parallel machine: a comparison of hexagonal ice cylinder single-scattering properties using T-matrix and improved geometric optics method, J. Quant. Spectrosc. Radiat. Transfer, 79, 707–720.
- Hendricks, J., B. Kärcher, U. Lohmann, and M. Ponater (2005), Do aircraft black carbon emissions affect cirrus clouds on the global scale?, Geophys. Res. Lett., 32, doi:10.1029/2005GL022740.
- Herman, G. F., M.-L.C. Wu, and W.T. Johnson (1980), The effect of clouds on the Earth's solar and infrared radiation budgets, J. Atmos. Sci., 37, 1251–1261.
- Heymsfield, A. J. and J. Iaquinta (2000), Cirrus crystal terminal velocities, J. Atmos. Sci., 57, 916–938.
- Heymsfield, A. J., S. Lewis, A. Bansemer, J. Iaquinta, L. M. Miloshevich, M. Kajikawa, C. Twohy, and M. R. Poellot (2002), A general approach for deriving the properties of cirrus and stratiform ice cloud particles, J. Atmos. Sci., 59, 3–29.
- Heymsfield, A. J. and G. M. McFarquahar (2002), Mid-latitude and Tropical Cirrus, In: Cirrus, pp. 78–101, Edited by Lynch, D. K., K. Sassen, D. Starr, and G. Stephens, Oxford University Press.
- Heymsfield, A. J., A. Bansemer, P.R. Field, S. L. Durden, J. L. Stith, J. E. Dye, W. Hall, and C. A. Grainger (2002), Observations and Parameterizations of Particle Size Distributions in Deep Tropical Cirrus and Stratiform Precipitating Clouds: Results from In Situ Observations in TRMM Field Campaigns., J. Atmos. Sci., 59, 3457–3491.
- Heymsfield, A. J. and L. M. Miloshevic (2002), Parameterizations for the Cross-Sectional Area and Extinction of Cirrus Stratiform Ice Cloud Particles, J. Atmos. Sci., 60, 936–956.
- Heymsfield, A. J., S. Matrosov, and B. Baum (2003), Ice water path - optical depth relationships for cirrus and deep stratiform ice cloud layers, J. Appl. Meteorol., 42(20), 1369–1390.
- Heymsfield, A. J. (2003), Properties of tropical and midlatitude ice cloud particle ensembles, Part I: Median Mass Diameters and Terminal Velocities, J. Atmos. Sci., 60, 2592–2611.
- Heymsfield, A. J. (2003), Properties of tropical and midlatitude ice cloud particle ensembles, Part II: Applications for mesoscale and climate models, J. Atmos. Sci., 60, 2592–2611.
- Heymsfield, A. J., C. G. Schmitt, A. Bansemer, D. Baumgardner, E. M. Weinstock, J. T. Smith, and D. Sayres (2004), Effective Ice Particle Densities for Cold Anvil Cirrus, Geophys. Res. Lett., 31.
- Heymsfield, A. J., A. Bansemer, C. Schmitt, C. Twohy, and M. R. Poellot (2004), Effective Ice Particle Densities Derived from Aircraft Data, J. Atmos. Sci., 61, 982–1003, doi:10.1175/1520-0469(2004)061<0982:EIPDDF>2.0.CO;2.
- Heymsfield, A. J., D. Winker, and G.-J. van Zadelhoff (2005), Extinction-ice water content-effective radius algorithms for CALIPSO, Geophys. Res. Lett., 32, doi:10.1029/2005GL022742.
- Heymsfield, A. J., L. M. Misloshevich, C. Schmitt, and A. Bansemer (2005), Homogeneous ice nucleation in subtropical convection and its influence on cirrus anvil microphysics, J. Atmos. Sci., 62, 41–64.
- Heymsfield, A. J. and C. M. R. Platt (1984), A Parameterization of the Particle Size Spectrum of Ice Clouds in Terms of the Ambient Temperature and the Ice Water Content, J. Atmos. Sci., 41(5), 846–855, doi:10.1175/1520-0469(1984)041<0846:APOTPS>2.0.CO;2.
- Heymsfield, A. J. and L. J. Donner (1990), A scheme for parameterizing ice cloud water content in general circulation models, J. Atmos. Sci., 47, 1865–1877.
- Heymsfield, A. J. and L. M. Miloshevich (1995), Relative Humidity and Temperature Influences on Cirrus Formation and Evolution: Observations from Wave Clouds and FIRE II, J. Atmos. Sci., 52, 4302–4326.
- Hinsman, D. (2002), Manual of the CEOS/WMO Database on User Requirements and In Situ and Space Capabilities, World Meteorological Organization, Issue 1.5.
- Hinsman, D. (2003), Satellite Systems and Requirements, CEOS/WMO database, Version 2.5, World Meteorological Organization, http://alto-stratus.wmo.ch/sat/stations/SatSystem.html.
- Hong, G., G. Heygster, J. Miao, and K. Kunzi (2005), Sensitivity of microwave brightness temperatures to hydrometeors in tropical deep convective cloud system at 89-190 GHz channels measurements, Radio Sci., 40, RS4003, doi:10.1029/2004RS003129.
- Hong, G., G. Heygster, and K. Kunzi (2005), Intercomparison of Deep Convective Cloud Fractions From Passive Infrared and Microwave Radiance Measurements, IEEE Geosci. Remote Sens. Let., 2, 18–24, doi:10.1109/LGRS.2004.838405.
- Hong, G., G. Heygster, J. Miao, and K. Kunzi (2005), Detection of tropical deep convective clouds from AMSU-B water vapor channels measurements, J. Geophys. Res., 110(D9), D05205, doi:10.1029/2004JD004949.
- Hu, Y. and K. Stamnes (2000), Climate sensitivity to cloud optical properties, Tellus, 52B, 81–93.
- Ivanova, D., D. L. Mitchell, W. P. Arnott, and M. Poellot (2001), A GCM Parameterization for Bimodal Size Spectra and Ice Mass Removal Rates in Mid- latitude Cirrus Clouds, Atmos. Res., 59–60, 89–113.
- Jensen, E. J., J. B. Smith, L. Pfister, J. V. Pittman, E. M. Weinstock, D. S. Sayres, R. L. Herman, R. F. Troy, K. Rosenlof, T. L. Thompson, A. M. Fridlind, P. K. Hudson, D. J. Cziczo, A. J. Heymsfield, C. Schmitt, and J. C. Wilson (2005), Ice supersaturations exceeding 100% at the cold tropical tropopause: implications for cirrus formation and dehydration, Atmos. Chem. Phys., 5, 851–862, doi:10.5194/acp-5-851-2005.
- Jin, Y., W. B. Rossow, and D. P. Wylie (1996), Comparison of the climatologies of high-level clouds from HIRS and the ISCCP, J. Climate, 9, 2850–2879.
- Kärcher, B. and U. Lohmann (2002), A parameterization of cirrus cloud formations: Homogeneous freezing including the effects of arerosol size, J. Geophys. Res., 107, doi:10.1029/2001JD001429.
- Kärcher, B. and U. Lohmann (2002), A parameterization of cirrus cloud formation: Homogeneous freezing of supercooled aerosols, J. Geophys. Res., 107, doi:10.1029/2001JD000470.
- Kärcher, B. (2002), Properties of subvisible cirrus clouds formed by homogeneous freezing, Atmos. Chem. Phys., 2, 161–170, doi:10.5194/acp-2-161-2002.
- Kärcher, B. and U. Lohmann (2003), A parameterization of cirrus cloud formation: Heterogeneous freezing, J. Geophys. Res., 108, doi:10.1029/2002JD003220.
- Kärcher, B. and J. Ström (2003), The roles of dynamical variability and aerosols in cirrus cloud formation, Atmos. Chem. Phys., 3, 823–838, doi:10.5194/acp-3-823-2003.
- Kärcher, B. (2004), Cirrus clouds in the tropical tropopause layer: Role of heteorogeneous ice nuclei, Geophys. Res. Lett., 31.
- Kahn, B. H., A. Eldering, M. Ghil, S. Bordoni, and S. A. Clough (2004), Sensitivity Analysis of Cirrus Cloud Properties from High-Resolution Infrared Spectra. Part I: Methodology and Synthetic Cirrus, J. Climate, 17, 4856–4870.
- Kent, G. S., D. M. Winker, M. T. Osborn, and K. M. Skeens (1993), A model for the separation of cloud and aerosol in SAGE II occultation data, J. Geophys. Res., 98, 20725–20735.
- Khain, A. M., M. Ovtchinnikov, M. Pinsky, A. Pokrovsky, and H. Krugliak (2000), Notes on the state-of-the-art numerical modelling of cloud microphysics, Atmos. Res., 55, 159–224.
- King, M. D., W. P. Menzel, Y. J. Kaufman, D. Tanre, B.-C. Gao, S. Platnick, S. S. Ackerman, L. A. Remer, R. Pincus, and P. A. Hubanks (2003), Cloud and Aerosol Properties, Precipitable Water, and Profiles of Temperature and Water Vapor from MODIS, IEEE T. Geosci. Remote, 41(2), 442–458.
- King, M. D., W. P. Menzel, P. S. Grant, J. S. Myers, G. T. Arnold, S. E. Platnick, L. E. Gumley, S.-C. Tsay, C. C. Moeller, M. Fitzgerald, K. S. Brown, and F. G. Osterwisch (1996), Airborne Scanning Spectormeter for Remote Sensong of Cloud, Aerosol, Water Vapor, and Surface Properties, J. Atmos. Oceanic Technol., 13(4), 777–794.
- Kinne, S., T. P. Ackerman, M. Shiobara, A. Uchiyama, A. J. Heymsfield, L. Miloshevich, J. Wendell, E. Eloranta, C. Purgold, and R. W. Bergstrom (1997), Cirrus Cloud Radiative and Microphysical Properties From Ground Observations and In Situ Measurements During Fire 1991 and Their Application to Exhibit Problems in Cirrus Solar Radiative Transfer Modeling, J. Atmos. Sci., 54, 2320–2344.
- Knap, W., L. C.-Labonnote, G. Brogniez, and P. Stammes (2005), Modeling total and polarized reflectances of ice clouds : Evaluation by means of POLDER and ATSR-2 measurements, Appl. Opt., 44, 4060–4073.
- Knap, W. H., M. Hess, P. Stammes, R. B. A. Koelemeijer, and P. D. Watts (1999), Cirrus optical thickness and crystal size retrieval from ATSR-2 data using phase functions of imperfect hexagonal ice crystals, J. Geophys. Res., 104(13), 31721–31730, doi:10.1029/1999JD900267.
- Knollenberg, R. G., K. Kelly, and J. C. Wilson (1993), Measurements of high number densities of ice crystals in the tops of tropical cumulonimbus, J. Geophys. Res., 98(D5), 8639–8664.
- Korolev, A. V., G. A. Isaac, S. G. Cober, J. W. Strapp, and J. Hallett (2003), Microphysical Characterization of Mixed Phase Clouds, Q. J. R. Meteorol. Soc., 129, 39–65.
- Korolev, A. and G. Isaac (2003), Roundness and Aspect Ratio of Particles in Ice clouds, J. Atmos. Sci., 60, 1795–1808.
- Korolov, A. V., G. A. Isaac, and J. Hallett (1999), Ice Particle habits in Artic clouds, Atmospheric Environment Service, Desert Research Institute.
- Krämer, M., C. Rolf, A. Luebke, A. Afchine, N. Spelten, A. Costa, J. Meyer, M. Zöger, J. Smith, R. L. Herman, B. Buchholz, V. Ebert, D. Baumgardner, S. Borrmann, M. Klingebiel, and L. Avallone (2016), A microphysics guide to cirrus clouds — Part 1: Cirrus types, Atmos. Chem. Phys., 16, 3463–3483, doi:10.5194/acp-16-3463-2016.
- Kristjánsson, J. E., J. M. Edwards, and D. L. Mitchell (1999), A new parameterization scheme for the optical properties of ice crystals for use in general circulation models of the atmosphere, Phys. Chem. Earth, 24, 231–236.
- Kumar, S. V. Sunil, K. Parameswaran, and B. V. Krishna Murthy (2003), Lidar Observations of Cirrus Cloud Near the Tropical Tropopause: General Features, Atmos. Res., 66, 203–227.
- Kummerow, C., W. Barnes, T. Kozu, J. Shiue, and J. Simpson (1998), The Tropical Rainfall Measuring Mission (TRMM) Sensor Package, J. Atmos. Oceanic Technol., 15, 808–816.
- C.-Labonnote, L., G. Brogniez, J. C. Buriez, M. Doutriaux-Boucher, J. F. Gayet, and A. Macke (2001), Polarized light scattering by inhomogeneous hexagonal monocrystals. Validation with ADEOS-POLDER measurements, J. Geophys. Res., 106, 12139–12153.
- Lawson, R. P., A. J. Heymsfield, S. M. Aulenbach, and T. L. Jensen (1998), Shapes, sizes and light scattering properties of ice crystals in cirrus and a persistent contrail during SUCCESS, Geophys. Res. Lett., 25(9), 1331–1334.
- Li, J., H.-L. Huang, C.-Y. Liu, P. Yang, T. J. Schmit, H. Wie, E. Weisz, L. Guan, and W. P. Menzel (2005), Retrieval of Cloud Microphysical Properties from MODIS and AIRS, J. Appl. Meteorol., 44, 1526–1543.
- Liao, X., W. B. Rossow, and D. Rind (1995), Comparison between SAGE II and ISCCP high-level clouds. Part I: Global and zonal mean cloud amounts, J. Geophys. Res., 100, 1121–1135.
- Liao, X., W. B. Rossow, and D. Rind (1995), Comparison between SAGE II and ISCCP high-level clouds. Part II: Locating cloud tops, J. Geophys. Res., 100, 1137–1147.
- Lin, R.-F., D. O'C. Starr, P. J. DeMott, R. Cotton, K. Sassen, E. Jensen, B. Kärcher, and X. Liu (2002), Cirrus Parcel Model Comparison Project. Phase I: The critical components to simulate cirrus initiation explicitly, J. Atmos. Sci., 59(15), 2305–2329.
- Lin, B., B. A. Wielicki, L. H. Chambers, Y. Hu, and K. Xu (2002), The iris hypothesis: a negative or positive cloud feedback?, J. Climate, 15, 3–7.
- Lin, B. and W. B. Rossow (1996), Seasonal Variation of Liquid and Ice Water Path in Nonprecipitating Clouds over Oceans., J. Climate, 9, 2890–2902.
- Lin, B. and W. B. Rossow (1997), Precipitation water path and rainfall rate estimates for oceans using special sensor microwave imager and International Satellite Cloud Climatology Project data, J. Geophys. Res., 102, 9359–9374.
- Lin, H., K. J. Noone, J. Stroem, and A. J. Heymsfield (1998), Small Ice Crystals in Cirrus Clouds: A Model Study and Comparison with In Situ Observations, J. Atmos. Sci., 55, 1928–1939.
- Liou, K. N. (2002), An Introduction to Atmospheric Radiation, chap. Light scattering by atmospheric particulates, Academic Press.
- Liou, K. N. (2005), Cirrus clouds and Climate, The McGraw Hill Companies.
- Liou, K. N. (1986), Influence of cirrus clouds on weather and climate processes: a global perspective, Mon. Weather Rev., 114, 1167–1199.
- Liu, G. and J. A. Curry (2000), Determination of Ice Water Path and Mass Median Particle Size Using Multichannel Microwave Measurements, J. Appl. Meteorol., 39, 1318–1329.
- Liu, G. and J. A. Curry (1998), Remote Sensing of Ice Water Characteristics in Tropical Clouds Using Aircraft Microwave Measurements, J. Appl. Meteorol., 37, 337–355.
- Lohmann, U. and B. Kaecher (2002), First interactive simulations of cirrus clouds formed by homogeneous freezing in the ECHAM GCM, J. Geophys. Res., 107, doi:10.1029/2001JD000767.
- Lohmann, U., B. Kärcher, and C. Timmreck (2004), Impact of the Mount Pinatubo Eruption on Cirrus Clouds Formed by Homogeneous Freezing in the ECHAM GCM, J. Geophys. Res., 109, doi:10.1029/2002JD003185.
- Lohmann, U., B. Kärcher, and J. Hendricks (2004), Sensitivity studies of cirrus clouds formed by heterogeneous freezing in the ECHAM GCM, J. Geophys. Res., 108, doi:10.1029/2003JD004443.
- Lohmann, U. and E. Roeckner (1995), The influence of cirrus cloud-radiative forcing on climate and climate sensitivity in a general circulation model, J. Geophys. Res., 100, 16,305–16,323.
- Lohmann, U. and E. Roeckner (1996), Design and performance of a new microphysics schemen developed for the ECHAM general circulation model, Climate Dynamics, 12, 557–572.
- Luo, Z., W. B. Rossow, T. Inoue, and C. J. Stubenrauch (2002), Did the eruption of the Mount Pinatubo volcano affect cirrus properties?, J. Climate, 15, 2806–2820.
- Lynch, D. K., K. Sassen, D. Starr, and G. Stephens (ed.) (2002), Cirrus, Oxford University Press.
- Lynch, D. K. (2002), Cirrus History and definition, In: Cirrus, pp. 3–10, Edited by Lynch, D. K., K. Sassen, D. Starr, and G. Stephens, Oxford University Press.
- Lynch, D. K. and K. Sassen (2002), Subvisual cirrus, In: Cirrus, pp. 256–264, Edited by Lynch, D. K., K. Sassen, D. Starr, and G. Stephens, Oxford University Press.
- Mace, G. G., E. E. Clothiaux, and T. P. Ackerman (2001), The Composite Characteristics of Cirrus Clouds: Bulk Properties Revealed by One Year of Continuous Cloud Radar Data, J. Climate, 14, 2185–2203.
- Mace, G. G., S. Benson, and E. Vernon (2005), On the Relationship Between Cirrus Clouds and the Large-Scale Atmospheric State as Revealed by 6 Years of Ground-Based Data, University of Utah, Submitted to the Journal of Climate.
- Mace, G. G., T. P. Ackerman, P. Minnis, and D. F. Young (1998), Cirrus Layer Microphysical Properties Derived From Surface-Based Millimeter Radar and Infrared Interferometer Data, J. Geophys. Res., 103, 23207–23216.
- Masuda, K., H. Ishimoto, and T. Takashima (2002), Retrieval of cirrus optical thickness and ice-shape information using total and polarized reflectance from satellite measurements, J. Quant. Spectrosc. Radiat. Transfer, 75, 39–51.
- Matrosov, S. Y., M. D. Shupe, A. J. Heymsfield, and P. Zuidema (2003), Ice optical thickness estimates from radar measurements, J. Appl. Meteorol., 42, 1584–1597.
- Matrosov, S. Y., A. J. Heymsfield, and Z. Wang (2005), Dual-frequency radar ratio of non-spherical atmospheric hydrometeors, Geophys. Res. Lett., 31, L13816, doi:10.1029/2005GL023210.
- McFarlane, N. A., G. J. Boer, J. P. Blanchet, and M. Lazare (1992), The Canadian Climate Centre second-generation general circulation model and its equilibrium climate, J. Climate, 5, 1013–1044.
- McFarquhar, G. M. and A. J. Heymsfield (1996), Microphysical Characteristics of Three Anvils Sampled during the Central Equatorial Pacific Experiment, J. Atmos. Sci., 53(17), 2401–2423, doi:10.1175/1520-0469(1996)053<2401:MCOTAS>2.0.CO;2.
- McFarquhar, G. M. and A. J. Heymsfield (1997), Parameterization of Tropical Cirrus Ice Crystal Size Distribution and Implications for Radiative Transfer: Results from CEPEX, J. Atmos. Sci., 54, 2187–2200, doi:10.1175/1520-0469(1997)054<2187:POTCIC>2.0.CO;2.
- McFarquhar, G. M. and A. J. Heymsfield (1998), The Definition and Significance of an Effective Radius for Ice Clouds, J. Atmos. Sci., 55, 2039–2052.
- Menzel, W. P. and D. P. Wylie (2003), HIRS observations of a decline in high clouds since 1995, proceedings of ITSC XII, 27 Feb –5 Mar 2002, Lorne, Australia.
- Meyer, R., H. Mannstein, R. Meerkoetter, U. Schumann, and P. Wendling (2002), Regional radiative forcing by line-shaped contrails derived from satellite data, J. Geophys. Res., 107(D10), doi:10.1029/2001JD000426.
- Meyer, K., P. Yang, and B.-C. Gao (2004), Optical Thickness of Tropical Cirrus Clouds Derived From the MODIS 0.66- and 1.375-μm channels, IEEE T. Geosci. Remote, 42(4), 833–841.
- Miloshevich, L. M. (2002), Parameterizations for the Cross-Sectional Area and Extinction of Cirrus Stratiform Ice Cloud Particles, J. Atmos. Sci., 60, 936–956.
- Miloshevich, L. M. and A. J. Heymsfield (1997), A Balloon-Borne Continuous Cloud Particle Replicator for Measuring Vertical Profiles of Cloud Microphysical Properties: Instrument Design, Performance, and Collection Efficiency Analysis, J. Atmos. Oceanic Technol., 14, 753–768.
- Minnis, P., J. K. Ayers, R. Palikonda, and D. Phan (2004), Contrails, cirrus trends, and climate, J. Climate, 1671–1685.
- Minnis, P., D. F. Young, D. P. Garber, L. Nguyen, W. L. Smith Jr., and R. Palikonda (1998), Transformation of Contrails into Cirrus during SUCCESS, Geophys. Res. Lett., 25, 1157–1160.
- Mishchenko, M. I., L. D. Travis, and A. A. Lacis (2002), Scattering, Absorption, and Emission of Light by Small Particles, Cambridge University Press, ISBN 0-521-78252-X.
- Mitchell, D. L. (1996), Use of Mass- and Area Dimensional Power Laws for Determining Precipitation Particle Terminal Velocities, J. Atmos. Sci., 53(12), 1710–1723.
- Mitchell, D. L., S. K. Chai, Y. Liu, A. J. Heymsfield, and Y. Dong (1996), Modeling Cirrus Clouds. Part I: Treatment of Bimodal Size Spectra and Case Study Analysis, J. Atmos. Sci., 53(20), 2952–2987.
- Mo, T. (1996), Prelaunch Calibration of the Advanced Microwave Sounding Unit-A for NOAA-K, IEEE T. Microw. Theory, 44(8), 1460–1469, doi:10.1109/22.536029.
- Murtagh, D., U. Frisk, F. Merino, M. Ridal, A. Jonsson, J. Stegman, G. Witt, P. Eriksson, C. Jiménez, G. Megie, J. de la Noë, P. Ricaud, P. Baron, J. R. Pardo, A. Hauchcorne, E. J. Llewellyn, D. A. Degenstein, R. L. Gattinger, N. D. Lloyd, W. F. J. Evans, I. C. McDade, C. S. Haley, C. Sioris, C. von Savigny, B. H. Solheim, J. C. McConnell, K. Strong, E. H. Richardson, G. W. Leppelmeier, E. Kyrölä, H. Auvinen, and L. Oikarinen (2002), An overview of the Odin atmospheric mission, Can. J. Phys., 80(4), 309–319, doi:10.1139/P01-157.
- Nasiri, S. L., B. A. Baum, A. J. Heymsfield, P. Yang, M. R. Poellot, D. P. Kratz, and Y. Hu (2002), The Development of Midlatitude Cirrus Models for MODIS Using FIRE-I, FIRE-II, and ARM In Situ Data, J. Appl. Meteorol., 41, 197–217.
- Neshyba, S.P., T. C. Grenfell, and S. G. Warren (2003), Representation of a nonspherical ice particle by a collection of independent spheres for scattering and absorption of radiation: 2. Hexagonal columns and plates, J. Geophys. Res., 108(D15), doi:10.1029/2002JD003302.
- Newell, R. E., Y. Zhu, E. V. Browell, S. Ismail, W. G. Read, J. W. Waters, K. K. Kelly, and S. C. Liu (1996), Upper tropospheric water vapor and cirrus: Comparison of DC-8 observations, preliminary UARS microwave limb sounder measurements and meteorological analyses, J. Geophys. Res., 101(D1), 1931–1942.
- Noel, V. and K. Sassen (2005), Study of Planar Ice Crystal Orientations in Ice Clouds from Scanning Polarization Lidar Observations, J. Appl. Meteorol., 44, 653–664.
- Norris, J. R. (2005), Multidecadal changes in near-global cloud cover and estimated cloud cover radiative forcing, J. Geophys. Res., 110.
- Ono, A. (1969), The Shape and Riming Properties of Ice Crystals in Natural Clouds, J. Atmos. Sci., 26, 138–147.
- O'Shea, S. J., T. W. Choularton, G. Lloyd, J. Crosier, K. N. Bower, M. Gallagher, S. J. Abel, R. J. Cotton, P. R. A. Brown, J. P. Fugal, O. Schlenczek, S. Borrmann, and J. C. Pickering (2016), Airborne observations of the microphysical structure of two contrasting cirrus clouds, J. Geophys. Res.: Atm., 121(22), 13510–13536, doi:10.1002/2016JD025278.
- Ou, S. C. and K. N. Liou (1984), A two-dimensional radiation turbulence climate model:I Sensitivity to cirrus radiative properties, J. Atmos. Sci., 41, 2289–2309.
- Ou, S. C. and K. N. Liou (1995), Ice microphysics and climatic temperature feedback, Atmos. Res., 35, 127–138.
- Ovarlez, J., J.-F. Gayet, K. Gierens, J. Ström, H. Ovarlez, F. Auriol, R. Busen, and U. Schumann (2002), Water vapour measurements inside cirrus clouds in Northern and Southern hemispheres during INCA, Geophys. Res. Lett., 29(16), 1813, doi:10.1029/2001GL014440.
- Parol, F., J. C. Buriez, C. Vanbauce, P. Couvert, S. Seze, P. Goloub, and S. Cheinet (1999), First Results of the POLDER "Earth Radiation Budget and Clouds" Operational Algorithm, IEEE T. Geosci. Remote, 37, 1597–1613.
- Parungo, F. (1995), Ice Crystals in High Clouds and Contrails, Atmos. Res., 38, 249–262.
- Penner, J. E., D. H. Lister, D. J. Griggs, D. J. Dokken, and M. McFarland (ed.) (1999), IPCC Report, chap. Aviation and the Global Atmosphere, A special report of IPCC, IPCC.
- Platnick, S., M. D. King, S. A. Ackermann, W. P. Menzel, B. A. Baum, J. C. Riedi, and R. A. Frey (2003), The MODIS Cloud Products: Algorithms and Examples From Terra, IEEE T. Geosci. Remote, 41(2), 459–473.
- Poetzsch-Heffter, C., Q. Liu, E. Ruperecht, and C. Simmer (1995), Effect of Cloud Types on the Earth Radiation Budget Calculated with the ISCCP Cl Dataset: Methodology and Initial Results, J. Climate, 8(4), 829–843.
- Baptista, J. P. V. Poiares and W. Leibrandt (2001), EarthCARE – Earth Clouds, Aerosols and Radiation Explorer. Assessment Report, ESA SP-1257(1), ESA.
- Prigent, C., E. Defer, J. R. Pardo, C. Pearl, W. B. Rossow, and J.-P. Pinty (2005), Relations of polarized scattering signatures observed by the TRMM Microwave Instrument with electrical processes in cloud systems, Geophys. Res. Lett., 32, L04810, doi:10.1029/2004GL022225.
- Rädel, G., C. J. Stubenrauch, R. Holz, and D. L. Mitchell (2003), Retrieval of effective ice crystal size in the infrared: Sensitivity study and global measurements from TIROS-N Operational Vertical Sounder, J. Geophys. Res., 108(D9), doi:10.1029/2002JD002801.
- Ramanathan, V., R. D. Cess, E. F. Harrison, P. Minnis, B. R. Barkstrom, E. Ahmad, and D. Hartmann (1989), Cloud-Radiative Forcing and Climate: Results from the Earth Radiation Budget Experiment, Science, 243, 57–63.
- Rasch, P. J. and J. E. Kristjánsson (1998), A comparison of the CCM3 model climate using diagnosed and predicted condensate parameterizations, J. Climate, 11, 1587–1614.
- Raschke, E., A. Ohmura, W. B. Rossow, B. E. Carlson, Y.-C. Zhang, C. Stubenrauch, M. Kottek, and M. Wild (2005), Cloud effects on the radiation budget based on ISCCP data (1991 to 1995), Int. J. Climatol., 25, 1103–1125.
- Reinhardt, T. and U. Wacker (2004), Impact of ice particle habits on simulated clouds, Geophys. Res. Lett., 31, L21106, doi:1029/2004GL021134.
- Roeckner, E., et al. (2003), The atmospheric general circulation model ECHAM5. Part I: model description. 127pp., MPI Hamburg.
- Rossow, W. B. and E. Duenas (2004), International Satellite Cloud Climatology Project (ISCCP) web site: An online resource for research, Bull. Amer. Met. Soc., 85, 167–172, doi:10.1175/BAMS-85-2-167.
- Rossow, W. B. and R. A. Schiffer (1991), ISCCP Cloud Data Products, Bull. Amer. Met. Soc., 72, 2–20.
- Rossow, W. B. and R. A. Schiffer (1999), Advances in Understanding Clouds From ISCCP, Bull. Amer. Met. Soc., 80(11), 2261–2288.
- Sassen, K. and J. R. Campbell (2001), A Midlatitude Cirrus Cloud Climatology from the Facility for Atmospheric Remote Sensing. Part I: Macrophysical and Synoptic Properties, J. Atmos. Sci., 58, 481–496.
- Sassen, K. and S. Benson (2001), A Midlatitude Cirrus Cloud Climatology from the Facility for Atmospheric Remote Sensing. Part II: Microphysical Properties Derived from Lidar Depolarization, J. Atmos. Sci., 58, 2103–2112.
- Sassen, K. and J. M. Comstock (2001), A Midlatitude Cirrus Cloud Climatology from the Facility for Atmospheric Remote Sensing. Part III: Radiative Properties, J. Atmos. Sci., 58, 2113–2127.
- Sassen, K., Z. Wang, V. I. Khvorostyanov, G. L. Stephens, and A. Bennedetti (2002), Cirrus Cloud Ice Water Content Radar Algorithm Evaluation Using an Explicit Cloud Microphysical Model, J. Appl. Meteorol., 41, 620–628.
- Sassen, K., K.-N. Liou, Y. Takano, and V. I. Khvorostyanov (2003), Diurnal effects in the composition of cirrus clouds, Geophys. Res. Lett., 30, doi:1029/2003GL017034.
- Saunders, R. W., T. J. Hewison, S. J. Stringer, and N. C. Atkinson (1995), The Radiometric Characterization of AMSU-B, IEEE T. Microw. Theory, 43(4), 760–771.
- Schmetz, J., P. Pili, S. Tjemkes, D. Just, J. Kerkmann, S. Rota, and A. Ratier (2002), An introduction to Meteosat Second Generation (MSG), Bull. Amer. Met. Soc., 83(7), 977–992.
- Schumann, U. (2002), Contrail cirrus, In: Cirrus, pp. 231–255, Edited by Lynch, D. K., K. Sassen, D. Starr, and G. Stephens, Oxford University Press.
- Scott, N. A., A. Chedin, R. Armante, J. Francis, C. J. Stubenrauch, J.-P. Chaboureau, F. Chevallier, C. Claud, and F. Cheruy (1999), Characteristics of the TOVS Pathfinder Path-B Dataset, Bull. Amer. Met. Soc., 12, 2679–2701.
- Seinfeld, J. H. (1998), Clouds, contrails and climate, Nature, 391, 837–838.
- Senior, C. A. and J. F. B. Mitchell (1993), Carbon Dioxide and Climate: The Impact of Cloud Parameterization, J. Climate, 6(3), 393–418.
- Seo, E.-K. and G. Liu (2005), Retrievals of ice water path by combining ground cloud radar and satellite high-frequency microwave measurements near the ARM SGP site, J. Geophys. Res., 110, D14203, doi:10.1029/2004JD005727.
- Sherwood, S. C. (1999), On moistening of the tropical troposphere by cirrus clouds, J. Geophys. Res., 104(13), 11949–11960, doi:10.1029/1999JD900162.
- Shupe, M. D., T. Uttal, S. Matrosov, and S. Frisch (2001), Cloud Water Contents and Hydrometer Sizes During the FIRE-Arctic Cloud Experiment, J. Geophys. Res., 106, 15015–15028.
- Skofronick-Jackson, G. M., A. J. Gasiewski, and J. R. Wang (2002), Influence of microphysical cloud parametrizations on microwave brightness temperatures, IEEE T. Geosci. Remote, 40(1), 187–196.
- Skofronick-Jackson, G. M., J. R. Wang, G. M. Heymsfield, R. Hood, W. Manning, R. Meneghini, and J. A. Weinman (2003), Combined Radiometer-Radar Microphysical Profile Estimations with Emphasis on High-Frequency Brightness Temperature Observations., J. Appl. Meteorol., 42, 476–487.
- Slingo, A. and J. Slingo (1988), Response of a general circulation model to cloud longwave radiative forcing: Part 1 Introduction and initial experiments, Q. J. R. Meteorol. Soc., 114, 1027–1062.
- Smith, E. A., G. Asrar, Y. Furuhama, A. Ginati, C. Kummerow, V. Levizzani, A. Mugnai, K. Nakamura, R. Adler, V. Casse, M. Cleave, M. Debois, J. Durning, J. Entin, P. Houser, T. Iguchi, R. Kakar, J. Kaye, M. Kojima, D. Lettenmaier, M. Luther, A. Mehta, P. Morel, T. Nakazawa, S. Neeck, K. Okamoto, R. Oki, G. Raju, M. Shepherd, E. Stocker, J. Testud, and E. Wood (2004), Measuring Precipitation from Space: EURAINSAT and the Future, chap. International Global Precipitation Measurement (GPM) Program and Mission: An Overview, Kluwer Publishers.
- Spichtinger, P., K. Gierens, H. G. J. Smit, J. Ovarlez, and J.-F. Gayet (2004), On the distribution of relative humidity in cirrus clouds, Atmos. Chem. Phys., 4, 365–397, doi:10.5194/acp-4-639-2004.
- Stamnes, K., S.-C. Tsay, and I. Laszlo (2000), DISORT, a General-Purpose Fortran Program for Discrete-Ordinate-Method Radiative Transfer in Scattering and Emitting Layered Media: Documentation of Methodology, Dept. of Physics and Engineering Physics Stevens Institute of Technology,NASA Goggard Space Flight Center, Department of Meteorology University of Maryland.
- Stephens, G. L. (2002), Cirrus, climate and global change, In: Cirrus, Edited by Lynch, D. K., K. Sassen, D. Starr, and G. Stephens, Oxford University Press.
- Stephens, G. L., D. G. Vane, R. J. Boain, G. G. Mace, K. Sassen, Z. Wang, A. J. Illingworth, E. J. O'Connor, W. B. Rossow, S. L. Durden, S. D. Miller, R. T. Austin, A. Benedetti, C. Mitrescu, and the CloudSat Science Team (2002), The CloudSat mission and the A-train, Bull. Amer. Met. Soc., 83(12), 1771–1790, doi:10.1175/BAMS-83-12-1771.
- Stephens, G. L. (2005), Cloud feedbacks in the climate system: A critical review, J. Climate, 18(2), 237–273, doi:10.1175/JCLI-3243.1.
- Stephens, G. L., S. Tsay, P. W. Stackhouse Jr., and P. J. Flatau (1990), The relevance of the microphysical and radiative properties of cirrus clouds to climate and climatic feedback, J. Atmos. Sci., 47(14), 1742–1753, doi:10.1175/1520-0469(1990)047<1742:TROTMA>2.0.CO;2.
- Stocker, T., et al. (2001), IPCC Third assessment Report - climate change 2001: The Scientific Basis, chap. Physical Climate Processes and Feedback, WMO.
- Stordal, F., G. Myhre, E. J. G. Stordal, W. B. Rossow, D. S. Lee, D. W. Arlander, and T. Svendby (2005), Is there a trend in cirrus cloud cover due to aircraft traffic?, Atmos. Chem. Phys., 5, 2155–2162, doi:10.5194/acp-5-2155-2005.
- Ström, J., M. Seifert, B. Kärcher, J. Ovarlez, A. Minikin, J.-F. Gayet, R. Krejci, A. Petzold, F. Auriol, W. Haag, R. Busen, U. Schumann, and H. C. Hansson (2003), Cirrus cloud occurrence as function of ambient relative humidity: a comparison of observations obtained during the INCA experiment, Atmos. Chem. Phys., 3, 1807–1816, doi:10.5194/acp-3-1807-2003.
- Stubenrauch, C. J. and F. Eddounia (2001), Cloud property survey from satellite observations using vertical sounders (TOVS Path-B) and Imagers (ISCCP), Workshop on Ion-Aerosol-Cloud Interactions Proceed. CERN, Geneva, 18-20 April 2001, CERN Yellow report CERN-2001-007, 63-74.
- Stubenrauch, C. (2004), Cirrus microphysical properties and their effect on Radiation: survey and integration into climate Models using combined Satellite observations, Laboratoire de Meteorologie Dynamique, Meteorological Office, Institute for Marine Research at Kiel, Laboratoire d'Optique Atmospherique, Final Report on the Environment project EVK2-CT-2000-00063, available at http://www.lmd.polytechnique.fr/CIRAMOSA/Welcome.html.
- Stubenrauch, C. J., F. Eddounia, and G. Rädel (2004), Correlations between microphysical properties of large-scale semi-transparent cirrus and the state of the atmosphere, Atmos. Res., 72, 403–423.
- Stubenrauch, C. J. and U. Schumann (2005), Impact of air traffic on cirrus coverage, Geophys. Res. Lett., 32, L14813, doi:10.1029/2005GL022707.
- Stubenrauch, C. J., F. Eddounia, and L. Sauvage (2005), Cloud heights from TOVS Path-B: Evaluation using LITE observations and distributions of highest cloud layers, J. Geophys. Res., 110, D19203, doi:10.1029/2004JD005447.
- Stubenrauch, C. J. and U. Schumann (2005), Survey of Cirrus and atmospheric properties from TOVS Path-B: Natural variability and impact of air traffic on cirrus coverage, 14th International TOVS Study Conference Proceed., Beijing, China, 25 May-1 Jun.
- Stubenrauch, C. J., R. Armante, G. Abdelaziz, C. Crevoisier, C. Pierangelo, N. A. Scott, and A. Chedin (2006), Cloud properties from AIRS, In: 15th International TOVS Study Conference Proceedings, Maratea, Italy, 4-10 Oct. 2006, pp. 4–10.
- Stubenrauch, C. J., A. Chedin, G. Rädel, N. A. Scott, and S. Serrar (2006), Cloud properties and their seasonal and diurnal variability from TOVS Path-B, J. Climate, 19, 5531–5553.
- Stubenrauch, C. J., W. B. Rossow, F. Cheruy, N. A. Scott, and A. Chedin (1999), Clouds as Seen by Satellite Sounders (3I) and Imagers (ISCCP). Part I: Evaluation of Cloud Parameters, J. Climate, 12, 2189–2213.
- Stubenrauch, C. J., A. Chedin, R. Armante, and N. A. Scott (1999), Clouds as seen by Satellite Sounders (3I) and Imagers (ISCCP). Part II: A New Approach for Cloud Parameter Determination in the 3I Algorithms, J. Climate, 12, 2214–2223.
- Stubenrauch, C. J., W. B. Rossow, N. A. Scott, and A. Chedin (1999), Clouds as Seen by Satellite Sounders (3I) and Imagers (ISCCP). Part III: Spatial Heterogeneity and Radiative Effects, J. Climate, 12, 3419–3442.
- Sun, Z. and K. P. Shine (1994), Studies of the radiative properties on ice and mixed-phase clouds, Q. J. R. Meteorol. Soc., 120, 111–137.
- Taylor, J. P. and S. J. English (1995), The retrieval of cloud radiative and microphysical properties using combined near-infrared and microwave radiometry, Q. J. R. Meteorol. Soc., 121, 1083–1112.
- Vanek, M. D., I. G. Nolt, N. D. Tappan, P. A. R. Ade, F. C. Gannaway, P. A. Hamilton, C. Lee, J. E. Davis, and S. Predko (2001), Far-Infrared sensor for cirrus (FIRSC): an aircraft-based Fourier-transform spectrometer to measure cloud radiance, Appl. Opt., 40(13).
- Wallace, J. M. and P. V. Hobbs (2006), Atmospheric science: an introductory survey, Academic press.
- Wallace, J. M. and P. V. Hobbs (1977), Atmospheric science an introductory survey, Academic press.
- Wang, J., W. B. Rossow, and Y. Zhang (2000), Cloud Vertical Structure and Its Variations from a 20-Yr Global Rawinsonde Dataset, J. Climate, 13, 3041–3056.
- Wang, J. R., G. Liu, J. D. Spinhirne, P. Racette, and W. D. Hart (2001), Observations and retrievals of cirrus cloud parameters using multichannel millimeter-wave radiometric measurements, J. Geophys. Res., 106(15), 15251–15264, doi:10.1029/2000JD900262.
- Wang, P. H., R. E. Veiga, L. B. Vann, P. Minnis and, and G. S. Kent (2001), A further study of the method for estimation of SAGE II opaque cloud occurrence, J. Geophys. Res., 106, 12603–12613.
- Wang, Z. and K. Sassen (2002), Cirrus Cloud Microphysical Property Retrieval Using Lidar and Radar Measurements. Part I: Algorithm Description and Comparison with In Situ Data, J. Appl. Meteorol., 41, 218–229.
- Wang, Z. and K. Sassen (2002), Cirrus Cloud Microphysical Property Retrieval Using Lidar and Radar Measurements. Part II: Midlatitude Cirrus Microphysical and Radiative Properties, J. Atmos. Sci., 59, 2291–2302.
- Wang, Z., D. N. Whiteman, B. B. Demoz, and I. Veselovskii (2004), A new way to measure cirrus cloud ice water content by using ice Raman scatter with Raman lidar, Geophys. Res. Lett., 31, L15101, doi:10.1029/2004GL020004.
- Wang, P. H., M. P. McCormick, L. R. Poole, W. P. Chu, G. K. Yue, G. S. Kent, and K. M. Skeens (1994), Tropical high cloud characteristics derived from SAGE II extinction measurements, Atmos. Res., 34, 53–83.
- Wang, P. H., P. Minnis, M. P. McCormick, G. S. Kent, and K. M. Skeens (1996), A 6-Year Climatology of Cloud Occurrence Frequency from Stratospheric Aerosol and Gas Experiment II Observations (1985-1990), J. Geophys. Res., 101, 29407–29429.
- Wang, J. R., P. Racette, J. D. Spinhirne, K. F. Evans, and W. D. Hart (1998), Observations of cirrus clouds with airborne MIR CLS, and MAS during SUCCESS, Geophys. Res. Lett., 25, 1145–1148, doi:10.1029/97GL03194.
- Wang, P. H., P. Minnis, M. P. McCormick, G. S. Kent, G. K. Yue, D. F. Young, and K. M. Skeens (1998), A study of the vertical structure of tropical (20S-20N) optically thin clouds from SAGE II observations, Atmos. Res., 47–48, 599–614.
- Waters, J. W., W. G. Read, L. Froidevaux, R. F. Jarnot, R. E. Cofield, D. A. Flower, G. K. Lau, H. M. Pickett, M. L. Santee, D. L. Wu, M. A. Boyles, J. R. Burke, R. R. Lay, M. S. Loo, N. J. Livesey, T. A. Lungu, G. L. Manney, L. L. Nakamura, V. S. Perun, B. P. Ridenoure, Z. Shippony, P. H. Siegel, R. P. Thurstans, R. S. Harwood, H. C. Pumphrey, and M. J. Filipiak (1999), The UARS and EOS Microwave Limb Sounder Experiments, J. Atmos. Sci., 56, 194–218.
- Wei, H., P. Yang, J. Li, B. A. Baum, H.-L Huang, S. Platnick, Y. Hu, and L. Strow (2004), Retrieval of Semitransparent Ice Cloud Optical Thickness from Atmospheric Infrared Sounder (AIRS) Measurements, IEEE T. Geosci. Remote, 42, 2254–2267.
- Wendisch, M., P. Pilewskie, J. Pommier, S. Howard, P. Yang, A. J. Heymsfield, C. G. Schmitt, D. Baumgardner, and B. Mayer (2005), Impact of cirrus crystal shape on solar spectral irradiance: a case study for subtropical cirrus, J. Geophys. Res., 110, D03202, doi:10.1029/2004JD005294.
- Weng, F. and N. C. Grody (2000), Retrieval of Ice Cloud Parameters Using a Microwave Imaging Radiometer, J. Atmos. Sci., 1069–1081.
- Whiteway, J., C. Cook, M. Gallagher, T. Choularton, J. Harries, P. Connolly, R. Busen, K. Bower, M. Flynn, P. May, R. Aspey, and J. Hacker (2004), Anatomy of Cirrus Clouds: Results from the Emerald Airborne Campaigns, Geophys. Res. Lett., 31.
- Wilson, D. (2000), The impact of a physically based microphysical scheme on the climate simulation of The Meteorological Office Unified Model, Q. J. R. Meteorol. Soc., 126, 1281–1300.
- Winker, D. M., J. R. Pelon, and M. P. McCormick (2003), The CALIPSO mission: spaceborne lidar for observation of aerosols and clouds, In: Lidar Remote Sensing for Industry and Environment Monitoring III, pp. 1–11, Edited by U. N. Singh, T. Itabe, Z. Liu, doi:10.1117/12.466539.
- Winker, D. M. and C. R. Trepte (1998), Laminar cirrus observed near the tropical tropopause by LITE, Geophys. Res. Lett., 25(17), 3351–3354.
- Wylie, D. P., D. L. Jackson, W. P. Menzel, and J. J. Bates (2005), Trends in global cloud cover in two decades of HIRS observations, J. Climate, 18, 3021–3031.
- Wylie, D. P., W. P. Menzel, and K. I. Strabala (1994), Four years of global cirrus cloud statistics using HIRS, J. Climate, 7(12), 1972–1986.
- Wylie, D., P. Piironen, W. Wolf, and E. Eloranta (1995), Understanding satellite cirrus cloud climatologies with calibrated lidar optical depths, J. Atmos. Sci., 52, 4327–4343.
- Wylie, D. P. and P.-H. Wang (1997), Comparison of cloud frequency data from the high-resolution infrared radiometer sounder and the Stratospheric Aerosol and Gas Experiment II, J. Geophys. Res., 102, 29893–29900.
- Wylie, D. P. and W. P. Menzel (1999), Eight years of cloud statistics using HIRS, J. Climate, 12, 170–184.
- Yeh, H.-Y. M., N. Prasad, R. A. Mack, and R. F. Alder (1990), Aircraft microwave observations and simulations of deep convection from 18 to 183 GHz. Part II: Model results, J. Atmos. Oceanic Technol., 7, 392–410.
- Zerefos, C., K. Eleftheratos, D. Balis, P. Zanis, G. Tselioudis, and C. Meleti (2003), Evidence of impact of aviation on cirrus cloud formation, Atmos. Chem. Phys., 3, 1633–1644, doi:10.5194/acp-3-1633-2003.
- Zhang, Z., P. Yang, G. W. Kattawar, S. Tsay, B. A. Baum, Y. Hu, A. J. Heymsfield, and J. Reichardt (2004), Geometrical-optic solution to light scattering by droxtal ice crystals, Appl. Opt., 43(12).
- Zhang, Y.-C., W. B. Rossow, A. A. Lacis, V. Oinas, and M. I. Mishchenko (2004), Calculation of radiative fluxes from the surface to top of atmosphere based on ISCCP and other global data sets: Refinements of the radiative transfer model and the input data, J. Geophys. Res., 109, doi:10.1029/2003JD004457.
- Zhang, Y., A. Macke, and F. Albers (1999), Effect of crystal size spectrum and crystal shape on stratiform cirrus radiative forcing, Atmos. Res., 52, 59–75.
- Zhao, L. and F. Weng (2002), Retrieval of Ice Cloud Parameters Using the Advanced Microwave Sounding Unit, J. Appl. Meteorol., 41, 384–395.