| a-train | abs lookup | absorption | aerosols | aggregation | airs | albedo | algorithm | amsu | annual cycle | anomalies | aqua | ar4 | ar5 | arctic | arm | arts | arts-dev | asr | assimilation | astrophysics | atmosphere | atmospheric composition | atmospheric dynamics | atmospheric profiles | atsr-2 | avhrr | backscattering | basics | bayes | book | calculation | calculations | calibration | calipso | ccn | cdr | ceres | cfmip | chemistry | cia | ciraclim | cirrus | cirrus anvil sublimation | cirrus cloud | cirrus clouds | cirrusstudy | ciwsir/cloudice | claus | climate | climate change | climate dynamics | climate feedbacks | climate sensitivity | climate sensivity | climate variability | climatology | cloud feedback | cloud forcing | cloud fraction | cloud ice | cloud properties | cloud radiative effects | cloud radiative forcing | cloud regimes | clouds | cloudsat | cmip3 | cmip5 | cmip6 | cmsaf | co2 | collocation | comparison | computer science | continua | contrail | convection | convective clouds | convective processes | convective self-aggregation | correlated k | cosmic background | cosmic rays | cosp | cross-calibration | cth | cumulus | dardar | data bases | dda | deep convection | delta m | dimer | disort | diurnal cycle | dmsp | documentation | droplet size | dynamics | earth | earthcare | echam | ecmwf | effective radius | electromagnetism | electron content | elevation | elevation satellite-2 | emd | emissivity | enso | eof-pca-svd | erbe | error assessment | ers | eruption | esa planetary | exoplanets | extraterrestrial | fall speed | far-infrared | faraday-voigt | fcdr | feedback | feedbacks | fingerprinting | flux uav | forcing | forest fire | fox19_airborne_amt.pdf | friend | fun | gcm | genesis | geostationary | gerrit_erca | global warming | gnss | goes | gps | gras | graupel | greenhouse effect | groundbased | hadley circulation | hail | heating rate | heating rates | herschel | hiatus | hirs | history | hsb | humidity | hydrological sensitivity | hydrological sensivity | iasi | ice | ice clouds | ice crystal growth | ice nucleation | ice water | icesat-2 | ici | icon | icz | in situ | infrared | instruments | intercalibration | intercomparison | interference | inverse modelling | ipcc | ir/vis | iris | isccp | ismar | isotopes | itcz | iwc | iwp | iwv | jupiter | kessler scheme | lblrtm | lidar | limb effect | limb sounding | limb-correction | linemixing | lineshape | liquid water | liquid water path | longwave radiation | low-cloud feedback | magnetic field | magnetism | mars | mas | mass-dimension relation | masters thesis | math | megha-tropiques | mendrok | mesoscale organization | meteorology | meteosat | metop | mhs | microphysics | microwave | mipas | mirs | misr | mixed phase | mls | model | modeling | models | modis | monte carlo | mspps | msu | mth | multi-moment scheme | multisensor | mwhs | mwi | net radiation | neural network | nicam | nlte | noaa | nonsphericity | npoess | observation | ocean | ocean reflection | ocean-atmosphere interactions | odin | olr | one-moment scheme | open loop | optical | optical depth | optical properties | optics | orbital drift | orbits | ozone | pacific ocean | particle orientation | particle shape | particle size | particle size distribution | patmos-x | phase function | phd thesis | polarimetry | polarization | polder | potss | precipitation | profile datasets | programming | projection | promet | propagation modeling | python | radar | radiation | radiation profiles | radiative convective equilibrium | radiative equilibrium | radiative feedback | radiative fluxes | radiative forcing | radiative processes | radiative transfer | radiative-convective equilibrium | radiative-equilibrium | radio occultation | radiometers | radiosonde | radiosonde cloud liquid | radiosonde correction | rain | reanalysis | refractive index | relative humidity | remote sensing | retrieval | review | rodgers | rttov | sahara | sahel | sampling | sand/dust | sar | satellite | satellite missions | satellite observations | satellite simulator | sbuehler_habil | scattering | scattering databases | scintillations | scout-amma | self-aggregation | sensor geometry | seviri | shallow convection | simulated annealing | single scattering | smiles | sno | snow | snowfall | software | soil | solar | soot | sounders | spectral information | spectroscopy | split window technique | ssm/i | ssm/t | ssmis | ssmt2 | stability | statistics | ste | stereo | stratosphere | submillimeter | submm | sun | supersaturation | surface | synergies | task2 | tempera | temperature | terra | thermodynamics | time series | titan | toa radiation | top of the atmosphere | total column | tovs | trade-wind clouds | trajectory analysis | trend | trmm | tropical circulation | tropical convection | tropical meteorology | tropics | tropopause | troposphere | ttl | turbulence | tutorial | two-moment scheme | upper troposphere | uth | utls | validation | vater vapor | venus | visualization | volcanic ash | walker circulation | walker rirculation | water | water cycle | water dimer | water vapor | water vapor continuum | water vapour | water vapour path | water-vapour | wind | zeeman |

Hide tag cloud

Filter by author:
Filter by year:
Filter by bibtex key:
Filter by type:
Filter by keyword:
and
and
 

Filtered by keyword:deep convection

There is currently a filter applied. To see the complete list of publications, clear the filter.
  1. Bister, M. and M. Kulmala (2011), Anthropogenic aerosols may have increased upper tropospheric humidity in the 20th centuryAtmos. Chem. Phys., 11, 4577–4586, doi:10.5194/acp-11-4577-2011.
  2. Chae, J. H. and S. C. Sherwood (2010), Insights into Cloud-Top Height and Dynamics from the Seasonal Cycle of Cloud-Top Heights Observed by MISR in the West Pacific RegionJ. Atmos. Sci., 67(1), 248–261, doi:10.1175/2009JAS3099.1.
  3. Folkins, I. (2013), The melting level stability anomaly in the tropicsAtmos. Chem. Phys., 13, 1167–1176, doi:10.5194/acp-13-1167-2013.
  4. Hong, G., G. Heygster, J. Miao, and K. Kunzi (2005), Sensitivity of microwave brightness temperatures to hydrometeors in tropical deep convective cloud system at 89-190 GHz channels measurementsRadio Sci., 40, RS4003, doi:10.1029/2004RS003129.
  5. Hong, G., G. Heygster, and K. Kunzi (2005), Intercomparison of Deep Convective Cloud Fractions From Passive Infrared and Microwave Radiance MeasurementsIEEE Geosci. Remote Sens. Let., 2, 18–24, doi:10.1109/LGRS.2004.838405.
  6. Hong, G., G. Heygster, J. Miao, and K. Kunzi (2005), Detection of tropical deep convective clouds from AMSU-B water vapor channels measurementsJ. Geophys. Res., 110(D9), D05205, doi:10.1029/2004JD004949.
  7. Hong, G., G. Heygster, and K. Kunzi (2006), Effect of Cirrus Clouds on the Diurnal Cycle of Tropical Deep Convective CloudsJ. Geophys. Res., 111, D06209, doi:10.1029/2005JD006208.
  8. Horváth, Á. and B. J. Soden (2007), Lagrangian Diagnostics of Tropical Deep Convection and Its Effect upon Upper-Tropospheric HumidityJ. Climate, 21, 1013–1028, doi:10.1175/2007JCLI1786.1.
  9. Liu, C. and E. J. Zipser (2005), Global distribution of convection penetrating the tropical tropopauseJ. Geophys. Res., 110, D23104, doi:10.1029/2005JD006063.
  10. Liu, C., E. J. Zipser, and S. W. Nesbitt (2007), Global Distribution of Tropical Deep Convection: Different Perspectives from TRMM Infrared and Radar DataJ. Climate, 20(3), 489–503.
  11. Liu, C. and E. J. Zipser (2008), Diurnal cycles of precipitation, clouds, and lightning in the tropics from 9 years of TRMM observationsGeophys. Res. Lett., 35(4), 4819, doi:10.1029/2007GL032437.
  12. Mapes, B. E. and R. A. Houze Jr (1993), Cloud clusters and over superclusters the oceanic warm poolMon. Weather Rev., 21, 1398–1415, doi:10.1175/1520-0493(1993)121<1398:CCASOT>2.0.CO;2.
  13. Mohr, K. I. and E. J. Zipser (1996), Defining Mesoscale Convective Systems by Their 85-GHz Ice-Scattering SignaturesBull. Amer. Met. Soc., 77(6), 1179–1189.
  14. Schaller, E. L., M. E. Brown, H. G. Roe, and A. H. Bouchez (2006), A large cloud outburst at Titan's south poleIcarus, 182, 224–229, doi:10.1016/j.icarus.2005.12.021.
  15. Schaller, E. L., H. G. Roe, T. Schneider, and M. E. Brown (2009), Storms in the tropics of TitanNature, 460, 873–875, doi:10.1038/nature08193.
  16. Schröder, M., M. König, and J. Schmetz (2008), Deep convection observed by the Spinning Enhanced Visible and Infrared Imager on board Meteosat 8: Spatial distribution and temporal evolution over Africa in summer and winter 2006J. Geophys. Res., 114, 1–14, doi:10.1029/2008JD010653.
  17. Zipser, E. J., D. J. Cecil, C. Liu, S. W. Nesbitt, and D. P. Yorty (2006), Where are the most intense thunderstorms on Earth?Bull. Amer. Met. Soc., 87(8), 1057–1071.