Show tag cloud

Filter by author:
Filter by year:
Filter by bibtex key:
Filter by type:
Filter by keyword:
and
and
 

Filtered by keyword:aerosols

There is currently a filter applied. To see the complete list of publications, clear the filter.
  1. Bell, J. F., R. C. Anderson, J. L. Bishop, N. T. Bridges, D. T. Britt, J. A. Crisp, T. Economou, A. Gosh, J. P. Greenwood, H. P. Gunnlaugsson, R. B. Hargraves, K. Herkenhoff, S. F. Hviid, J. R. Johnson, J. M. Knudsen, M. B. Madsen, H. Y. McSween Jr., R. V. Morris, S. L. Murchie, and R. J. Reid (1998), Mineralogy, Composition, and Origin of Soil and Dust at the Mars Pathfinder Landing Site, In: 29th Annual Lunar and Planetary Science Conference, March 16-20, 1998, Houston, TX, abstract no. 1723.
  2. Bister, M. and M. Kulmala (2011), Anthropogenic aerosols may have increased upper tropospheric humidity in the 20th centuryAtmos. Chem. Phys., 11, 4577–4586, doi:10.5194/acp-11-4577-2011.
  3. Clancy, R. T., M. J. Wolff, and P. R. Christensen (2003), Mars aerosol studies with the MGS TES emission phase function observations: Optical depths, particle sizes, and ice cloud types versus latitude and solar longitudeJ. Geophys. Res., 108(E9), 5098, doi:doi:10.1029/2003JE002058.
  4. Clancy, R. T., S. W. Lee, G. R. Gladstone, W. W. McMillan, and T. Rousch (1995), A new model for Mars atmospheric dust based upon analysis of ultraviolet through infrared observations from Mariner 9, Viking, and PhobosJ. Geophys. Res., 100(E3), 5251–5262, doi:10.1029/94JE01885.
  5. Fan, J., M. Ovtchinnikov, J. M. Comstock, S. A. McFarlane, and A. Khain (2009), Ice formation in Arctic mixed-phase clouds: Insights from a 3-D cloud-resolving model with size-resolved aerosol and cloud microphysicsJ. Geophys. Res., 114, D04205, doi:10.1029/2008JD010782.
  6. Grießbach, S. (2012), Clouds and aerosol in infrared radiative transfer calculations for the analysis of satellite observations, Ph.D. thesis, Forschungszentrum Jülich GmbH, Institute of Energy and Climate Research (IEK), Stratosphere (IEK-7), ISBN: 978-3-89336-785-6 ISSN: 1866-1793.
  7. Hansen, G. B. (2003), Infrared Optical Constants of Martian Dust Derived from Martian Spectra, In: Sixth International Conference on Mars, July 20-25 2003, Pasadena, California, abstract no. 3194.
  8. Heavens, N. G., M. I. Richardson, A. Kleinböhl, D. M. Kass, D. J. McCleese, W. Abdou, J. L. Benson, J. T. Schofield, J. H. Shirley, and P. M. Wolkenberg (2011), The vertical distribution of dust in the Martian atmosphere during northern spring and summer: Observations by the Mars Climate Sounder and analysis of zonal average vertical dust profilesJ. Geophys. Res., 116, E04003, doi:10.1029/2010JE003691.
  9. Hunt, G. R., L. M. Logan, and J. W. Salisbury (1973), Mars: Components of infrared spectra and the composition of the dust cloudIcarus, 18(3), 459–469, doi:10.1016/0019-1035(73)90155-3.
  10. Jiang, J. H., H. Su, C. Zhai, S. T. Massie, M. R. Schoeberl, P. R. Colarco, S. Platnick, Y. Gu, and K. N. Liou (2011), Influence of convection and aerosol pollution on ice cloud particle effective radiusAtmos. Chem. Phys., doi:10.5194/acp-11-457-2011.
  11. Junge, C. E., C. W. Chagnon, and J. E. Manson (1961), Stratospheric AerosolsJ. Meteorol., 18(1), 81–108, doi:10.1175/1520-0469(1961)018<0081:SA>2.0.CO;2.
  12. Koch, D., Y. Balkanski, S. E. Bauer, R. C. Easter, S. Ferrachat, S. J. Ghan, C. Hoose, T. Iversen, A. Kirkevåg, J. E. Kristjansson, X. Liu, U. Lohmann, S. Menon, J. Quaas, M. Schulz, Ø. Seland, T. Takemura, and N. Yan (2011), Soot microphysical effects on liquid clouds, a multi-model investigationAtmos. Chem. Phys., 11, 1051–1064, doi:10.5194/acp-11-1051-2011.
  13. Korablev, O., V. I. Moroz, E. V. Petrova, and A. V. Rodin (2005), Optical properties of dust and the opacity of the Martian atmosphereAdv. Space. Res., 35(1), 21–30, doi:10.1016/j.asr.2003.04.061.
  14. Li, Q., J. H. Jiang, D. L. Wu, W. G. Read, N. J. Livesey, J. W. Waters, Y. Zhang, B. Wang, M. J. Filipiak, C. P. Davis, S. Turquety, S. Wu, R. J. Park, R. M. Yantosca, and D. J. Jacob (2005), Convective outflow of South Asian pollution: A global CTM simulation compared with EOS MLS observationsGeophys. Res. Lett., 32, doi:10.1029/2005GL022762.
  15. Lohmann, U. and J. Feichter (2005), Global indirect aerosol effects: A reviewAtmos. Chem. Phys., 5, 715–737, doi:10.5194/acp-5-715-2005.
  16. Lohmann, U., P. Stier, C. Hoose, S. Ferrachat, E. Roeckner, and J. Zhang (2007), Cloud microphysics and aerosol indirect effects in the global climate model ECHAM5–HAMAtmos. Chem. Phys., 7, 3719–3761, doi:10.5194/acp-7-3425-2007.
  17. Lohmann, U., L. Rotstayn, T. Storelvmo, A. Jones, S. Menon, J. Quaas, A. M. L. Ekman, D. Koch, and R. Ruedy (2010), Total aerosol effect: radiative forcing or radiative flux perturbation?Atmos. Chem. Phys., 10(7), 3235–3246, doi:10.5194/acp-10-3235-2010.
  18. Otto, S., T. Trautmann, and M. Wendisch (2011), On realistic size equivalence and shape of spheroidal Saharan mineral dust particles applied in solar and thermal radiative transfer calculationsAtmos. Chem. Phys., 11, 4469–4490, doi:10.5194/acp-11-4469-2011.
  19. Pollack, J. B., D. Colburn, R. Kahn, J. Hunter, W. van Camp, C. E. Carlston, and M. R. Wolf (1977), Properties of Aerosols in the Martian Atmosphere, as Inferred From Viking Lander Imaging DataJ. Geophys. Res., 82(28), 4479–4496, doi:10.1029/JS082i028p04479.
  20. Quaas, J., B. Stevens, P. Stier, and U. Lohmann (2010), Interpreting the cloud cover — Aerosol optical depth relationship found in satellite data using a general circulation modelAtmos. Chem. Phys., 10, 6129–6135, doi:10.5194/acp-10-6129-2010.
  21. Redemann, J., M. A. Vaughan, Q. Zhang, Y. Shinozuka, P. B. Russell, J. M. Livingston, M. Kacenelenbogen, and L. A. Remer (2012), The comparison of MODIS-Aqua (C5) and CALIOP (V2 & V3) aerosol optical depthAtmos. Chem. Phys., 12, 3025–3043, doi:10.5194/acp-12-3025-2012.
  22. Roush, T., J. Pollack, and J. Orenberg (1991), Derivation of Midinfrared (5–25 μm) Optical Constants of Some Silicates and PalagoniteIcarus, 94(1), 191–208, doi:10.1016/0019-1035(91)90150-R.
  23. Smith, M. D. (2004), Interannual variability in TES atmospheric observations of Mars during 1999-2003Icarus, 167(1), 148–165, doi:10.1016/j.icarus.2003.09.010.
  24. Steele, H. M. and P. Hamill (1981), Effects of Temperature and Humidity on the Growth and Optical Properties of Sulphuric Acid-Water Droplets in the StratosphereJ. Atmos. Sci., 12(6), 517–528, doi:10.1016/0021-8502(81)90054-9.
  25. Storelvmo, T., J. E. Kristjánsson, and U. Lohmann (2008), Aerosol Influence on Mixed-Phase Clouds in CAM-OsloJ. Atmos. Sci., 65, 3214–3230, doi:10.1175/2008JAS2430.1.
  26. Storelvmo, T., C. Hoose, and P. Eriksson (2011), Global modeling of mixed-phase clouds: The albedo and lifetime effects of aerosolsJ. Geophys. Res., 116, D05207, doi:10.1029/2010JD014724.
  27. Toon, O. B., J. B. Pollack, and C. Sagan (1977), Physical Properties of the Particles Composing the Martian Dust Storm of 1971–1972Icarus, 30(4), 663–696, doi:10.1016/0019-1035(77)90088-4.
  28. Twohy, C. H., J. A. Coakley, and W. R. Tahnk (2009), Effect of changes in relative humidity on aerosol scattering near cloudsJ. Geophys. Res., 114, D05205, doi:10.1029/2008JD010991.
  29. Wolff, M. J. and R. T. Clancy (2003), Constraints on the size of Martian aerosols from Thermal Emission Spectrometer observationsJ. Geophys. Res., 108(E9), 5097, doi:10.1029/2003JE002057.
  30. Wolff, M. J., M. D. Smith, R. T. Clancy, N. Spanovich, B. A. Whitney, M. T. Lemmon, J. L. Bandfield, D. Banfield, A. Ghosh, G. Landis P. R. Christensen, J. F. Bell III, and S. W. Squyres (2006), Constraints on dust aerosols from the Mars Exploration Rovers using MGS overflights and Mini-TESJ. Geophys. Res., 111, E12S17, doi:10.1029/2006JE002786.
  31. Zobrist, B., C. Marcolli, T. Koop, B. P. Luo, D. M. Murphy, U. Lohmann, A. A. Zardini, U. K. Krieger, T. Corti, D. J. Cziczo, S. Fueglistaler, P. K. Hudson, D. S. Thomson, and T. Peter (2006), Oxalic acid as a heterogeneous ice nucleus in the upper troposphere and its indirect aerosol effectAtmos. Chem. Phys., 6, 3115–3129, doi:10.5194/acp-6-3115-2006.