All Publications
Below is the combined list of references from refs_sat.bib and
refs_external.bib. It is intended for our group's internal use.
|
2c-ice
|
a-train
|
abs lookup
|
absorption
|
active
|
aerosol
|
aerosols
|
age of air
|
aggregation
|
airs
|
albedo
|
algorithm
|
amsos
|
amsu
|
annual cycle
|
anomalies
|
aqua
|
ar4
|
ar5
|
arctic
|
arm
|
arts
|
arts-dev
|
asr
|
assimilation
|
astronomy
|
astrophysics
|
asymmetry
|
atmosphere
|
atmospheric composition
|
atmospheric dynamics
|
atmospheric profiles
|
atsr-2
|
avhrr
|
bachelor thesis
|
backscattering
|
basics
|
bayes
|
bias
|
biomass
|
book
|
calculation
|
calculations
|
calibration
|
calipso
|
ccn
|
cdr
|
ceres
|
cfmip
|
chemistry
|
cia
|
ciraclim
|
cirrus
|
cirrus anvil sublimation
|
cirrus cloud
|
cirrus clouds
|
cirrusstudy
|
ciwsir/cloudice
|
claus
|
cliccs
|
climate
|
climate change
|
climate dynamics
|
climate feedbacks
|
climate sensitivity
|
climate sensivity
|
climate variability
|
climatology
|
cloud feedback
|
cloud forcing
|
cloud fraction
|
cloud ice
|
cloud ice mission
|
cloud optical thickness
|
cloud properties
|
cloud radiative effects
|
cloud radiative forcing
|
cloud regimes
|
cloud top pressure
|
cloudice mission
|
clouds
|
cloudsat
|
clustering
|
cmip3
|
cmip5
|
cmip6
|
cmsaf
|
co2
|
collocation
|
collocations
|
comparison
|
computer science
|
continua
|
contrail
|
convection
|
convective clouds
|
convective processes
|
convective self-aggregation
|
correlated k
|
cosmic background
|
cosmic rays
|
cosp
|
cost 723 qjrms
|
cross-calibration
|
cth
|
cumulus
|
dardar
|
data assimilation
|
data bases
|
dda
|
deep convection
|
delta m
|
dimer
|
disort
|
diurnal cycle
|
dlr-smiles
|
dmsp
|
documentation
|
doppler
|
droplet size
|
dynamics
|
earth
|
earthcare
|
ec earth
|
echam
|
ecmwf
|
effective radius
|
electromagnetism
|
electron content
|
elevation
|
elevation satellite-2
|
emd
|
emde
|
emissivity
|
enso
|
eof-pca-svd
|
erbe
|
error assessment
|
ers
|
eruption
|
esa planetary
|
exoplanets
|
extraterrestrial
|
fall speed
|
far-infrared
|
faraday-voigt
|
fcdr
|
feedback
|
feedbacks
|
fingerprinting
|
flux uav
|
forcing
|
forest fire
|
fox19_airborne_amt.pdf
|
friend
|
fun
|
fuzzy inference system
|
fuzzy logic
|
gcm
|
genesis
|
geostationary
|
gerrit_erca
|
global warming
|
gnss
|
goes
|
gps
|
gras
|
graupel
|
gravitational lensing
|
greenhouse effect
|
ground-based
|
groundbased
|
habil
|
hadley circulation
|
hail
|
hamburg
|
heating rate
|
heating rates
|
herschel
|
hiatus
|
hirs
|
history
|
hsb
|
humidity
|
hydrological sensitivity
|
hydrological sensivity
|
hydrometeors
|
iasi
|
ice
|
ice clouds
|
ice crystal growth
|
ice nucleation
|
ice water
|
icesat-2
|
ici
|
icon
|
icz
|
in situ
|
infrared
|
infrared sounder
|
instruments
|
inter-calibration
|
intercalibration
|
intercomparison
|
interference
|
inverse modelling
|
ipcc
|
ir
|
ir/vis
|
iris
|
isccp
|
ismar
|
isotopes
|
itcz
|
iwc
|
iwp
|
iwv
|
john
|
jupiter
|
kalpana
|
kessler scheme
|
lblrtm
|
licentiate thesis
|
lidar
|
limb effect
|
limb sounding
|
limb-correction
|
linemixing
|
lineshape
|
liquid water
|
liquid water path
|
longwave radiation
|
low-cloud feedback
|
magnetic field
|
magnetism
|
mars
|
mas
|
mass-dimension relation
|
master thesis
|
masters thesis
|
math
|
megha-tropiques
|
mendrok
|
mesoscale organization
|
meteorology
|
meteosat
|
methane ocean
|
metop
|
mhs
|
microphysics
|
microwave
|
microwave humidity
|
microwave radiometry
|
milz
|
mipas
|
mirs
|
misr
|
mixed phase
|
mls
|
model
|
modeling
|
models
|
modis
|
monte carlo
|
moon
|
mspps
|
msu
|
mth
|
multi-moment scheme
|
multisensor
|
mwhs
|
mwi
|
net radiation
|
neural network
|
nicam
|
nlte
|
noaa
|
nonsphericity
|
npoess
|
observation
|
ocean
|
ocean reflection
|
ocean-atmosphere interactions
|
odin
|
olr
|
one-moment scheme
|
open loop
|
optical
|
optical depth
|
optical properties
|
optics
|
orbital drift
|
orbital drift correction
|
orbits
|
ozone
|
pacific ocean
|
particle orientation
|
particle shape
|
particle size
|
particle size distribution
|
passive
|
patmos-x
|
phase function
|
phd thesis
|
planetary evolution
|
polarimetry
|
polarization
|
polder
|
potss
|
precipitation
|
profile datasets
|
programming
|
projection
|
promet
|
propagation modeling
|
python
|
radar
|
radiation
|
radiation profiles
|
radiative convective equilibrium
|
radiative equilibrium
|
radiative feedback
|
radiative fluxes
|
radiative forcing
|
radiative processes
|
radiative transfer
|
radiative-convective equilibrium
|
radiative-equilibrium
|
radio occultation
|
radiometer
|
radiometers
|
radiosonde
|
radiosonde cloud liquid
|
radiosonde correction
|
radiosonde corrections
|
rain
|
reanalysis
|
refractive index
|
relative humidity
|
remote sensing
|
retrieval
|
retrievals
|
review
|
rodgers
|
rttov
|
sahara
|
sahel
|
sampling
|
sand/dust
|
sar
|
satellite
|
satellite missions
|
satellite observations
|
satellite simulator
|
sbuehler_habil
|
scattering
|
scattering databases
|
scintillations
|
scout-amma
|
self-aggregation
|
sensor geometry
|
seviri
|
shallow convection
|
simulated annealing
|
single scattering
|
smiles
|
sno
|
snow
|
snowfall
|
software
|
soil
|
solar
|
soot
|
sounders
|
spectral information
|
spectroscopy
|
split window technique
|
sreerekha
|
ssm/i
|
ssm/t
|
ssmis
|
ssmt2
|
stability
|
stars
|
statistics
|
ste
|
stereo
|
stratosphere
|
submillimeter
|
submm
|
sun
|
supersaturation
|
surface
|
synergies
|
synergy
|
task2
|
tempera
|
temperature
|
terra
|
thermodynamics
|
time series
|
titan
|
tkuhn
|
toa radiation
|
top of the atmosphere
|
total column
|
tovs
|
trade-wind clouds
|
trajectory analysis
|
trend
|
trmm
|
tropical circulation
|
tropical convection
|
tropical meteorology
|
tropics
|
tropopause
|
troposphere
|
ttl
|
turbulence
|
tutorial
|
two-moment scheme
|
upper troposphere
|
uth
|
uthmos
|
utls
|
validation
|
vater vapor
|
venus
|
visualization
|
volcanic ash
|
walker
|
walker circulation
|
walker rirculation
|
water
|
water cycle
|
water dimer
|
water vapor
|
water vapor continuum
|
water vapour
|
water vapour path
|
water-vapour
|
wind
|
zeeman
|
Hide tag cloud
Filtered by keyword:water vapor
There is currently a filter applied. To see the complete list of publications,
clear the filter.
Group references
In the Pipeline
Articles
2017 
- Nehrir, A. R., C. Kiemle, M. D. Lebsock, G. Kirchengast, S. A. Buehler, U. Löhnert, C.-L. Liu, P. Hargrave, M. Barrera-Verdejo, and D. M. Winker (2017), Emerging Technologies and Synergies for Airborne and Space-Based Measurements of Water Vapor Profiles, Sur. Geophy., 1–38, doi:10.1007/s10712-017-9448-9.
2016 
- Chung, E.-S., B. J. Soden, X. Huang, L. Shi, and V. O. John (2016), An assessment of the consistency between satellite measurements of upper tropospheric water vapor, J. Geophys. Res., 121(6), 2874–2887, doi:10.1002/2015JD024496.
- Brogniez, H., S. English, J.-F. Mahfouf, A. Behrendt, W. Berg, S. Boukabara, S. A. Buehler, P. Chambon, A. Gambacorta, A. Geer, W. Ingram, E. R. Kursinski, M. Matricardi, T. Odintsova, V. Payne, P. Thorne, M. Tretyakov, and J. Wang (2016), A review of sources of systematic errors and uncertainties in observations and simulations at 183GHz, Atmos. Meas. Tech., 9(5), 2207–2221, doi:10.5194/amt-9-2207-2016.
2015 
- Aires, F., C. Prigent, E. Orlandi, M. Milz, P. Eriksson, S. Crewell, C.-C. Lin, and V. Kangas (2015), Microwave hyper-spectral measurements for temperature and humidity atmospheric profiling from satellite: the clear-sky case, J. Geophys. Res., 120, 11,334–11,351, doi:10.1002/2015JD023331.
- Mathew, N., V. O. John, C. S. Raju, and K. K. Moorthy (2015), Upper tropospheric humidity from SAPHIR on-board Megha-Tropiques, Curr. Sci., 108(10), 1915–1922.
- Clain, G., H. Brogniez, V. H. Payne and, V. O. John, and M. Luo (2015), An assessment of SAPHIR calibration using quality tropical soundings, J. Atmos. Oceanic Technol., 32, 61–78, doi:10.1175/JTECH-D-14-00054.1.
2013 
- Chung, E.-S., B. J. Soden, and V. O. John (2013), Intercalibrating microwave satellite observations for monitoring long-term variations in upper and mid-tropospheric water vapor, J. Atmos. Oceanic Technol., 30, 2303–2319, doi:10.1175/JTECH-D-13-00001.1.
- Shi, L., C. J. Schreck III, and V. O. John (2013), HIRS channel-12 brightness temperature dataset and its correlations with major climate indices, Atmos. Chem. Phys., 13, 6907–6920, doi:10.5194/acp-13-6907-2013.
2012 
- Buehler, S. A., S. Östman, C. Melsheimer, G. Holl, S. Eliasson, V. O. John, T. Blumenstock, F. Hase, G. Elgered, U. Raffalski, T. Nasuno, M. Satoh, M. Milz, and J. Mendrok (2012), A multi-instrument comparison of integrated water vapour measurements at a high latitude site, Atmos. Chem. Phys., 12(22), 10925–10943, doi:10.5194/acp-12-10925-2012.
- Kasai, Y., H. Sagawa, T. Kuroda, T. Manabe, S. Ochiai, K. Kikuchi, T. Nishibori, P. Baron, J. Mendrok, P. Hartogh, D. Murtagh, J. Urban, F. von Schéele, and U. Frisk (2012), Overview of the Martian atmospheric submillimetre sounder FIRE, Planet. Space Sci., 63-64, 62–82, doi:10.1016/j.pss.2011.10.013.
2011 
- Buehler, S. A., P. Eriksson, and O. Lemke (2011), Absorption lookup tables in the radiative transfer model ARTS, J. Quant. Spectrosc. Radiat. Transfer, 112(10), 1559–1567, doi:10.1016/j.jqsrt.2011.03.008.
2009 
- Sagawa, H., J. Mendrok, T. Seta, H. Hoshina, P. Baron, K. Suzuki, I. Hosako, C. Otani, P. Hartogh, and Y. Kasai (2009), Pressure broadening coefficients of H2O induced by CO2 for Venus atmosphere, J. Quant. Spectrosc. Radiat. Transfer, 110(18), 2027–2036, doi:10.1016/j.jqsrt.2009.05.003.
- Rydberg, B., P. Eriksson, S. A. Buehler, and D. P. Murtagh (2009), Non-Gaussian Bayesian retrieval of tropical upper tropospheric cloud ice and water vapour from Odin-SMR measurements, Atmos. Meas. Tech., 2, 621–637, doi:10.5194/amt-2-621-200.
- Milz, M., T. v. Clarmann, P. Bernath, C. Boone, S. A. Buehler, S. Chauhan, B. Deuber, D. G. Feist, B. Funke, N. Glatthor, U. Grabowski, A. Griesfeller, A. Haefele, M. Höpfner, N. Kämpfer, S. Kellmann, A. Linden, S. Müller, H. Nakajima, H. Oelhaf, E. Remsberg, S. Rohs, J. M. Russell III, C. Schiller, G. P. Stiller, T. Sugita, T. Tanaka, H. Vömel, K. Walker, G. Wetzel, T. Yokota, V. Yushkov, and G. Zhang (2009), Validation of water vapour profiles (version 13) retrieved by the IMK/IAA scientific retrieval processor based on full resolution spectra measured by MIPAS on board Envisat, Atmos. Meas. Tech., 2, 379–399, doi:10.5194/amt-2-379-2009.
- Chauhan, S., M. Höpfner, G. P. Stiller, T. von Clarmann, B. Funke, N. Glatthor, U. Grabowski, A. Linden, S. Kellmann, M. Milz, T. Steck, H. Fischer, L. Froidevaux, A. Lambert, M. L. Santee, M. Schwartz, W. G. Read and, and N. J. Livesey (2009), MIPAS reduced spectral resolution UTLS-1 mode measurements of temperature, O3, HNO3, N2O, H2O and relative humidity over ice: retrievals and comparison to MLS, Atmos. Meas. Tech., 2, 337–353, doi:10.5194/amt-2-337-2009.
2008 
- Müller, S. C., N. Kämpfer, D. G. Feist, A. Haefele, M. Milz, N. Sitnikov, C. Schiller, C. Kiemle, and J. Urban (2008), Validation of stratospheric water vapour measurements from the airborne microwave radiometer AMSOS, Atmos. Chem. Phys., 8, 3169–3183, doi:10.5194/acp-8-3169-2008.
2002 
- Kuhn, T., A. Bauer, M. Godon, S. A. Buehler, and K. Kuenzi (2002), Water vapor continuum: Absorption measurements at 350 GHz and model calculations, J. Quant. Spectrosc. Radiat. Transfer, 74(5), 545–562, doi:10.1016/S0022-4073(01)00271-0.
Books and Book Contributions
Theses
Technical Reports and Proposals
2013 
- John, V. O., D. E. Parker, S. A. Buehler, J. Price, and R. W. Saunders (2013), Analysis of upper-tropospheric humidity in tropical descent regions using observed and modelled radiances, Atmos. Chem. Phys. Discuss., 13, 10547–10560, doi:10.5194/acpd-13-10547-2013.
Articles in Conference Proceedings and Newsletters
Internal Reports
2014 
- Kaiser, J. (2014), Vergleich von Matlabprogrammen zur Berechnung der Gleichgewichtsdampfdrücke von Wasserdampf über Wasser und Eis mit Näherungen von Murphy & Koop, Sonntag und Goff-Gratch, Universität Hamburg, Meteorological Institute.
External references
- Aghedo, A. M., K. W. Bowman, D. T. Shindell, and G. Faluvegi (2011), The impact of orbital sampling, monthly averaging and vertical resolution on climate chemistry model evaluation with satellite observations, Atmos. Chem. Phys. Discuss., 11, 9705–9742, doi:10.5194/acpd-11-9705-2011.
- Allan, R. P., M. A. Ringer, and A. Slingo (2003), Evaluation of moisture in the Hadley Centre climate model using simulations of HIRS water-vapour channel radiances, Q. J. R. Meteorol. Soc., 129, 3371–3389, doi:10.1256/qj.02.217.
- Asheko, A. A. and K. E. Nemchenko (2003), Relaxation Parameters in the Main Dispersion Range of Water, J. Molec. Liqu., 105(2–3), 295–298.
- Baranov, Y. I. and W. J. Lafferty (2011), The water-vapor continuum and selective absorption in the 3–5 μm spectral region at temperatures from 311 to 363 K, J. Quant. Spectrosc. Radiat. Transfer, 112(8), 1304–1313, doi:10.1016/j.jqsrt.2011.01.024.
- Barton, I. J. (1991), Infrared continuum water vapor absorption coefficients derived from satellite data, Appl. Opt., 30(21), 2929–2934.
- Bates, J. J., X. Wu, and D. L. Jackson (1996), Interannual Variability of Upper-Troposphere Water Vapor Band Brightness Temperature, J. Climate, 9, 427–438.
- Bates, J. J. and D. L. Jackson (1997), A comparison of water vapor observations with AMIP I simulations, J. Geophys. Res., 102(D18), 21,837–21,852.
- Bauer, A., B. Duterage, and M. Godon (1986), Temperature dependence of water-vapor absorption in the wing of the 183 GHz line, J. Quant. Spectrosc. Radiat. Transfer, 36(4), 307–318.
- Bauer, A., M. Gogon, M. Kheddar, J. M. Hartmann, J. Bonamy, and D. Robert (1987), Temperature and Perturber Dependences of Water-Vapor 380 GHz-Line Broadening, J. Quant. Spectrosc. Radiat. Transfer, 37(6), 531–539.
- Bauer, A., M. Godon, M. Kheddar, and J. M. Hartmann (1989), Temperature and perturber dependences of water vapor line-broadening. Experiments at 183 GHz; Calculations below 1000 GHz, J. Quant. Spectrosc. Radiat. Transfer, 41(1), 49–54.
- Bauer, A. and M. Godon (1991), Temperature dependence of water-vapor absorption in linewings at 190 GHz, J. Quant. Spectrosc. Radiat. Transfer, 46(3), 211–220.
- Bauer, A., M. Godon, and Q. Ma (1995), Water vapor absorption in the atmospheric window at 239 GHz, J. Quant. Spectrosc. Radiat. Transfer, 53(4), 411–423.
- Bauer, A., M. Godon, J. Carlier, and R. R. Gamache (1998), Continuum in the Windows of the Water Vapor Spectrum. Absorption of H2O-Ar at 239 GHz and Linewidth Calculations, J. Quant. Spectrosc. Radiat. Transfer, 59(3–5), 273–285.
- Becker, G. E. and S. H. Autler (1946), Water Vapor Absorption of Electromagnetic Radiation in the Centimeter Wave-Length Range, Phys. Rev., 70(5–6), 300–307.
- Belmiloud, D., R. Schermaul, K. S. Smith, N. F. Zobov, J. W. BRault an R. C. M. Learner, D. A. Newnham, and J. Tennyson (2000), New Studies of the Visible and Near-Infrared Absorption by Water Vapour and Some Problems with the HITRAN database, Geophys. Res. Lett., 27(22), 3703–3706.
- Belov, S. P., I. N. Kozin, O. L. Polyansky, M. Y. Tret'yakov, and N. F. Zobov (1987), Rotational Spectrum of the H216O Molecule in the (010) Excited Vibrational State, J. Molec. Spectro., 126, 113–117.
- Bennartz, R. and U. Lohmann (2001), Impact of improved near infrared water vapor line data on absorption of solar radiation in GCMs, Geophys. Res. Lett., 28(24), 4591–4594.
- Berg, W., J. J. Bates, and D. L. Jackson (1999), Analysis of Upper-Tropospheric Water Vapor Brightness Temperatures from SSM/T2, HIRS, and GMS-5 VISSR, J. Appl. Meteorol., 38, 580–595.
- Bevilacqua, R. M., D. L. Kriebel, T. A. Pauls, C. P. Aellig, D. E. Siskind, M. Daehler, J. J. Olivero, S. E. Puliafito, G. K. Hartmann, N. Kämpfer, A. Berg, and C. L. Croskey (1996), MAS measurements of the latitudinal distribution of water vapor and ozone in the mesosphere and lower thermosphere, Geophys. Res. Lett., 23(17), 2317–2320.
- Bevis, M., S. Businger, T. A. Herring, C. Rocken, R. A. Anthes, and R. H. Ware (1992), GPS Meteorology: Remote Sensing of Atmospheric Water Vapor Using the Global Positioning System, J. Geophys. Res., 97(D14), 15,787–15,801.
- Bézard, B., A. Fedorova, J.-L. Bertaux, A. Rodin, and O. Korablev (2011), The 1.10- and 1.18-μm nightside windows of Venus observed by SPICAV-IR aboard Venus Express, Icarus, 216(1), 173–183, doi:10.1016/j.icarus.2011.08.025.
- Bhawar, R., P. Di Girolamo, D. Summa, C. Flamant, D. Althausen, A. Behrendt, C. Kiemle, P. Bosser, M. Cacciani, C. Champollion, T. Di Iorio, R. Engelmann, C. Herold, D. Müller, S. Pal, M. Wirth, and V. Wulfmeyer (2011), The water vapour intercomparison effort in the framework of the Convective and Orographically-induced Precipitation Study: airborne-to-ground-based and airborne-to-airborne lidar systems, Q. J. R. Meteorol. Soc., 137, 325–348, doi:10.1002/qj.697.
- Biver, N., A. Lecacheux, T. Encrenaz, E. Lellouch, P. Baron, J. Crovisier, U. Frisk, Å. Hjalmarson, M. Olberg, Aa. Sandqvist, and S. Kwok (2005), Wide-band observations of the 557 GHz water line in Mars with Odin, A&A, 435(2), 765–772, doi:10.1051/0004-6361:20042247.
- Blankenship, C. B. and T. T. Wilheit (2001), SSM/T-2 measurements of regional changes in three-dimensional water vapor fields during ENSO events, J. Geophys. Res., 106(D6), 5239–5254, doi:10.1029/2000JD900706.
- Bock, O., M.-N. Bouin, A. Walpersdorf, J. P. Lafore, S. Janicot, F. Guichard, and A. Agusti-Panareda (2007), Comparison of ground-based GPS precipitable water vapour to independent observations and NWP model reanalyses over Africa, Q. J. R. Meteorol. Soc., 133, 2011–2027, doi:10.1002/qj.185.
- Bokoye, A. I., A. Royer, N. T. O'Neill, P. Cliche, L. J. B. McArthur, P. M. Teillet, G. Fedosejevs, and J.-M. Thériault (2003), Multisensor analysis of integrated atmospheric water vapor over Canada and Alaska, J. Geophys. Res., 108(D15), 4480, doi:10.1029/2002JD002721.
- Brogniez, H., R. Roca, and L. Picon (2005), Evaluation of the distribution of subtropical free tropospheric humidity in AMIP-2 simulations using METEOSAT water vapor channel data, Geophys. Res. Lett., 32, doi:10.1029/2005GL024341.
- Brzoska, B., A. Jaczewski, and Z. Litynska (1111), Homogenisation of water vapour data from RS-80A and RS-90 radiosondes, Institute of Meterology and Water Management.
- Cadeddu, M. P., J. C. Liljegren, and A. L. Pazmany (2007), Measurements and Retrievals From a New 183-GHz Water-vapor Radiometer in the Arctic, IEEE Geosci. Remote Sens., 45, 2207–2215, doi:10.1109/TGRS.2006.888970.
- Carlon, H. R. (1981), Infrared water vapor continuum absorption: equilibria of ions and neutral water clusters, Appl. Opt., 20(8), 1316–1322.
- Carlon, H. R. (1978), Molecular Interpretation of the ir water vapor continuum: comments, Appl. Opt., 17(20).
- Cess, R. D. (2005), Water Vapor Feedback in Climate Models, Science, 310, 795–796.
- Chae, J. H., D. L. Wu, W. G. Read, and S. C. Sherwood (2011), The role of tropical deep convective clouds on temperature, water vapor, and dehydration in the tropical tropopause layer (TTL), Atmos. Chem. Phys., 11, 3811–3821, doi:10.5194/acp-11-3811-2011.
- Chen, C.-T. and E. Roeckner (1996), A Comparison of Satellite Observations and Model Simulations of Column-Integrated Moisture and Upper-Tropospheric Humidity, J. Climate, 9, 1561–1584.
- Chiou, E. W., M. P. McCormick, and W. P. Chu (1997), Global water vapor distributions in the stratosphere and upper troposphere derived from 5.5 years of SAGE II observations 1986–1991, J. Geophys. Res., 102(D15), 19,105–19,118.
- Choy, S., K. Zhang, C.-S. Wang, Y. Li, and Y. Kuleshov (2010), Remote Sensing of the Earth's Lower Atmosphere During Severe Weather Events using GPS Technology: a Study in Victoria, Australia, In: Proceedings of the 24th International Technical Meeting of The Satellite Division of the Institute of Navigation (ION GNSS 2011), September 20 - 23, 2010 Oregon Convention Center, Portland, Oregon Portland, OR.
- Chylek, P. and D. J. W. Geldart (1997), Water vapor dimers and atmospheric absorption of electromagnetic radiation, Geophys. Res. Lett., 24(16), 2015–2018.
- Chylek, P., Q. Fu, H. C. W. Tso, and D. J. W. Geldart (1999), Contribution of water vapor dimers to clear sky absorption of solar radiation, Tellus, 51, 304–313.
- Cimini, D., F. Nasir, E. R. Westwater, V. H. Payne, D. D. Turner, E. J. Mlawer, M. L. Exner, and M. P. Cadeddu (2009), Comparison of Ground-Based Millimeter-Wave Observations and Simulations in the Arctic Winter, IEEE T. Geosci. Remote, 47(9), 3098–3106, doi:10.1109/TGRS.2009.2020743.
- Clark, H. L., R. S. Harwood, A. Billingham, and H. C. Pumphrey (2003), Cirrus and water vapor in the tropical tropopause layer observed by Upper Atmosphere Research Satellite (UARS), J. Geophys. Res., 108(D24), doi:10.1029/2003JD003748.
- Clark, H. L. and R. S. Harwood (2003), Upper-Tropospheric Humidity from MLS and ECMWF Reanalyses, Mon. Weather Rev., 131, 542–555.
- Clough, S. A., M. W. Shephard, E. J. Mlawer, J. S. Delamere, M. Iacono, K. Cady-Pereira, S. Boukabara, and P. D. Brown (2005), Atmospheric radiative transfer modeling: a summary of the AER codes, J. Quant. Spectrosc. Radiat. Transfer, 91(2), 233–244, doi:10.1016/j.jqsrt.2004.05.058.
- Clough, S. A., F. X. Kneizys, and R. W. Davies (1989), Line Shape and the Water Vapor Continuum, Atmos. Res., 23, 229–241, doi:10.1016/0169-8095(89)90020-3.
- Clough, S. A., M. J. Iacono, and J.-L. Moncet (1992), Line-by-Line Calculations of Atmospheric Fluxes and Cooling Rates: Application to Water Vapor, J. Geophys. Res., 97(D14), 15761–15785.
- Clough, S. A. and P. D. Brown (1997), Status Of the CKD Water Vapor Continuum Model, Atmospheric and Enviromental Reseach.
- Clough, S. A., P. D. Brown, D. D. Turner, T. R. Shippert, J. C. Liljegren, D. C. Tobin, H. E. Revercomb, and R. O. Knuteson (1999), Effect on the Calculated Spectral Surface Radiances Due to MWR Scaling of Sonde Water Vapor Profiles, Ninth ARM Science Team Meeting Proceedings, San Antonio, Texas.
- Collins, W. D., J. K. Hackney, and D. P. Edwards (2002), An updated parameterization for infrared emission and absorption by water vapor in the National Center for Atmospheric Research Community Atmosphere Model, J. Geophys. Res., 107(D22), doi:10.1029/2001JD001365.
- Colmont, J.-M., D. Priem, G. Wlodarczak, and R. R. Gamache (1999), Measurements and Calculations of the Halfwidth of Two Rotational Transitions of Water Vapor Perturbed by N2, O2, and Air, J. Molec. Spectro., 193, 233–243.
- Costales, J. B., G. F. Smoot, C. Witebsky, and G. De Amici (1986), Simultaneous measurements of atmospheric emissions at 10, 33, and 90 GHz, Radio Sci., 21(1), 47–55.
- Cuccoli, F., L. Facheris, S. Tanelli, and D. Giuli (2001), Microwave Attenuation Measurement in Satellite-Ground Links: The Potential of Spectral Analysis for Water Vapor Profiles Retrieval, IEEE Geosci. Remote Sens., 39(3), 645–654.
- Cuccoli, F. and L. Facheris (2002), Estimate of the Tropospherical Water Vapor Through Microwave Attenuation Measurements in Atmosphere, IEEE Geosci. Remote Sens., 40(4), 735–741.
- Curry, J. A. and P. J. Webster (1999), Thermodynamics of Atmospheres and Oceans, University of Colorado.
- Dai, A., J. Wang, R. H. Ware, and T. Van Hove (2002), Diurnal variation in water vapor over North America and its implications for sampling errors in radiosonde humidity, J. Geophys. Res., 107(D10), doi:10.1029/2001JD000642.
- Davis, G. R. (1993), The far infrared continuum absorption of water vapor, J. Quant. Spectrosc. Radiat. Transfer, 50(6), 673–694.
- Decker, M. T., E. R. Westwater, and F. O. Guiraud (1978), Experimental Evaluation of Ground-Based Microwave Radiometric Sensing of Atmospheric Temperature and Water Vapor Profiles, J. Appl. Meteorol., 17(12), 1788–1795.
- Delamere, J. S., S. A. Clough, V. H. Payne, E. J. Mlawer, D. D. Turner, and R. R. Gamache (2010), A far-infrared radiative closure study in the Arctic: Application to water vapor, J. Geophys. Res., 115, D17106, doi:10.1029/2009JD012968.
- Desbois, M., L. Picon, and R. Roca (xx), The Role of Atmospheric Water Vapour on Climate, Laboratoire de Meterologie Dynamique, Ecole Polytechnique-CNRS, France.
- Dessler, A. E. and E. M. Weinstock (2003), Comment on "Balloon-borne observations of water vapor and ozone in the tropical upper troposhere and lower stratosphere" by H. Voemel et al., J. Geophys. Res., 108(D4), doi:10.1029/2002JD002811.
- Dessler, A. E., Z. Zhang, and P. Yang (2008), Water-vapor climate feedback inferred from climate fluctuations, 2003-2008, Geophys. Res. Lett., 35, L20704, doi:10.1029/2008GL035333.
- Deuber, B., J. Morland, L. Martin, and N. Kämpfer (2005), Deriving the tropospheric integrated water vapor from tipping curve-derived opacity near 22 GHz, Radio Sci., 40, RS5011, doi:10.1029/2007RG000233.
- Divakarla, M. G., C. D. Barnet, M. D. Goldberg, L. M. McMillin, E. Maddy, W. Wolf, L. Zhou, and X. Liu (2006), Validation of Atmospheric Infrared Sounder temperature and water vapor retrievals with matched radiosonde measurements and forecasts, J. Geophys. Res., 111, D09S15, doi:10.1029/2005006116.
- Eguchi, N. and M. Shiotani (2004), Intraseasonal variations of water vapor and cirrus clouds in the tropical upper troposphere, J. Geophys. Res., 109, D12106, doi:10.1029/2003JD004314.
- Eguchi, N. and M. Shiotani (2004), Intraseasonal variations of water vapor and cirrus clouds in the tropical upper troposphere, J. Geophys. Res., 109(D18), doi:10.1029/2003JD004314.
- Ekström, M. and P. Eriksson (2008), Altitude resolved ice-fraction in the uppermost tropical troposphere, Geophys. Res. Lett., 35, L13822, doi:10.1029/2008GL034305.
- Elgered, G., B. O. Roennaeng, and J. I. H. Askne (1982), Measurements of atmospheric water vapor with microwave radiometry, Radio Sci., 17(5), 1258–1264.
- Elgered, G., J. M. Johansson, B. O. Roennaeng, and J. L. Davis (1997), Measuring regional atmospheric water vapor using the Swedish permanent GPS network, Geophys. Res. Lett., 24(21), 2663–2666.
- Elsasser, W. M. (1938), Far Infrared Absorption of Atmospheric Water Vapor, Astrophys. J., 87(5), 497–507.
- Emardson, T. R. and J. M. Johansson (1998), Spatial interpolation of the atmospheric water vapor content between sites in a ground-based GPS network, Geophys. Res. Lett., 25(17), 3347–3350.
- Emmons, L. K. and R. L. de Zafra (1990), Observation of a Strong Inverse Temperature Dependence for the Opacity of Atmospheric Water Vapor in the mm Continuum near 280 GHz, Int. J. Inf. Millim. Waves, 11(4), 469–489.
- Engelen, R. J. and G. L. Stephens (1999), Characterization of water-vapour retrievals from TOVS/HIRS and SSM/T-2 measurements, Q. J. R. Meteorol. Soc., 125, 331–351.
- English, S. J., C. Guillou, C. Prigent, and D. C. Jones (1994), Aircraft measurements of water vapour continuum absorption millimetre wavelengths, Q. J. R. Meteorol. Soc., 120, 603–625.
- English, S. J., D. C. Jones, P. J. Rayer, T. J. Hewison, R. W. Saunders, C. Guillou, C. Prigent, J. Wang, and G. Anderson (1995), Observations of water vapour absorption using airborne microwave radiometers at 89 and 157 Ghz, IEEE, 1395–1404.
- Eymard, L., M. Gheudin, P. Laborie, F. Sirou, C. Le Gac, J. P. Vinson, S. Franquet, M. Desbois, R. Roca, N. Scott, and P. Waldteufel (2001), The SAPHIR humidity sounder, CETP, Observatoire de Paris, Ecole Polytechnique, MEGHA-TROPIQUES 2nd Scientific Workshop.
- Fasullo, J. and D.-Z. Sun (2001), Radiative Sensitivity to Water Vapor under All-Sky Conditions, J. Climate, 14, 2798–2807.
- Ferraro, R. R., N. C. Grody, F. Weng, and A. Basist (1996), An Eight-Year (1987–1994) Time Series of Rainfall, Clouds, Water Vapor, Snow Cover, and Sea Ice Derived from SSM/I Measurements, Bull. Amer. Met. Soc., 77, 891–906.
- Folkins, I., K. K. Kelly, and E. M. Weinstock (2002), A simple explanation for the increase in relative humidity between 11 and 14 km in the tropics, J. Geophys. Res., 107(D23), 4736, doi:10.1029/2002JD002185.
- Folkins, I. and R. V. Martin (2005), The Vertical Structure of Tropical Convection and Its Impact on the Budget of Water Vapor and Ozone, J. Atmos. Sci., 62, 1560–1573.
- Folkins, I., P. Bernath, C. Boone, L. J. Donner, A. Eldering, G. Lesins, R. V. Martin, B.-M. Sinnhuber, and K. Walker (2006), Testing convective parameterizations with tropical measurements of HNO3, CO, H2O, and O3: Implications for the water vapor budget, J. Geophys. Res., 111, D23304, doi:10.1029/2006JD007325.
- de F. Forster, P. M. and M. Collins (2003), Quantifying the water vapour feedback associated with post-Pinatubo global cooling, Climate Dynamics, 25(2), 207–214.
- Franquet, S., N. Scott, A. Chedin, R. Armante, and L. Eymard (1111), Simulations of radiative transfer in the SAPHIR and AMSU channels in the perspective of water vapor profiles retrievals, ARA/LMD Ecole Polytechnique, CETP.
- Frey, R. A., S. A. Ackerman, and B. J. Soden (1996), Climate Parameters from Satellite Spectral Measurements. Part I: Collocated AVHRR and HIRS/2 Observations of Spectral Greenhouse Parameter, J. Climate, 9, 327–344.
- Fu, Q., M. Baker, and D. L. Hartmann (2002), Tropical cirrus and water vapor: an effective Earth infrared iris feedback?, Atmos. Chem. Phys., 2, 31–37, doi:10.5194/acp-2-31-2002.
- Fusina, F., P. Spichtinger, and U. Lohmann (2007), Impact of ice supersaturated regions and thin cirrus on radiation in the midlatitudes, J. Geophys. Res., 112, D24S14, doi:10.1029/2007JD008449.
- Galm, J. M., F. L. Merat, and P. C. Claspy (1990), Estimates of Atmospheric Attenuation Sensitivity with Respect to Absolute Humidity at 337 GHz, IEEE Trans. Antennas Propag., 38(7), 982–986.
- Gamache, R. R. and J. Fischer (2002), Half-widths of H216O, H218O, H217O, HD16O, and D216O: I. Comparison between isotopomers, J. Quant. Spectrosc. Radiat. Transfer.
- Gamache, R. R. and J. Fischer (2002), Half-widths of H216O, H218O, H217O, HD16O, and D216O: II. Comparison with measurement, J. Quant. Spectrosc. Radiat. Transfer.
- Gamache, R. R. and J.-M. Hartmann (2004), An intercomparison of measured pressure-broadening and pressure-shifting parameters of water vapor, Can. J. Chem., 82(6), 1013–1027.
- Gamache, R. R. and J.-M. Hartmann (2004), An intercomparison of measured pressure-broadening and pressure-shifting parameters of water vapor, Can. J. Chem., 82(6), 1013–1027, doi:10.1139/v04-069.
- Gamache, R. R. and R. W. Davies (1983), Theoretical calculations of N2-broadenend halfwidths of H2O using quantum Fourier transform theory, Appl. Opt., 22(24), 4013–4019.
- Gamache, R. R. and L. S. Rothman (1988), Temperature Dependence of N2-Broadenend Halfwidths of Water Vapor: The Pure Rotation and ν2 Bands, J. Molec. Spectro., 128, 360–369.
- Gamache, R. R., J.-M. Hartmann, and L. Rosenmann (1994), Collisional broadening of water vapour lines - I. A survey of experimental results, J. Quant. Spectrosc. Radiat. Transfer, 52(3/4), 481–499, doi:10.1016/0022-4073(94)90175-9.
- Gamache, R. R., R. Lynch, and L. R. Brown (1996), Theoretical Calculations of Pressure Broadening Coefficients for H2O Perturbed by Hydrogen or Helium Gas, J. Quant. Spectrosc. Radiat. Transfer, 56(4), 471–487.
- Gamache, R. R., F. R. Lynch, J. J. Plateaux, and A. Barbe (1997), Halfwidths and line shifts of water vapour broadened by CO2: measurements and complex Robert-Bonamy formalism calculations, J. Quant. Spectrosc. Radiat. Transfer, 57(4), 485–496, doi:10.1016/S0022-4073(96)00148-3.
- Gao, R. S., P. J. Popp, D. W. Fahey, T. P. Marcy, R. L. Herman, E. M. Weinstock, D. G. Baumgardner, T. J. Garrett, K. H. Rosenlof, T. L. Thompson, P. T. Bui, B. A. Ridley, S. C. Wofsy, O. B. Toon, M. A. Tolbert, B. Kärcher, Th. Peter, P. K. Hudson, A. J. Weinheimer, and A. J. Heymsfield (2004), Evidence that nitric acid increases relative humidity in low-temperature cirrus clouds, Science, 303, 516–520.
- Gao, B.-C., K. Meyer, and P. Yang (2004), A new concept on remote sensing of cirrus optical depth and effective ice particle size using strong water vapor absorption channels near 1.38 and 1.88 micrometer, IEEE T. Geosci. Remote, 42(9), 1891–1899.
- Gao, B.-C., P. K. Chan, and R.-R. Li (2004), A global water vapor data set obtained by merging the SSMI and MODIS data, Geophys. Res. Lett., 31, doi:10.1029/2004GL020656.
- Gasiewski, A. J. (1992), Numerical Sensitivity Analysis of Passive EHF and SMMW Channels to Tropospheric Water Vapor, Clouds, and Precipitation, IEEE T. Geosci. Remote, 30(5), 859–870, doi:10.1109/36.175320.
- Gasster, S. D., C. H. Townes, D. Goorvitch, and F. P. J. Valero (1988), Foreign-gas collision broadening of the far-infrared spectrum of water vapor, J. Optical Soc. o. Am., 5(3), 593–601.
- Gebbie, H. A. (1991), Comment on: Water vapor continuum in the millimeter spectral region, J. Chem. Phys., 95(2), 1427–1428.
- Geer, A. J., J. E. Harries, and H. E. Brindley (1999), Spatial Patterns of Climate Variability in Upper-Tropospheric Water Vapor Radiances from Satellite Data and Climate Model Simulations, J. Climate, 12, 1940–1955.
- Gerard, E., D. G. H. Tan, L. Garand, V. Wulfmeyer, G. Ehret, and P Di Girolame (2004), Major Advances Foressen in Humidity Profiling from the Water Vapour Lidar Experiment in Space (Wales), Bull. Amer. Met. Soc., 237–251.
- Gettelman, A., J. E. Harries, and P. W. Mote (2000), SPARC Assessment of Upper Tropospheric and Stratospheric Water Vapour, chap. Distribution and variability of water vapour in the upper troposphere and lower stratosphere, pp. 197–263, WCRP-113, WMO/TD -No. 1043, SPARC Report No. 2, WCRP: SPARC water vapour working group.
- Gettelman, A., J. R. Holton, and A. R. Douglas (2000), Simulations of water vapor in the lower stratosphere and upper troposphere, J. Geophys. Res., 105(D7), 9003–9023.
- Gettelman, A., W. J. Randel, F. Wu, and S. T. Massie (2001), Transport of Water Vapor in the Tropical Tropopause Layer, Geophys. Res. Lett.
- Gettelman, A. and D. E. Kinnison (2007), The global impact of supersaturation in a coupled chemistry-climate model, Atmos. Chem. Phys., 7, 1629–1643, doi:10.5194/acp-7-1629-2007.
- Gettelman, A. and Q. Fu (2008), Observed and Simulated Upper-Tropospheric Water Vapor Feedback, J. Climate, 21, 3282–3289, doi:10.1175/2007JCLI2142.1.
- Giorgetta, M. and M. Wild (1995), The Water Vapour Continuum and its Representation in ECHAM4, Max-Planck-Institut fuer Meteorologie.
- Godon, M., A. Bauer, and R. R. Gamache (2000), The Continuum of Water Vapor Mixed with Methane: Absolute Absorption at 239 GHz and Linewidth Calculations, J. Molec. Spectro., 202, 293–202.
- Godon, M. and A. Bauer (1988), Helium-Broadened widths of the 183 and 380 GHz lines of water vapor, Chem. Phys. Lett., 147(2,3), 189–191.
- Godon, M., J. Carlier, and A. Bauer (1992), Laboratory studies of water vapor absorption in the atmospheric window at 213 GHz, J. Quant. Spectrosc. Radiat. Transfer, 47(4), 275–285.
- Golovko, V. F. (2000), Dispersion formula and continuous absorption of water vapor, J. Quant. Spectrosc. Radiat. Transfer, 65, 621–644.
- Golovko, V. F. (2001), Continuous absorption of water vapor and a problem of the absorption enhancement in the humid atmosphere, J. Quant. Spectrosc. Radiat. Transfer, 69, 431–446.
- Goss-Custrad, M., J. J. Remedios, A. Lambert, F. W. Taylor, C. D. Rodgers, M. Lopez-Puertas, G. Zaragoza, M. R. Gunson, M. R. Suttie, J. E. Harries, and J. M. Russel III (1996), Measurements of water vapor distributions by the improved stratospheric and mesospheric sounder: Retrieval and validation, J. Geophys. Res., 101(D6), 9907–9928.
- Goyette, T. M. and F. C. De Lucia (1990), The Pressure Broadening of the 31,3-22,0 Transition of Water between 80 and 600 K, J. Molec. Spectro., 143, 346–358.
- Goyette, T. M., F. C. DeLucia, J. M. Dutta, and C. R. Jones (1993), Variable Temperature pressure Broadening of the 41,4-32,1 Transition of H2O by O2 and N2, J. Quant. Spectrosc. Radiat. Transfer, 49(5), 482–489.
- Grant, W. B. (1990), Water vapor absorption coefficients in the 8–13 μm spectral region: a critical review, Appl. Opt., 29(4), 451–463.
- Gueldner, J. and D. Spaenkuch (1999), Results of Year-Round Remotely Sensed Integrated Water Vapor by Ground-Based Microwave Radiometry, J. Appl. Meteorol., 38, 981–988.
- Guillot, B. (2002), A Reappraisal of what we have learnt during three decades of Computer Simulations on Water, J. Molec. Liqu., 101(1–3), 219–260.
- Gurwell, M. A., E. A. Bergin, G. J. Melnick, M. L. N. Ashby, G. Chin, N. R. Erickson, P. F. Goldsmith, M. Harwit, J. E. Howe, S. C. Kleiner, D. G. Koch, D. A. Neufeld, B. M. Patten, R. Plume, R. Schieder, R. L. Snell, J. R. Stauffer, V. Tolls, Z. Wang, G. Winnewisser, and Y. F. Zhang (2000), Submillimeter wave astronomy satellite observations of the Martian atmosphere: Temperature and vertical distribution of water vapor, Astrophys. J. Lett., 539, L143–L146.
- Gurwell, M. A., E. A. Bergin, G. J. Melnick, and V. Tolls (2005), Mars surface and atmospheric temperature during the 2001 global dust storm, Icarus, 175, 23–31, doi:10.1016/j.icarus.2004.10.009.
- Hall, A. and S. Manabe (2000), Effect of water vapor feedback on internal and anthropogenic variations of the global hydrologic cycle, J. Geophys. Res., 105(D5), 6935–6944.
- Hall, A. and S. Manabe (2000), Suppression of ENSO in a coupled model without water vapor feedback, Climate Dynamics, 16, 393–403.
- Hall, A. and S. Manabe (1998), The Role of Water Vapor Feedback in Unperturbed Climate Variability and Global Warming, J. Climate, 12(8), 2327–2346.
- Han, Y., E. R. Westwater, M. Klein, P. E. Racette, W. Manning, A. Gasiewski, and B. M. Lesht (2000), Radiometric Observations of Water Vapor During the 1999 Arctic Winter Experiment, National Oceanic and Atmospheric Adminstration, National Aeronautics and Space Administration, University of Maryland Baltimore Country, Argonne National Laboratory, Tenth ARM Science Team Meeting Proceedings.
- Hanssen, R. F., A. J. Feijt, and R. Klees (2001), Comparison of Precipitable Water Vapor Observations by Spaceborne Radar Interferometry and Meteosat 6.7-μm Radiometry, J. Atmos. Oceanic Technol., 18(5), 756–764, doi:10.1175/1520-0426(2001)058<0756:COPWVO>2.0.CO;2.
- Hanssen, R. F., T. M. Weckwerth, H. A. Zebker, and R. Klees (1999), High-Resolution Water Vapor Mapping from Interferometric Radar Measurements, Science, 283(5406), 1297–1299, doi:10.1126/science.283.5406.1297.
- Harries, J., B. Carli, R. Rizzi, C. Serio, M. Mlynczak, L. Palchetti, T. Maestri, H. Brindley, and G. Masiello (2008), The Far-infrared Earth, Rev. Geophys., 46(4), 1–34, doi:10.1029/2007RG000233.
- Harries, J. E. (1996), The greenhouse Earth: A view from Space, J. Quant. Spectrosc. Radiat. Transfer, 122(532), 799–818.
- Harrop, B. E. and D. L. Hartmann (2015), The Relationship between Atmospheric Convective Radiative Effect and Net Energy Transport in the Tropical Warm Pool, J. Climate, 28(21), 8620–8633, doi:10.1175/JCLI-D-15-0151.1.
- Hartmann, J. M., M. Y. Perrin, Q. Ma, and R. H. Tipping (1993), The Infrared Continuum of Pure Water Vapor: Calculations and High-Temperature Measurements, J. Quant. Spectrosc. Radiat. Transfer, 49(6), 675–691.
- Harvey, L. D. D. (2000), An assessment of the potential impact of a downward shift of tropospheric water vapor on climate sensitivity, Climate Dynamics, 16, 491–500.
- Hashimoto, S. (1992), A New Simplified Water Vapor Measurement Using a Multifrequency Microwave Radiometer with Two-Different-Beamwidth Antennas, IEEE Geosci. Remote Sens., 30(4), 832–836.
- Haus, R. and G. Arnold (2010), Radiative transfer in the atmosphere of Venus and application to surface emissivity retrieval from VIRTIS/VEX measurements, Planet. Space Sci., 58(12), 1578–1598, doi:10.1016/j.pss.2010.08.001.
- Held, I. M. and B. J. Soden (2000), Water Vapor Feedback and Global Warming, Annu. Rev. Energy Environ., 25, 441–475.
- Hill, R. J. (1986), Water vapor-absorption line shape comparison using 22-GHz line: The Van Vleck-Weisskopf shape affirmed, Radio Sci., 21(3), 447–451.
- Hill, R. J. (1988), Dispersion by Atmospheric Water Vapor at Frequencies Less Than 1 THz, IEEE Trans. Antennas Propag., 36(3), 423–430.
- Hinderling, J., M. W. Sigrist, and F. K. Kneubuehl (1987), Laser-photoacoustic spectroscopy of water-vapor continuum and line absorption in the 8 to 14 μm atmospheric window, Infrared Phys., 27(2), 63–120.
- Hoffmann, L. and M. J. Alexander (2009), Retrieval of stratospheric temperatures from Atmospheric Infrared Sounder radiance measurements for gravity wave studies, J. Geophys. Res., 114, D07105, doi:10.1029/2008JD011241.
- Holton, J. R., P. H. Haynes, M. E. McIntyre, A. R. Douglass, R. B. Rood, and L. Pfister (1995), Stratosphere-troposphere exchange, Rev. Geophys., 33, 403–439.
- Hong, G., G. Heygster, J. Miao, and K. Kunzi (2005), Detection of tropical deep convective clouds from AMSU-B water vapor channels measurements, J. Geophys. Res., 110(D9), D05205, doi:10.1029/2004JD004949.
- Hu, H., R. J. Oglesby, and B. Saltzman (2000), The relationship between atmospheric water vapor and temperature in simulations of climate change, Geophys. Res. Lett., 27(21), 3513–3516.
- Hu, H. and W. T. Liu (1998), The impact of upper tropospheric humidity from Microwave Limd Sounder on the midlatitude greenhouse effect, Geophys. Res. Lett., 25(16), 3151–3154.
- Hudis, E., Y. Ben-Aryeh, and U. P. Oppenheim (1992), The Contribution of Third Order Linear Absorption to the Water Vapor Continuum, J. Quant. Spectrosc. Radiat. Transfer, 47(5), 319–323.
- Iacono, M. J., J. S. Delamere, E. J. Mlawer, and S. A. Clough (2003), Evaluation of upper tropospheric water vapor in the NCAR Community Climate Model (CCM3) using modeled and observed HIRS radiances, J. Geophys. Res., 108, 1–19, doi:10.1029/2002JD002539.
- Inamdar, A. K., V. Ramanathan, and N. G. Loeb (2004), Satellite observations of the water vapor greenhouse effect and column longwave colling rates: Relative roles of the continuum and vibration-rotation to pure rotation bands, J. Geophys. Res., 109, doi:10.1029/2003JD003980.
- Inamdar, A. K. and V. Ramanathan (1998), Tropical and global scale interactions among water vapor, atmospheric greenhouse effect, and surface temperature, J. Geophys. Res., 103(D24), 32,177–32,194.
- Ingram, W. (2010), A very simple model for the water vapour feedback on climate change, Q. J. R. Meteorol. Soc., 136(646), 30–40, doi:10.1002/qj.546.
- Jackson, D. R., S. J. Driscoll, E. J. Highwood, J. E. Harries, and J. M. Russel III (1998), Troposphere to stratosphere transport at low latitutes at studies using HALOE observations of water vapour 1992–1997, Q. J. R. Meteorol. Soc., 124, 169–192.
- Jarlemark, P. and G. Elgered (2003), Retrieval of atmospheric water vapour using a ground-based single-channel microwave radiometer, Int. J. Remote Sensing, 24(19), 3821–3837.
- Jenkins, J. M., M. A. Kolodner, B. J. Butler, S. H. Suleimann, and P. G. Steffes (2002), Microwave Remote Sensing of the Temperature and Distribution of Sulfur Compounds in the Lower Atmosphere of Venus, Icarus, 158(2), 312–328, doi:10.1006/icar.2002.6894.
- Jensen, E. J., O. W. Toon, S. A. Vay, J. Ovarlez, R. May, T. P. Bui, C. H. Twohy, B. W. Gandrud, R. F. Pueschel, and U. Schumann (2001), Prevalence of ice-supersaturated regions in the upper troposphere: Implications for optically thin ice cloud formation, J. Geophys. Res., 106(D15), 17,253–17,266.
- Jensen, E. and L. Pfister (2005), Implications of persistent ice superaturation in clod cirrus for stratosphere water vapor, Geophys. Res. Lett., 32, L01808, doi:10.1029/2004GL021125.
- Jiang, J. H., H. Su, C. Zhai, V. S. Perun, A. Del Genio, L. S. Nazarenko, L. J. Donner, L. Horowitz, C. Seman, J. Cole, A. Gettelman, M. A. Ringer, L. Rotstayn, S. Jeffrey, T. Wu, F. Brient, J.-L. Dufresne, H. Kawai, T. Koshiro, M. Watanabe, T. S. L'Ecuyer, E. M. Volodin, T. Iversen, H. Drange, M. D. S. Mesquita, W. G. Read, J. W. Waters, B. Tian, J. Teixeira, and G. L. Stephens (2012), Evaluation of cloud and water vapor simulations in CMIP5 climate models using NASA "A-Train" satellite observations, J. Geophys. Res., 117, D14105, doi:10.1029/2011JD017237.
- Johnsen, K.-P. and S. Q. Kidder (2002), Water vapor over Europe obtained from remote sensors and compared with a hydrostatic NWP model, Phys. Chem. Earth, 27, 371–375.
- Johnsen, K.-P., J. Miao, and S. Q. Kidder (2004), Comparison of atmospheric water vapor over Antarctica derived from CHAMP/GPS and AMSU-B data, Phys. Chem. Earth, 29, 251–255, doi:10.1016/j.pce.2004.01.005.
- Jones, D. T. Llewellyn, R. J. Knight, and H. A. Gebbie (1978), Absorption by water vapour at 7.1 cm-1 and its temperature dependence, Nature, 247, 876–878.
- de la Torre Juárez, M. and M. Nilsson (2002), On the detection of water vapor profiles and thin moisture layers from atmospheric radio occultations, J. Geophys. Res., 1–25.
- Kahn, B. H., K. Nan Liou, S.-Y. Lee, E. F. Fishbein, S. DeSouza-Machado, A. Eldering, E. J. Fetzer, S. E. Hannon, and L. Larrabee Strow (2005), Nighttime cirrus detection using Atmospheric Infrared Sounder window channels and total column water vapor, J. Geophys. Res., 110, D07203, doi:10.1029/2004JD005430.
- Kahn, B. H. and J. Teixeira (2009), A Global Climatology of Temperature and Water Vapor Variance Scaling from the Atmospheric Infrared Sounder, J. Climate, 22(20), 5558–5576, doi:10.1175/2009JCLI2934.1.
- Kalmykov, Y. P. and S. V. Titov (1993), Molecular absorption by water vapor in the millimeter and submillimeter ranges, Opt. Spectro., 75(3), 361–364.
- Karmakar, P. K., M. Maiti, S. Chattopadhyay, and M. Rahaman (2002), Effects of Water Vapor and Liquid Water on Microwave Absorption, and their Application, Radio Sci., 32–36.
- Karmakar, P. K., S. Chattopadhyay, and A. K. Sen (1999), Estimates of water vapour absorption over Calcutte at 22.235 GHz, Int. J. Remote Sensing, 20(13), 2637–2651.
- Karpowicz, B. M. and P. G. Steffes (2011), In search of water vapor on Jupiter: Laboratory measurements of the microwave properties of water vapor under simulated jovian conditions, Icarus, 212(1), 210–223, doi:10.1016/j.icarus.2010.11.035.
- Katkov, V. Y. (1997), A Semiempirical Model of Millimeter and Submillimeter Radio Wave Absorption by Atmospheric Water Vapor, Journal of Communications and Electronics, 42(12), 1344–1349.
- Kaye, J. A. (1990), Analysis of the Origins and Implications of the 18O Content of Stratospheric Water Vapor, J. Atmos. Chem., 10, 39–57.
- Keihm, S. J., Y. Bar-Sever, and J. Liljegren (2001), Water Vapor Radiometer-Global Positioning System Comparison Measurements and Calibration of the 20 to 32 Gigahertz Tropospheric Water Vapor Absorption Model, California Institite of Technology, TMO Progress Report.
- Keihm, S. J., Y. Bar-Sever, and J. C. Liljegren (2002), WVR-GPS Comparison Measurements and Calibration of the 20–32 GHz Tropospheric Water Vapor Absorption Model, IEEE Geosci. Remote Sens., 40(6), 1199–1210.
- Kempkens, H., R. Mann, and J. Uhlenbusch (1979), Measruements of absorption coefficient of water vapor by means of an H2O laser in the far-infrared, Infrared Phys., 19, 585–592.
- Kiedron, P., J. Michalsky, B. Schmid, D. Slater, J. Berndt, L. Harrison, P. Racette, E. Westwater, and Y. Han (2001), A Robust Retrieval of Water Vapor Column in Dry Arctic Conditions Using the Rotating Shadowband Spectroratiometer, J. Geophys. Res.
- Kilsby, C. G., D. P. Edwards, R. W. Saunders, and J. S. Foot (1992), Water-vapour continuum absorption in the tropics: Aircraft measurements and model comparisons, Q. J. R. Meteorol. Soc., 118, 715–748.
- King, M. D., W. P. Menzel, Y. J. Kaufman, D. Tanre, B.-C. Gao, S. Platnick, S. S. Ackerman, L. A. Remer, R. Pincus, and P. A. Hubanks (2003), Cloud and Aerosol Properties, Precipitable Water, and Profiles of Temperature and Water Vapor from MODIS, IEEE T. Geosci. Remote, 41(2), 442–458.
- King, M. D., W. P. Menzel, P. S. Grant, J. S. Myers, G. T. Arnold, S. E. Platnick, L. E. Gumley, S.-C. Tsay, C. C. Moeller, M. Fitzgerald, K. S. Brown, and F. G. Osterwisch (1996), Airborne Scanning Spectormeter for Remote Sensong of Cloud, Aerosol, Water Vapor, and Surface Properties, J. Atmos. Oceanic Technol., 13(4), 777–794.
- Kleespies, T. J. (2007), Relative Information Content of the Advanced Technology Microwave Sounder and the Combination of the Advanced Microwave Sounding Unit and the Microwave Humidity Sounder, IEEE T. Geosci. Remote, 45, 2224–2227, doi:10.1109/TGRS.2007.898088.
- Klein, M. and A. J. Gasiewski (2000), Nadir sensitivity of passive millimeter and submillimeter wave channels to clear air temperature and water vapor variations, J. Geophys. Res., 105(D13), 17,481–17,511.
- Klein, M. and A. J. Gasiewski (1998), The Sensitivity of Millimeter and Sub-millimeter Frequencies to Atmospheric Temperature and Water Vapor Variations, , pp. 568–571, This paper appears in Geoscience and Remote Sensing Symposium Proceedings, 1998. IGARSS '98. 1998 IEEE International.
- Knapp, K. R. (2012), Intersatellite bias of the high-resolution infrared radiation sounder water vapor channel determined using ISCCP B1 data, J. Appl. Rem. Sens., 6(1), 1–19, doi:10.1117/1.JRS.6.063523.
- Koukouli, M. E., P. G. J. Irwin, and F. W. Taylor (2005), Water vapor abundance in Venus' middle atmosphere from Pioneer Venus OIR and Venera 15 FTS measurements, Icarus, 173(1), 84–99, doi:10.1016/j.icarus.2004.08.023.
- Kuenzi, K., G. Heygster, and J. Miao (1111), Ice Cloud and Background Water Vapour by Sub-mm and Very-High Frequency MW Radiometry, University Bremen.
- Kuz'menko, V. A. (2002), Problem of water vapor absorption continuum in atmospheric windows. Return of dimer hypothesis, Troitsk Institute for Fusion Research.
- Lacis, A., Q. Ma, and R. Tipping (1998), Theoretical Calculation of Water Vapor Continuum Absorption, Biological and Environmental Research.
- Learner, R. C. M., W. Zhong, J. D. Haigh, D. Belmiloud, and J. Clarke (1999), The Contribution of Unknown Weak Water Vapor Lines to the Absorption of Solar Radiation, Geophys. Res. Lett., 26(24), 3609–3612, doi:10.1029/1999GL003681.
- Lesht, B. M. and J. C. Liljegren (1996), Comparison of Precipitable Water Vapor Measurements Obtained by Microwave Radiometry and Radiosondes at the Southern Great Plains Cloud and Radiation Testbed Site, Argonne National Laboratory, Pacific Northwest National Laboratory.
- Lesht, B. M. (1997), An Internal Analysis of SGP/CART Radiosonde Performance During the September 1996 Water Vapor Intensive Observation Period, Argonne National Laboratory.
- Lesht, B. M. (1999), Reanalysis of Radiosonde Data from the 1996 and 1997 Water Vapor Intensive Observation Periods: Application of the Vaisala RS-80H Contamination Correction Algorithm to Dual-Sonde Sounding, Argonne National Laboratory, Ninth ARM Science Team Meeting Proceedings.
- Li, Z., J.-P. Muller, and P. Cross (2003), Comparison of precipitable water vapor derived from radiosonde, GPS, and Moderate-Resolution Imaging Spectroradiometer measurements, J. Geophys. Res., 108(D20), 4651, doi:10.1029/2003JD003372.
- Li, L., J. Vivekanandan, C. H. Chan, and L. Tsang (1997), Microwave Radiometric Technique to Retrieve Vapor, Liquid and Ice, Part I- Development of a Neural Network-Based Inversion Method, IEEE Geosci. Remote Sens., 35(2), 224–235.
- Liang, C. K., A. Eldering, F. W. Irion, W. G. Read, E. J. Fetzer, B. H. Kahn, and K.-N. Liou (2010), Characterization of merged AIRS and MLS water vapor sensitivity through integration of averaging kernels and retrievals, Atmos. Meas. Tech. Discuss., 3, 2833–2859, doi:10.5194/amtd-3-2833-2010.
- Liao, X. and D. Rind (1997), Local upper tropospheric/lower stratospheric clear-sky water vapor and tropospheric deep convection, J. Geophys. Res., 102(D16), 19,543–19,557.
- Liebe, H. J. (1969), Calculated Troposheric Dispersion and Absorption Due to the 22-GHz Water Vapor Line, IEEE Trans. Antennas Propag., AP-17(5), 621–627.
- Liebe, H. J. (1984), The Atmospheric Water Vapor Continuum Below 300 GHz, Int. J. Inf. Millim. Waves, 5(2), 207–227.
- Lieberman, R. S., D. A. Ortland, and E. S. Yarosh (2003), Climatology and interannual variability of diurnal water vapor heating, J. Geophys. Res., 108(D3), doi:10.1029/2002JD002308.
- Liljegren, J. C., B. M. Lesht, S. Kato, and E. E. Clothiaux (2001), Evaluation of Profiles of Temperature, Water Vapor, and Cloud Liquid Water from a New Microwave Radiometer, Argonne National Laboratory, Hampton University, Pennsylvania State University, Eleventh ARM Science Team Meeting Proceedings.
- Liljegren, J. C., E. R. Westwater, and Y. Han (1997), A Comparison of Integrated Water Vapor Sensors: WVIOP-96, Pacific Northwest National Laboratory, University of Colorado.
- Liu, Q. and F. Weng (2005), One-dimensional variational retrieval algorithm of temperature, water vapor, and cloud water profiles from advanced microwave sounding unit (AMSU), IEEE T. Geosci. Remote, 43(5), 1087–1095.
- Liu, C., E. Zipser, T. Garrett, J. H. Jiang, and H. Su (2007), How do the water vapor and carbon monoxide "tape recorders" start near the tropical tropopause?, Geophys. Res. Lett., 34, L09804, doi:10.1029/2006GL029234.
- Luo, Z. and W. B. Rossow (2004), Characterizing Tropical Cirrus Life Cycle, Evlolution, and Interaction with Upper-Tropospheric Water Vapor Using Lagrangian Trajectory Analysis of Satellite Observations, J. Climate, 17, 4541–4563.
- Lutz, R., T. T. Wilheit, J. R. Wang, and R. K. Kakar (1991), Retrieval of Atmospheric Water Vapor Profiles Using Radiometric Measurements at 183 and 90 GHz, IEEE Geosci. Remote Sens. Let., 29(4), 603–609.
- Lynch, R., R. R. Gamache, and S. P. Neshyba (1996), Fully complex implementation of the Robert-Bonamy formalism: Half widths and line shifts of H2O broadenend by N2, J. Chem. Phys., 105(14), 5711–5721.
- Lynch, R., R. R. Gamache, and S. P. Neshyba (1998), N2 and O2 induced Halfwidths and Line Shifts of Water Vapor Transitions in the (301)←(000) and (221)← (000) Bands, J. Quant. Spectrosc. Radiat. Transfer, 59(6), 595–613.
- Lynch, R., R. R. Gamache, and S. P. Neshyba (1998), Pressure Broadening of H2O in the (301) ← (000) Band: Effects of Angular Momentum and Close Intermolecular Interactions, J. Quant. Spectrosc. Radiat. Transfer, 59(6), 615–626.
- Ma, Q. and R. H. Tipping (2002), Water vapor millimeter wave foreign continuum: A Lanczos calculation in the coordinate representation, J. Chem. Phys., 117(23), 10581–10596.
- Ma, Q. and R. H. Tipping (2003), A simple analytical parameterization for the water vapor millimeter wave foreign continuum, J. Quant. Spectrosc. Radiat. Transfer, 82, 517–531.
- Ma, Q., R. H. Tipping, and R. R. Gamache (2010), Uncertainties associated with theoretically calculated N2-broadened half-widths of H2O lines, Mol. Phys., 108(17), 2225–2252, doi:10.1080/00268976.2010.505209.
- Ma, Q. and R. H. Tipping (1990), The atmospheric water continuum in the infrared: Extension of the statistical theory of Rosenkranz, J. Chem. Phys., 93(10), 7066–7075.
- Ma, Q. and R. H. Tipping (1990), Water vapor continuum in the millimeter spectral region, J. Chem. Phys., 93(3), 6127–6139.
- Maltagliati, Luca, Dmitrij V. Titov, Thérèse Encrenaz, Riccardo Melchiorri, Francois Forget, Horst U. Keller, and Jean-Pierre Bibring (2011), Annual survey of water vapor behavior from the OMEGA mapping spectrometer onboard Mars Express, Icarus, 213(2), 480–495, doi:10.1016/j.icarus.2011.03.030.
- Manabe, T., Y. Furuhama, T. Ihara, S. Saito, H. Tanaka, and A. Ono (1985), Measurements of attenuation and refractive dispersion due to atmospheric water vapor at 80 and 240 GHz, Int. J. Inf. Millim. Waves, 6(4), 313–322.
- Marchand, R. T. and T. P. Ackerman (2001), An Evaluation of MWR Retrievals of Liquid Water Path and Precipitable Water Vapor, Pacific Northwest National Laboratory, Eleventh ARM Science Team Meeting Proceedings.
- Markov, V. N. (1994), Temperature Dependence of Self-Induced Pressure Broadening and Shift of the 643-550 Line of the Water Molecule, J. Molec. Spectro., 164, 233–238.
- Martin, L., C. Maetzler, and N. Kämpfer (2000), Tropospheric Transmission Measurement at 94 GHz to Validate the Liebe Model, Institute of Applied Physics.
- Martin, L., C. Mätzler, T. J. Hewison, and D. Ruffieux (2006), Intercomparison of integrated water vapour measurements, Met. Zeit., 15(1), 57–64, doi:10.1127/0941-2948/2006/0098.
- Masiello, G. and C. Serio (2005), An effective water vapor self-broadening scheme for look-up-table based radiative transfer, Proc. of SPIE, 4882, 52–61, Remote Sensing of Clouds and the Atmosphere VII; Agia Pelagia, Crete; 24 September 2002 through 27 September 2002; Code 61344, doi:10.1117/12.462580.
- Masunaga, H. and C. D. Kummerow (2005), Combined Radar and Radiometer Analysis of Precipitation Profiles for a Parametric Retrieval Algorithm, J. Atmos. Oceanic Technol., 22, 909–929, doi:10.1175/JTECH1751.1.
- Download: masunaga05_combined_jaot.pdf
- Bibtex key: masunaga05:_combined_jaot
- Keywords: clouds (499), precipitation (84), microwave (101), radar (25), ice water (10), liquid water (16), observation (145), water vapor (409), trmm (5), tropics (62), collocation (19)
- McMillan, R. W., J. J. Gallagher, and A. M. Cook (1977), Calculations of Antenna Temperature, Horizontal Path Attenuation, and Zenith Attenuation Due to Water Vapor in the Freuqency Band 150–700 GHz, IEEE T. Microw. Theory, MT-25(6), 484–488.
- Melsheimer, C. and G. Heygster (2008), Improved Retrieval of Total Water Vapor Over Polar Regions From AMSU-B Microwave Radiometer Data, IEEE T. Geosci. Remote, 46, 2307–2322, doi:10.1109/TGRS.2008.918013.
- Memmo, A., E. Fionda, T. Paolucci, D. Cimini, R. Ferretti, S. Bonafoni, and P. Ciotti (2005), Comparison of MM5 Integrated Water Vapor With Microwave Radiometer, GPS, and Radiosonde Measurements, IEEE T. Geosci. Remote, 43(5), 1050–1058.
- Menten, K. M. and K. Young (1995), Discovery of strong vibrationally excited water masers at 658 GHz toward evolved stars, Astrophys. J., 450, L67–L70.
- Mertens, C. J., M. G. Mlynczak, M. Lopez-Puertas, and E. E. Remsberg (2002), Impact of non-LTE process on middle atmospheric water vapor retrievals from simulated measurements of 6.8 μm Earth limb emission, Geophys. Res. Lett., 29(9), doi:10.1029/2001GL014590.
- Miao, J., K. Kunzi, G. Heygster, T.A. Lachlan-Cope, and J. Turner (2001), Atmospheric water vapor over Antarctica derived from Special Sensor Microwave/Temperature 2 data, J. Geophys. Res., 106(D10), 10187–10203.
- Michelsen, H. A., et al. (2002), ATMOS version 3 water vapor measurements: Comparisons with observations from two ER-2 Lyman-α hygrometers, MkIV, HALOE, SAGE II, MAS, and MLS, J. Geophys. Res., 107(D3), doi:10.1029/2001JD000587.
- Minschwaner, K. and A. E. Dessler (2004), Water Vapor Feedback in the Tropical Upper Troposphere: Model Results and Observations, J. Climate, 17, 1272–1282, doi:10.1175/1520-0442(2004)017<1272:WVFITT>2.0.CO;2.
- Mlawer, E. J., V. H. Payne, J.-L. Moncet, J. S. Delamere, M. J. Alvarado1, and D. C. Tobin (2012), Development and recent evaluation of the MT_CKD model of continuum absorption, Phil. Trans. R. Soc. A, 370(1968), 2520–2556, doi:10.1098/rsta.2011.0295.
- Mlawer, E. J., S. A. Clough, P. D. Brown, and D. C. Tobin (1998), Collision-Induced Effects and the Water Vapor Continuum, Atmospheric and Environmental Research and the University of Wisconsin.
- Mlawer, E. J., S. A. Clough, P. D. Brown, and D. C. Tobin (1999), Recent Developments in the Water Vapor Continuum, Atmospheric and Environmental Research, Inc., and University of Wisconsin.
- Montoux, N., A. Hauchecorne, J.-P. Pommereau, F. Lefèvre, G. Durry, R. L. Jones, A. Rozanov, S. Dhomse, J. P. Burrows, B. Morel, and H. Bencherif (2009), Evaluation of balloon and satellite water vapour measurements in the Southern tropical and subtropical UTLS during the HIBISCUS campaign, Atmos. Chem. Phys., 9, 5299–5319, doi:10.5194/acp-9-5299-2009.
- Morland, J., B. Deuber, D. G. Feist, L. Martin, S. Nyeki, N. Kämpfer, C. Maetzler, P. Jeannet, and L. Vuilleumier (2006), The STARTWAVE atmospheric water database, Atmos. Chem. Phys., 6, 2039–2056, doi:10.5194/acp-6-2039-2006.
- Morrey, M. W. and R. S. Harwood (1998), Interhemispheric differences in stratospheric water vapor during late winter, in version 4 MLS measurements, Geophys. Res. Lett., 25(2), 147–150.
- Mote, P. W., K. H. Rosenlof, M. E. McIntyre, E. S. Carr, J. C. Gille, J. R. Holden, J. S. Kinnersley, H. C. Pumphrey, J. M. Russel III, and J. W. Waters (1996), An atmospheric tape recorder: The imprint of tropical tropopause temperatures on stratospheric water vapor, J. Geophys. Res., 101(D2), 3989–4006, doi:10.1029/95JD03422.
- Muller, B. M., H. E. Fuelberg, and X. Xiang (1994), Simulations of the Effects of Water Vapor, Cloud Liquid Water, and Ice on AMSU Moisture Channel Brightness Temperatures, J. Appl. Meteorol., 33, 1133–1154.
- Murphy, D. M. and T. Koop (2005), Review of the vapour pressures of ice and supercooled water for atmospheric applications, Q. J. R. Meteorol. Soc., 131(608), doi:10.1256/qj.04.94.
- Nawrath, S. (2002), Water Vapor in the Tropical Upper Troposphere: On the Influence of Deep Convection, Universitaet Koeln.
- Nedoluha, G. E., M. Kiefer, S. Lossow, R. M. Gomez, N. Kämpfer, M. Lainer, P. Forkman, O. M. Christensen, J. J. Oh, P. Hartogh, J. Anderson, K. Bramstedt, B. M. Dinelli, M. Garcia-Comas, M. Hervig, D. Murtagh, P. Raspollini, W. G. Read, K. Rosenlof, G. P. Stiller, and K. A. Walker (2017), The SPARC water vapor assessment II: intercomparison of satellite and ground-based microwave measurements, Atmos. Chem. Phys., 17(23), 14543–14558, doi:10.5194/acp-17-14543-2017.
- Newell, R. E., Y. Zhu, E. V. Browell, S. Ismail, W. G. Read, J. W. Waters, K. K. Kelly, and S. C. Liu (1996), Upper tropospheric water vapor and cirrus: Comparison of DC-8 observations, preliminary UARS microwave limb sounder measurements and meteorological analyses, J. Geophys. Res., 101(D1), 1931–1942.
- Niell, A. E., A. J. Coster, F. S. Solheim, V. B. Mendes, P. C. Toor, R. B. Langley, and C. A. Upham (2001), Comparison of measurements of atmospheric wet delay by radiosonde, water vapor radiometer, GPS, and VLBI, J. Atmos. Oceanic Technol., 80, 830–850, doi:10.1175/1520-0426(2001)018<0830:COMOAW>2.0.CO;2.
- Niell, A. E., A. J. Coster, F. S. Solheim, V. B. Mendes, P. C. Toor, R. B. Langley, and C. A. Ruggles (1996), Measurements of Water Vapor by GPS, WVR, and Radiosonde, Haystack Observatory, Lincoln Laboratory, Radiometrics Corp., University of New Brunswick.
- Nilsson, T. and G. Elgered (2008), Long-term trends in the atmospheric water vapor content estimated from ground-based GPS data, J. Geophys. Res., 113, D19101, doi:10.1029/2008JD010110.
- Ning, T., G. Elgered, and J.M. Johansson (2011), The impact of microwave absorber and radome geometries on GNSS measurements of station coordinates and atmospheric water vapour, Adv. Space. Res., 47(2), 186–196, doi:10.1016/j.asr.2010.06.023.
- Nitsche, H. (2000), Water Vapour in the Atmosphere, Deutscher Wetterdienst (DWD).
- Nitsche, H., H. Steinhagen, and U. Leiterer (1111), Validation of satellite-derived water vapour data in the CM-SAF, Deutscher Wetterdienst.
- Offermann, D., B. Schaeler, M. Riese, M. Langfermann, M. Jarisch, G. Eidmann, C. Schiller, H. G. J. Smit, and W. G. Read (2002), Water vapor at the tropopause during the CRISTA 2 mission, J. Geophys. Res., 107(D23), doi:10.1029/2001JD000700.
- Ohtani, R. and I. Naito (2000), Comparisons of GPS-derived precipitable water vapors with radiosonde observations in Japan, J. Geophys. Res., 105(D22), 26917–26929, doi:10.1029/2000JD900362.
- Oltmans, S. J., H. Vömel, D. J. Hofmann, K. H. Rosenlof, and D. Kley (2000), The increase in stratospheric water vapor from balloonborne, frostpoint hygrometer measurements at Washington, D.C., and Boulder, Colorado, Geophys. Res. Lett., 27(21), 3453–3456, doi:10.1029/2000GL012133.
- Orr, B. W. and T. Uttal (2001), Microwave Radiometer Observations of Integrated Atmospheric Water Vapor and Cloud Liquid Water at Sheba and ARM'sNSA Site using new Absorption Models, J. Geophys. Res., 106(D6).
- Ovarlez, J., P. van Velthoven, G. Sachse, S. Vay, H. Schlager, and H. Ovarlezg (2000), Compariosn of water vapor measurements from POLINAT 2 with ECMWF analyses in high-humidity conditions, J. Geophys. Res., 105(D3), 3737–3744.
- Ovarlez, J., J.-F. Gayet, K. Gierens, J. Ström, H. Ovarlez, F. Auriol, R. Busen, and U. Schumann (2002), Water vapour measurements inside cirrus clouds in Northern and Southern hemispheres during INCA, Geophys. Res. Lett., 29(16), 1813, doi:10.1029/2001GL014440.
- Ovarlez, J., H. Ovarlez, and H. Teitelbaum (1996), In situ water vapor measurements, and a case study of the drying mechanism of the tropical lower stratosphere, Q. J. R. Meteorol. Soc., 122, 1447–1458.
- Palm, M., C. Melsheimer, S. Noël, S. Heise, J. Notholt, J. Burrows, and O. Schrems (2010), Integrated water vapor above Ny Ålesund, Spitsbergen: a multisensor intercomparison, Atmos. Chem. Phys., 10, 1215–1226, doi:10.5194/acp-10-1215-2010.
- Pardo, J. R., J. Cernicharo, E. Lellouch, T. Encrenaz, and G. Paubert (1995), Ground-based measurements of middle atmospheric water vapor at 183 GHz during very dry tropospheric conditions, Unknown IEEE journal, 1401–1403.
- Pardo, J. R., J. Cernicharo, and G. Paubert (1996), Ground-based measurements of middle atmospheric water vapor at 183 GHz, J. Geophys. Res., 101, 28,723–28,730.
- Pawson, S., L. Takacs, A. Molod, S. Nebuda, M. Chen, R. Rood, W. L. Read, and M. Fiorino (2001), The tropical upper Troposphere and lower Stratosphere in the GEOS-2 GCM, Adv. Space. Res., 27(8), 1457–1465.
- Payne, V. H., J. S. Delamere, K. E. Cady-Pereira, R. R. Gamache, J.-L. Moncet, E. J. Mlawer, and S. A. Clough (2008), Air-Broadened Half-Widths of the 22- and 183-GHz Water-Vapor Lines, IEEE T. Geosci. Remote, 46(11), 3601–3617, doi:10.1109/TGRS.2008.2002435.
- Payne, V. H., E. J. Mlawer, K. E. Cady-Pereira, and J.-L. Moncet (2011), Water Vapor Continuum Absorption in the Microwave, IEEE Geosci. Remote Sens., 49(6), 2194–2208, doi:10.1109/TGRS.2010.2091416.
- Paynter, D. J. and V. Ramaswamy (2011), An assessment of recent water vapor continuum measurements upon longwave and shortwave radiative transfer, J. Geophys. Res., 116, D20302, doi:10.1029/2010JD015505.
- Paynter, D. and V. Ramaswamy (2012), Variations in water vapor continuum radiative transfer with atmospheric conditions, J. Geophys. Res., 117, D16310, doi:10.1029/2012JD017504.
- Peters, O., J. D. Neelin, and S. W. Nesbitt (2009), Mesoscale Convective Systems and Critical Clusters, J. Atmos. Sci., 66(9), 2913-2924, doi:10.1175/2008JAS2761.1.
- Philipona, R., B. Duerr, A. Ohmura, and C. Ruckstuhl (2005), Anthropogenic greenhouse forcing and strong water vapor feedback increase temperature in Europe, Geophys. Res. Lett., 32, doi:10.1029/2006GL023624.
- Picon, L., R. Roca, S. Serrar, J. L. Monge, and M. Desbois (2003), A new METEOSAT "water vapor" archive for climate studies, J. Geophys. Res., 108(D10), doi:10.1029/2002JD002640.
- Pierce, D. W., T. P. Barnett, E. J. Fetzer, and P. J. Gleckler (2006), Three-dimensional tropospheric water vapor in coupled climate models compared with observations from the AIRS satellite system, Geophys. Res. Lett., 33, L21701, doi:10.1029/2006GL027060.
- Pierrehumbert, R. T., H. Brogniez, and R. Roca (2007), On the Relative Humidity of the Atmosphere, In: The Global Circulation of the Atmosphere, chap. 6, pp. 143–184, Edited by Schneider, T. and A. H. Sobel, Princeton University Press, ISBN 978-0-691-12181-9.
- Pierrehumbert, R. T. (1998), Lateral mixing as a source of subtropical water vapor, Geophys. Res. Lett., 25(2), 151–154.
- Podobedov, V. B., D. F. Plusquellic, and G. T. Fraser (2005), Investigation of the water-vapor continuum in the THz region using a multipass cell, J. Quant. Spectrosc. Radiat. Transfer, 91, 287–295.
- Podobedov, V.B., D.F. Plusquellic, K.E. Siegrist, G.T. Fraser, Q. Ma, and R.H. Tipping (2008), New measurements of the water vapor continuum in the region from 0.3 to 2.7 THz, J. Quant. Spectrosc. Radiat. Transfer, 109(3), 458–467, doi:10.1016/j.jqsrt.2007.07.005.
- Podobedov, V.B., D.F. Plusquellic, K.M. Siegrist, G.T. Fraser, Q. Ma, and R.H. Tipping (2008), Continuum and magnetic dipole absorption of the water vapor-oxygen mixtures from 0.3 to 3.6 THz, J. Molec. Spectro., 251(1–2), 203–209, doi:10.1016/j.jms.2008.02.021.
- Pope, V. D., J. A. Pamment, D. R. Jackson, and A. Slingo (2001), The Representation of Water Vapor and Its Dependence on Vertical Resolution in the Hadley Centre Climate Model, J. Climate, 14, 3065–3085.
- Pougatchev, N., T. August, X. Calbet, T. Hultberg, O. Oduleye, P. Schlüssel, B. Stiller, K. St. Germain, and G. Bingham (2009), IASI temperature and water vapor retrievals — error assessment and validation, Atmos. Chem. Phys., 9, 6453–6458, doi:10.5194/acp-9-6453-2009.
- Pramualsakdikul, S., R. Haas, G. Elgered, and H.-G. Scherneck (2007), Sensing of diurnal and semi-diurnal variability in the water vapour content in the tropics using GPS measurements, Met. Appl., 14, 403–412, doi:10.1002/met.39.
- Pumphrey, H. C. (1999), Validation of a new prototype water vapor retrieval for the UARS Microwave Limb Sounder, J. Geophys. Res., 104(D8), 9399–9412.
- Racette, P. E., E. R. Westwater, Y. Han, W. Manning, A. Gasiewski, and D. Jones (2000), Millimeter-Wave Radiometric Measurements of Low Amounts of Precipitable Water Vapor, National Aeronautics and Space Administration, University of Colorado, University of Maryland, The Met Office, Tenth ARM Science Team Meeting Proceedings.
- Racette, P., R. F. Adler, J. R. Wang, A. J. Gasiewski, D. M. Jakson, and D. S. Zacharias (1996), An Airborne Millimeter-Wave Imaging Radiometer for Cloud, Precipitation, and Atmospheric Water Vapor Studies, J. Atmos. Oceanic Technol., 13, 610–619.
- Racette, P. and E. Westwater (1111), Millimeter-Wave Radiometeric Measurements of Atmospheric Water Vapor at the Department of Energy's North Slope of Alaska Cloud and Radiation Test Site, Pacific Northwest National Laboratory.
- Randel, W. J., F. Wu, S. J. Oltmans, K. Rosenlof, and G. E. Nedoluha (2004), Interannual Changes of Stratospheric Water Vapor and Correlations with Tropical Tropopause Temperatures, J. Atmos. Sci., 61, 2133–2148.
- Randel, W. J., F. Wu, H. Vömel, G. E. Nedoluha, and P. Forster (2006), Decreases in stratospheric water vapor after 2001: Links to changes in the tropical tropopause and the Brewer-Dobson circulation, J. Geophys. Res., 111, D12312, doi:10.1029/2005JD006744.
- Randel, D. L., T. H. Vonder Haar, M. A. Ringerud G. L. Stephens, T. J. Greenwald, and C. L. Combs (1996), A New Global Water Vapor Dataset, Bull. Amer. Met. Soc., 1233–1246.
- Raval, A. and V. Ramanathan (1989), Observational determination of the greenhouse effect, Nature, 342, 758–761.
- Read, W. G., J. W. Waters, D. L. Wu, E. M. Stone, Z. Shippony, A. C. Smedley, C. C. Smallcomb, S. Oltmans, D. Kley, H. G. J. Smit, J. L. Mergenthaler, and M. K. Karki (2001), UARS Microwave Limb Sounder upper tropospheric humidity measurement: Method and validation, J. Geophys. Res., 106(D23), 32207–32258, doi:10.1029/2000JD000122.
- Read, W. G., A. Lambert, J. Bacmeister, R. E. Cofield, L. E. Christensen, D. T. Cuddy, W. H. Daffer, B. J. Drouin, E. Fetzer, L. Froidevaux, R. Fuller, R. Herman, R. F. Jarnot, J. H. Jiang, Y. B. Jiang, K. Kelly, B. W. Knosp, J. J. Kovalenko nd N. J. Livesey, H.-C. Liu, G. L. Manney, H. M. Pickett, H. C. Pumphrey, K. H. Rosenlof, X. Sabounchi, M. L. Santee, M. J. Schwartz, W. V. Snyder, P. C. Stek, H. Su, L. L. Takacs, R. P. Thurstans, H. Vömel, P. A. Wagner, J. W. Waters, C. R. Webster, E. M. Weinstock, and D. L. Wu (2007), Aura Microwave Limb Sounder upper tropospheric and lower stratospheric H[2]O and relative humidity with respect to ice validation, J. Geophys. Res., 112, D24S35, doi:10.1029/2007JD008752.
- Read, W. G., J. W. Waters, D. A. Flower, L. Froidevaux, R. F. Jarnot, D. L. Hartmann, R. S. Harwood, and R. B. Rood (1995), Upper-Tropospheric Water Vapor from UARS MLS, Bull. Amer. Met. Soc., 76(12), 2381–2389, doi:10.1175/1520-0477(1995)076<2381:UTWVFM>2.0.CO;2.
- Rieder, M. J. and G. Kirchengast (1999), Physical-statisical retrieval of water vapor profiles using SSM/T-2 sounder data, Geophys. Res. Lett., 26(10), 1397–1400.
- Rieder, M. J. and G. Kirchengast (1999), Physical-statistical retrieval of water vapor profiles using SSM/T-2 sounder data, Geophys. Res. Lett., 26(10), 1397–1400, doi:10.1029/1999GL900244.
- Robinson, S. E. (1988), The profile algorithm for microwave delay estimation from water vapor radiometer data, Radio Sci., 23(3), 401–408.
- Roca, R., S. Louvet, L. Picon, and M. Desbois (2005), A study of convective systems, water vapor and top of the atmosphere cloud radiative forcing over the Indian Ocean using INSAT-1B and ERBE data, Met. Atm. Phys., doi:10.1007/s00703-004-0098-3.
- Rocken, C., T. van Hove, and R. Ware (1997), Near real-time GPS sensing of atmospheric water vapor, Geophys. Res. Lett., 24(24), 3221–3224.
- Rosenkranz, P. W. (1987), Pressure broadening of rotational bands. II. Water vapor from 300 to 1100 cm-1, J. Chem. Phys., 87(1), 163–170.
- Rosenkranz, P. W. (1995), A Rapid Atmospheric Transmittance Algorithm for Microwave Sounding Channels, IEEE Geosci. Remote Sens., 33(5), 1135–1140.
- Rosenkranz, P. W. (1998), Water vapor microwave continuum absorption: A comparison of measurements and models, Radio Sci., 33(4), 919–928, (correction in 34, 1025, 1999).
- Rozanov, A., K. Weigel, H. Bovensmann, S. Dhomse K.-U. Eichmann, R. Kivi, V. Rozanov, H. Voemel, M. Weber, and J. P. Burrows (2011), Retrieval of water vapor vertical distributions in the upper troposphere and the lower stratosphere from SCIAMACHY limb measurements, Atmos. Meas. Tech., 4, 933–954, doi:10.5194/amt-4-933-2011.
- Rudman, S. D., R. W. Saunders, C. G. Kilsby, and P. J. Minnett (1994), Water vapour continuum absorption in mid-latitudes: Aircraft measurements and model comparisons, Q. J. R. Meteorol. Soc., 120, 795–807.
- Sajith, V., K. R. Santosh, and H. S. Ram Mohan (2003), Intraseasonal oscillation of total precipitable water over North Indian Ocean and its application in the diagnostic study of coastal rainfall, Geophys. Res. Lett., 30(20), doi:10.1029/2003GL017635.
- Salby, M., F. Sassi, P. Callaghan, W. Read, and H. Pumphrey (2003), Fluctuations of Cloud, Humidity, and Thermal Structure near the Tropical Tropopause, J. Climate, 16, 3428–3446.
- Sapucci, L. F., L. A. T. Machado, J. F. G. Monico, and A. Plana-Fattori (2007), Intercomparison of integrated water vapor estimates from multisensors in the Amazonian region, J. Atmos. Oceanic Technol., 24, 1880–1894, doi:10.1175/JTECH2090.1.
- Sassi, F., M. Salby, H. C. Pumphrey, and W. G. Read (2002), Influence of the Madden-Julian Oscillation on upper tropospheric humidity, J. Geophys. Res., 107(D23), doi:10.1029/2001JD001331.
- Savijärvi, H. and A. Määttänen (2010), Boundary-layer simulations for the Mars Phoenix lander site, Q. J. R. Meteorol. Soc., 136, 1497–1505, doi:10.1002/qj.650.
- Saykally, R. J. (2013), Viewpoint: Simplest Water Cluster Leaves Behind its Spectral Fingerprint, Physics, 6(22), doi:10.1103/Physics.6.22.
- Scheve, T. M. and C. T. Swift (1999), Profiling Atmospheric Water Vapor with a K-Band Spectral Radiometer, IEEE Geosci. Remote Sens., 37(3), 1719–1729.
- Schneider, M. and F. Hase (2009), Ground-based FTIR water vapour profile analyses, Atmos. Meas. Tech., 2, 609–619, doi:10.5194/amt-2-609-2009.
- Schneider, M., P. M. Romero, F. Hase, T. Blumenstock, E. Cuevas, and R. Ramos (2010), Continuous quality assessment of atmospheric water vapour measurement techniques: FTIR, Cimel, MFRSR, GPS, and Vaisala RS92, Atmos. Meas. Tech., 3, 323–338, doi:10.5194/amt-3-323-2010.
- Schneider, T., P. A. O'Gorman, and X. J. Levine (2010), Water vapor and the dynamics of climate changes, Rev. Geophys., 48, RG3001, doi:10.1029/2009RG000302.
- Schneider, E. K., B. P. Kirtman, and R. S. Lindzen (1999), Tropospheric Water Vapor and Climate Sensitivity, J. Atmos. Sci., 56, 1649–1658.
- Schroedter-Homscheidt, M., A. Drews, and S. Heise (2008), Total water vapor column retrieval from MSG-SEVIRI split window measurements exploiting the daily cycle of land surface temperatures, Rem. Sen. Env., 112(1), 249–258, doi:10.1016/j.rse.2007.05.006.
- Schumann, U. (2002), Aircraft Emissions, Institute fuer Physik der Atmosphaere.
- Schwab, J. J., E. W. Weinstock, J. B. Nee, and J. G. Anderson (1990), In Situ Measurement of Water Vapor in the Stratosphere with a Cryogenically Cooled Lyman-Alpha Hygrometer, J. Geophys. Res., 95(D9), 13,781–13,798.
- Selbach, N., T. J. Hewison, G. Heygster, J. Miao, A. J. McGrath, and J. P. Taylor (2001), Validation of total water vapor retrieval with an airborne millimeter-wave radiometer over Arctic sea ice, xxxx.
- Serabyn, E., E. W. Weisstein, D. C. Lis, and J. R. Pardo (1998), Submillimeter Fourier-transform spectrometer measurements of atmospheric opacity above Mauna Kea, Appl. Opt., 37(12), 2185–2198.
- Shephard, M. W., R. L. Herman, B. M. Fisher, K. E. Cady-Pereira, S. A. Clough, V. H. Payne, D. N. Whiteman, J. P. Comer, H. Vömel, L. M. Miloshevich, R. Forno, M. Adam, G. B. Osterman, A. Eldering, J. R. Worden, L. R. Brown, H. M. Worden, S. S. Kulawik, D. M. Rider, A. Goldman, R. Beer, K. W. Bowman, C. D. Rodgers, M. Luo, C. P. Rinsland, M. Lampel, and M. R. Gunson (2008), Comparison of Tropospheric Emission Spectrometer nadir water vapor retrievals with in situ measurements, J. Geophys. Res., 113(D15), doi:10.1029/2007JD008822.
- Sherwood, S. C., R. Roca, T. M. Weckwerth, and N. G. Andronova (2010), Tropospheric water vapor, convection, and climate, Rev. Geophys., 48(2), RG2001, doi:10.1029/2009RG000301.
- Shi, L. and J. J. Bates (2011), Three decades of intersatellite-calibrated High-Resolution Infrared Radiation Sounder upper tropospheric water vapor, J. Geophys. Res., 116, D04108, doi:10.1029/2010JD014847.
- Siegenthaler, A., O. Lezeaux, D. G. Feist, and N. Kämpfer (2001), First Water Vapor Measurements at 183 GHz From the High Alpine Station Jungfraujoch, IEEE Geosci. Remote Sens., 39(9), 2084–2086.
- Sierk, B., B. Bürki, H. Becker-Ross, R. Neubert, L. P. Kruse, and H.-G. Kahle (1997), Tropospheric water vapor derived from solar spectrometer, radiometer, and GPS measurements, J. Geophys. Res., 102(B10), 22411–22424.
- Simmer, C. (1993), Kieler Strahlungstranportmodell. Grundlagen und Programmbeschreibung, Institute fuer Meereskunde Kiel, Handbuch zu MWMod.
- Simmer, C. (1994), Satellitenfernerkundung hydrologischer Parameter der Atmosphaere mit Mikrowellen, Studien zur Agraroekologie, Schriftenreihe, Band 13.
- Simmer, S. (1999), Contributions of Microwave Remote Sensing from Satellite to Studies on the Earth Energy Budget and the Hydrological Cycle, Adv. Space. Res., 24(7), 897–905.
- Simmons, A. J., A. Untch, C. Jakob, P. Kallberg, and P. Unden (1999), Stratospheric water vapour and tropical tropopause temperatures in ECMWF analyses and multi-year simulations, Q. J. R. Meteorol. Soc., 125, 353–386.
- Singh, R. P., S. Dey, A. K. Sahoo, and M. Kafatos (2004), Retrieval of water vapor using SSM/I and its relation with the onset of monsoon, Ann. Geophys., 3097–3083.
- Slanina, Z. (1988), A Theoretical Evaluation of Water Oligomer Populations in the Earth's Atmosphere, J. Atmos. Chem., 6, 185–190.
- Slingo, A., J. A. Pamment, R. P. Allan, and P. S. Wilson (2000), Water Vapor Feedbacks in the ECMWF Reanalyses and Hadley Centre Climate Model, J. Climate, 13, 3080–3098.
- Smith, G. J., D. A. Naylor, and P. A. Feldman (2001), Measurements of Atmospheric Water Vapor above Mauna Kea using an infrared Radiometer, Int. J. Inf. Millim. Waves, 22(5), 661–678.
- Smith, K. M., I. Ptashnik, D. A. Newnham, and K. P. Shine (2004), Absorption by water vapour in the 1 to 2 μm region, J. Quant. Spectrosc. Radiat. Transfer, 83, 735–749.
- Soden, B. J. and S. R. Schroeder (2000), Decadal Variations in Tropical Water Vapor: A Comparison of Observations and a Model Simulation, J. Climate, 13, 3337–3341.
- Soden, B. J. (2000), The diurnal cycle of convection, clouds, and water vapor in the tropical upper troposphere, Geophys. Res. Lett., 27(15), 2173–2176.
- Soden, B. J., R. T. Wetherald, G. L. Stenchikov, and A. Robock (2002), Global Cooling After the Eruption of Mount Pinatubo: A Test of Climate Feedback by Water Vapor, Science, 296, 727–730.
- Soden, B. J., D. D. Turner, B. M. Lesht, and L. M. Miloshevich (2004), An analysis of satellite, radiosonde, and lidar observations of upper tropospheric water vapor from the Atmospheric Radiation Measurement Program, J. Geophys. Res.: Atm., 109, D04105, doi:10.1029/2003JD003828.
- Soden, B. J., S. A. Ackerman, D. O'C. Starr, S. H. Melfi, and R. A. Ferrare (1994), Comparison of upper tropospheric water vapor from GOES, Raman lidar, and cross-chain loran atmospheric sounding system measurements, J. Geophys. Res., 99(D10), 21,005–21,016.
- Soden, B. J. and R. Fu (1995), A Satellite Analysis of Deep Convection, Upper-Tropospheric Humidity, and the Greenhouse Effect, J. Climate, 8, 2333–2351.
- Soden, B. J. and J. R. Lanzante (1996), An Assessment of Satellite and Radiosonde Climatologies of Upper-Tropospheric Water Vapor, J. Climate, 9, 1235–1250.
- Soden, B. J. and F. P. Bretherton (1996), Interpretation of TOVS water vapor radiances in terms of layer-average relative humidities: Method and climatology for the upper, middle, and lower troposphere, J. Geophys. Res., 101(D5), 9333–9343, doi:10.1029/96JD00280.
- Soden, B. J. (1998), Tracking upper tropospheric water vapor radiances: A satellite perspective, J. Geophys. Res., 103(D14), 17,069–17,081.
- Sohn, B.-J., E.-S. Chung, J. Schmetz, and E. A. Smith (2003), Estimating upper-tropospheric water vapor from SSM/T-2 satellite measurements, J. Appl. Meteorol., 42(4), 488–504, doi:10.1175/1520-0450(2003)042<0488:EUTWVF>2.0.CO;2.
- Sohn, B.-J., E. A. Smith, F. R. Robertson, and S.-C. Park (2004), Derived Over-Ocean Water Vapor Transports from Satellite-Retrieved E - P Datasets, J. Climate, 17, 1352–1365.
- Sohn, B.-J. and J. Schmetz (2004), Water Vapor-Induced OLR Variations Associated with High Cloud Changes over the Tropics: A Study from Meteosat-5 Observations, J. Climate, 18, 1987–1996.
- Sohn, B.-J., J. Schmetz, R. Stuhlmann, and J.-Y. Lee (2006), Dry Bias in Satellite-Derived Clear-Sky Water Vapor and Its Contribution to Longwave Cloud Radiative Forcing, J. Climate, 19(21), 5570–5580, doi:10.1175/JCLI3948.1.
- Sohn, B.-J. and R. Bennartz (2008), Contribution of water vapor to observational estimates of longwave cloud radiative forcing, J. Geophys. Res., 113(D20107), doi:10.1029/2008JD010053.
- Sohn, B. J. and S.-C. Park (2010), Strengthened tropical circulations in past three decades inferred from water vapor transport, J. Geophys. Res., 115, D15112, doi:10.1029/2009JD013713.
- Solheim, F., J. Godwin, and R. Ware (1998), Passive ground-based remote sensing of atmospheric temperature, water vapor, and cloud liquid water profiles by a frequency synthesized microwave radiometer, Met. Zeit.
- Solheim, F., J. R. Godwin, E. R. Westwater, Y. Han, S. J. Keihm, K. Marsh, and R. Ware (1998), Radiometric profiling of temperature, water vapor and cloud liquid water using various inversion methods, Radio Sci., 33, 393–404.
- Solomon, S., R. W. Portmann, R. W. Sanders, and J. S. Daniel (1998), Absorption of solar radiation by water vapor, oxygen, and related collision pairs in the Earth's atmosphere, J. Geophys. Res., 103(D4), 3847–3858.
- Spangenberg, D. A., G. G. Mace, T. P. Ackerman, N. L. Seaman, and B. J. Soden (1997), Evaluation of model-simulated upper troposphere humidity using 6.7 μm satellite observations, J. Geophys. Res., 102(D22), 25737–25749.
- Stevens, B., H. Brogniez, Ch. Kiemle, J. L. Lacour, C. Crevoisier, and J. Kiliani (2017), Structure and Dynamical Influence of Water Vapor in the Lower Tropical Troposphere, Sur. Geophy., 38(6), 1371–1397, doi:10.1007/s10712-017-9420-8.
- Stone, E. M., L. Pan, B. J. Sandor, W. R. Read, and J. W. Waters (2000), Spatial distributions of upper tropospheric water vapor measurements from the UARS Microwave Limb Sounder, J. Geophys. Res., 105(D10), 12149–12162, doi:10.1029/2000JD900125.
- Straiton, A. W. (1975), Tutorial Papers and Reviews, IEEE Trans. Antennas Propag., 595–597.
- Strow, L. L., D. C. Tobin, W. W. McMillan, S. E. Hannon, W. L. Smith, H. E. Revercomb, and R. O. Knuteson (1998), Impact of a new Water Vapor Continuum and Line Shape Model on Observed High Resolution Infrared Radiances, J. Quant. Spectrosc. Radiat. Transfer, 59(3–5), 303–317.
- Su, H., R. W. Read, J. H. Jiang, J. W. Waters, D. L. Wu, and E. J. Fetzer (2006), Enhanced positive water vapor feedback associated with tropical deep convection: New evidence from Aura MLS, Geophys. Res. Lett., 33, L05709, doi:10.1029/2005GL025505.
- Sutton, E. C. and R. M. Hueckstaedt (1996), Radiometric monitoring of atmospheric water vapor as it pertains to phase correction in millimeter interferometry, Astron. Astrosphys. Suppl. Ser., 119, 559–567.
- Taylor, J. P., S. M. Newman, T. J. Hewison, and A. McGrath (2003), Water vapour line and continuum absorption in the thermal infrared-reconciling models and observations, Q. J. R. Meteorol. Soc., 129, 2949–2696, doi:10.1256/qj.03.08.
- Thies, B. and J. Bendix (2011), Satellite based remote sensing of weather and climate: recent achievements and future perspectives, Met. Appl., 18, 262–295, doi:10.1002/met.288.
- Download: thies11_satellite_ma.pdf
- Bibtex key: thies11:_satellite_ma
- Keywords: review (25), climate (348), geostationary (11), ir/vis (19), microwave (101), limb sounding (28), radar (25), precipitation (84), clouds (499), radiation (148), surface (51), wind (7), water vapor (409)
- Thomas, M. E. and R. J. Nordstrom (1982), The N2-broadened water vapor absorption line shape and infrared continuum absorption- I. Theoretical development, J. Quant. Spectrosc. Radiat. Transfer, 28(2), 81–101.
- Thomas, M. E. and R. J. Nordstrom (1982), The N2-broadened water vapor absorption line shape and infrared continuum absorption- II. Implementation of the line shape, J. Quant. Spectrosc. Radiat. Transfer, 28(2), 102–112.
- Thomas, M. E. and R. J. Nordstrom (1985), Line shape model for describing infrared absorption by water vapor, Appl. Opt., 24(21), 3526–3530.
- Tian, B., B. J. Soden, and X. Wu (2004), Diurnal cycle of convection, clouds, and water vapor in the tropical upper troposphere: Satellites versus a general circulation model, J. Geophys. Res., 109, D10101, doi:10.1029/2003JD004117.
- Tian, B., I. M. Held, N-C. Lau, and B. J. Soden (2005), Diurnal cycle of summertime deep convection over North America: A satellite perspective, J. Geophys. Res., 110, D08108.
- Tipping, R. H. and Q. Ma (1995), Theory of the water vapor continuum and validations, Atmos. Res., 36, 69–94.
- Tobin, D. C., H. E. Revercomb, R. O. Knuteson, B. M. Lesht, L. L. Strow, S. E. Hannon, W. F.Feltz, L. A. Moy, E. J. fetzer, and T. S. Cress (2006), Atmospheric Radiation Measurement site atmospheric state best estimates for Atmospheric Infrared Sounder temperature and water vapor retrieval validation, J. Geophys. Res., 111, D09S14, doi:10.1029/2005JD006103.
- Tobin, D. C., L. L. Strow, W. J. Lafferty, and W. B. Olson (1996), Experimental investigation of the self- and N2-broadened continuum within the ν2 band of water vapor, Appl. Opt., 35(24), 4724–4734.
- Tobin, D. C. (1996), Infrared Spectral Lineshapes of Water Vapor and Carbon Dioxid, University of Maryland, PhD Thesis.
- Tomasi, C., R. Guzzi, and O. Vittori (1974), A Search for the e-Effect in the Atmospheric Water Vapor Continuum, J. Atmos. Sci., 31, 255–260.
- Townes, C. H. and F. R. Merritt (1946), Water Spectrum Near One-Centimeter Wave-Length, Phys. Rev., 558–559.
- Trenberth, K. E., J. Fasullo, and L. Smith (2005), Trends and variability in column-integrated atmospheric water vapor, Climate Dynamics, 24, 741–758.
- Tretyakov, M.Yu., A.F. Krupnov, M.A. Koshelev, D.S. Makarov, E.A. Serov, and V.V. Parshin (2009), Resonator spectrometer for precise broadband investigations of atmospheric absorption in discrete lines and water vapor related continuum in millimeter wave range, Rev. Sci. Inst., 80(9), 093106.
- Tretyakov, M. Y. (2016), Spectroscopy underlying microwave remote sensing of atmospheric water vapor, J. Molec. Spectro., doi:10.1016/j.jms.2016.06.006.
- Turner, D. D., W. F. Feltz, and W. L. Smith (1999), Characterizing the Water Vapor Profiling Measurements at the ARM SGP CART Site, Pacific Northwest National Laboratory, University of Wisconsin, National Aeronautics and Space Administration.
- Valentin, A., F. Rachet, A. D. Bykov, N. N. Lavrentieva, V. N. Saveliev, and L. N. Sinitsa (1998), J-Dependence of the Lineshift Coeffiecient in the ν2 Water Vapor Band, J. Quant. Spectrosc. Radiat. Transfer, 57(3–5), 165–170.
- Valero, F. P. J., W. D. Collins, P. Pilewskie, A. Bucholtz, and P. J. Flatau (1997), Direct Radiometric Observations of the Water Vapor Greenhouse Effect Over the Equatorial Pacific Ocean, Science, 275, 1773–1776.
- van Exter, M., C. Fattinger, and D. Grischkowsky (1989), Terahertz time-domain spectroscopy of water vapor, Optics Letters, 14(20), 1128–1130.
- Van Vleck, J. H. (1947), The Absorption of Microwaves by Uncondensed Water Vapor, Phys. Rev., 71(7), 425–433.
- Vey, S., R. Dietrich, K.-P. Johnsen, J. Miao, and G. Heygster (2004), Comparison of Tropospheric Water Vapour over Antarctica Derived from AMSU-B Data, Ground-Based GPS Data and the NCEP/NCAR Reanalysis, J. Meteorol. Soc. Jpn., 82(1B), 259–267.
- Vigasin, A. A. (2000), Water vapor continuous absorption in various mixtures: possible role of weakly bound complexes, J. Quant. Spectrosc. Radiat. Transfer, 64, 25–40.
- Voemel, H., S. J. Oltmans, B. J. Johnson, F. Hasebe, M. Shiotani, M. Fujiwara, N. Nishi, M. Agama, J. Cornejo, F. Paredes, and H. Enriquez (2002), Balloon-borne observations of water vapor and ozone in the tropical upper troposhere and lower stratosphere, J. Geophys. Res., 107(D14), doi:10.1029/2001JD000707.
- Wang, J. H., H. L. Cole, D. J. Carlson, E. R. Miller, K. Beierle, A. Paukkunen, and T. K. Laine (2002), Corrections of humidity measurement errors from the Vaisala RS80 radiosonde - Application to TOGA COARE data, J. Atmos. Oceanic Technol., 19(7), 981–1002, doi:10.1175/1520-0426(2002)019<0981:COHMEF>2.0.CO;2.
- Wang, J. R. and W. Manning (2003), Retrieval of Low Integrated Water Vapor Using MIR and SSM/T-2 Measurements, IEEE T. Geosci. Remote.
- Wang, J. R. and W. Manning (2003), Retrievals of Low Integrated Water Vapor Using MIR and SSM/T-2 Measurements, IEEE Geosci. Remote Sens., 41(3), 630–639, doi:10.1109/TGRS.2003.809933.
- Ware, R., C. Alber, C. Rocken, and F. Solheim (1997), Sensing integrated water vapor along GPS ray paths, Geophys. Res. Lett., 24, 417–420.
- Waugh, D. W. (2005), Impact of potential vorticity on subtropical upper tropospheric humidity, J. Geophys. Res., 110, D11305, doi:10.1029/2004JD005664.
- SPARC water vapour working group (2000), SPARC Assessment of Upper Tropospheric and Stratospheric Water Vapour, WMO/ICSU/IOC World Climate Research Programme.
- Weckwerth, T. M., V. Wulfmeyer, R. M. Wakimoto, R. M. Hardesty, J. W. Wilson, and R. M. Banta (1999), NCAR-NOAA Lower-Tropospheric Water Vapor Workhop, Bull. Amer. Met. Soc., 80(11), 2339–2357.
- Westwater, E. R., Y. Han, A. Gasiewski, M. Klein, P. E. Racette, W. Manning, and B. M. Lesht (2000), A Comparison of Clear-Sky Emission Models with Data Taken During the 1999 Millimeter-Wave Radiometric Arctic Water Vapor Experiment, National Oceanic and Atmospheric Adminstration, National Aeronautics and Space Administration, University of Maryland Baltimore County, Argonne National Laboratory, Tenth ARM Science Team Meeting Proceedings.
- Westwater, E. R. and F. O. Guiraud (1980), Ground-based microwave radiometric retrieval of precipitable water vapor in the prescence of clouds with high liquid content, Radio Sci., 15(5), 947–957.
- Wilheit, T. T. and K. D. Hutchison (1997), Water vapour profile retrievals from SSM/T-2 data constrained by infrared-based cloud parameters, Int. J. Remote Sensing, 18(15), 3263–3277, doi:10.1080/014311697217071.
- Wilheit, T. T. (1997), Water vapour profile retrieval from SSMT-2 data constrained by infrared-based cloud parameters, Int. J. Remote Sensing, 18(15), 3263–3277.
- Wimmers, A. J. and J. L Moody (2001), A fixed-layer estimation of upper tropospheric specific humidity from the GOES water vapor channel: Parameterization and validation of the altered brightness temperature product, J. Geophys. Res., 106(D15), 17,115–17,132.
- Wrixon, G. T. (1978), Measurements of Earth-Space Attenuation at 230 GHz, IEEE T. Microw. Theory, 26(6), 434–439.
- Wu, X., J. J. Bates, and S. J. S. Khalsa (1993), A Climatology of the Water Vapor Band Brightness Temperatures from NOAA Operational Satellites, J. Climate, 6, 1282–1300.
- Wulfmeyer, V., et al. (2003), Lidar Research Network Water Vapor and Wind, Met. Zeit., 12(1), 5–24.
- xxxx (1995), WATER VAPOR in the CLIMATE SYSTEM Special Report. Dezember 1995, American Geophysical Union.
- Yasmin, K. and R. L. Armstrong (1990), Theoretical modeling of microwave absorption by water vapor, Appl. Opt., 29(13), 1979–1983.
- Yasunaga, K., H. Kida, and T. Satomura (2004), The 600–750 hPa relative humidity minimum observed during PEM-Tropics B, Geophys. Res. Lett., 30(24), doi:10.1029/2003GL018739.
- Zahn, A., V. Barth, K. Pfeilsticker, and U. Platt (1998), Deuterium, Oxygen-18, and Tritium as Tracers for Water Vapour Transport in the Lower Stratosphere and Tropopause Region, J. Atmos. Chem., 30, 25–47.
- Zhang, C., B. E. Mapes, and B. J. Soden (2003), Bimodality in tropical water vapour, Q. J. R. Meteorol. Soc., 129, 2847–2866, doi:10.1256/qj.02.166.
- Zhu, Z., I. P. Matthews, and A. H. Samuel (1996), Quantitative measurement of analyte gases in a microwave spectrometer using a dynamic sampling method, Rev. Sci. Inst., 67(7), 2496–2501.
- Zinicheva, M. B. and A. P. Naumov (2002), Rotation Part of the Dielectric Permittivity of Water Vapor for Different Spectral Line Profiles, Radiophys. Quant. Elec., 45(1), 1–6.
- Zou, Q. and P. Varanasi (2003), Laboratory measurements of the spectroscopic line parameters of water vapor in the 610–2100 and 3000–4050 cm-1 regions at lower-tropospheric temperatures, J. Quant. Spectrosc. Radiat. Transfer.