Show tag cloud

Filter by author:
Filter by year:
Filter by bibtex key:
Filter by type:
Filter by keyword:
and
and
 

Filtered by keyword:modis

There is currently a filter applied. To see the complete list of publications, clear the filter.
  1. Ackerman, S. A., K. I. Strabala, W. P. Menzel, R. A. Frey, C. C. Moeller, and L. E. Gumley (1998), Discriminating Clear-sky from Clouds with MODISJ. Geophys. Res., 103(D24), 32141–32157.
  2. Baum, B. A., D. P. Kratz, P. Yang, S. C. Ou, Y. X. Hu, P.F. Soulen, and S.-C. Tsay (2000), Remote sensing of cloud properties using MODIS airborne simulator imagery during SUCCESS. 1. Data and modelsJ. Geophys. Res., 105, 11767–11780, doi:10.1029/1999JD901089.
  3. Baum, B. A., P. F. Soulen, K. I. Strabala, M. D. King, S. A. Ackerman, W. P. Menzel, and P. Yang (2000), Remote sensing of cloud properties using MODIS airborne simulator imagery during SUCCESS. 2. Cloud thermodynamic phaseJ. Geophys. Res., 105, 11781–11792, doi:10.1029/1999JD901090.
  4. Baum, B. A. and J. D. Spinhirne (2000), Remote sensing of cloud properties using MODIS airborne simulator imagery during SUCCESS. 3. Cloud overlapJ. Geophys. Res., 105, 11793–11804, doi:10.1029/1999JD901091.
  5. Baum, B. A., A. J. Heymsfield, P. Yang, and S. T. Bedka (2005), Bulk Scattering Properties for the Remote Sensing of Ice Clouds. Part I: Microphysical Data and ModelsJ. Appl. Meteorol., 44, 1885–1895.
  6. Baum, B. A., P. Yang, A. J. Heymsfield, S. Platnick, M. D.King, Y.-X. Hu, and S. T. Bedka (2005), Bulk Scattering Properties for the Remote Sensing of Ice Clouds. Part II: Narrowband ModelsJ. Appl. Meteorol., 44, 1896–1911.
  7. Chen, R., Z. Li, R. J. Kuligowski, R. Ferraro, and F. Weng (2011), A study of warm rain detection using A-Train satellite dataGeophys. Res. Lett., 38, L04804, doi:10.1029/2010GL046217.
  8. Choi, Y-S. and C-H. Ho (2006), Radiative effect of cirrus with different optical properties over the tropics in MODIS and CERES observationsGeophys. Res. Lett., 33, L21811, doi:10.1029/2006GL027403.
  9. Cooper, S. J., T. S. L'Ecuyer, and G. L. Stephens (2003), The impact of explicit cloud boundary information on ice cloud microphysical property retrievals from infrared radiancesJ. Geophys. Res., 108, doi:10.1029/2002JD002611.
  10. Cooper, S. J., T. S. L'Ecuyer, P. Gabriel, A. J. Baran, and G. L. Stephens (2006), Objective Assessment of the Information Content of Visible and Infrared Radiance Measurements for Cloud Microphysical Property Retrievals over the Global Oceans. Part II: Ice CloudsJ. Appl. Meteorol. Clim., 45, 42–62, doi:10.1175/JAM2327.1.
  11. Cooper, S. J., T. S. L'Ecuyer, P. Gabriel, A. J. Baran, and G. L. Stephens (2007), Performance assessment of a five-channel estimation-based ice cloud retrieval scheme for use over the global oceansJ. Geophys. Res., 112, D04207, doi:10.1029/2006JD007122.
  12. Delanoë, J. and R. J. Hogan (2008), A variational scheme for retrieving ice cloud properties from combined radar, lidar, and infrared radiometerJ. Geophys. Res., 113, D07204, doi:10.1029/2007JD009000.
  13. Delanoë, J. and R. J. Hogan (2010), Combined CloudSat-CALIPSO-MODIS retrievals of the properties of ice cloudsJ. Geophys. Res., 115, D00H29, doi:10.1029/2009JD012346.
  14. Diner, D. J., B. H. Braswell, R. Davies, N. Gobron J. Hu, Y. Jin, R. A. Kahn, Y. Knyazikhin, N. Loeb, J.-P. Muller, A. W. Nolin, B. Pinty, C. B. Schaaf, G. Seiz, and J. Stroeve (2005), The value of multiangle measurements for retrieving structurally and radiatively consistent properties of clouds, aerosols, and surfacesRem. Sen. Env., 97(4), 495–518, doi:10.1016/j.rse.2005.06.006.
  15. Frey, R. A., S. A. Ackerman, Y. Liu, K. I. Strabala, H. Zhang, J. R. Key, and X. Wang (2008), Cloud Detection with MODIS. Part I: Improvements in the MODIS Cloud Mask for Collection 5J. Atmos. Oceanic Technol., 25, 1057–1072, doi:10.1175/2008JTECHA1052.1.
  16. Genkova, I., G. Seiz, P. Zuidema, G. Zhao, and L. Di Girolamo (2007), Cloud top height comparisons from ASTER, MISR, and MODIS for trade wind cumuliRem. Sen. Env., 107(1), 211–222, doi:10.1016/j.rse.2006.07.021.
  17. Holz, R. E., S. A. Ackerman, F. W. Nagle, R. Frey, S. Dutcher, R. E. Kuehn, M. A. Vaughan, and B. Baum (2008), Global Moderate Resolution Imaging Spectroradiometer (MODIS) cloud detection and height evaluation using CALIOPJ. Geophys. Res., 113, D00A19, doi:10.1029/2008JD009837.
  18. Jiang, J. H., H. Su, C. Zhai, S. T. Massie, M. R. Schoeberl, P. R. Colarco, S. Platnick, Y. Gu, and K. N. Liou (2011), Influence of convection and aerosol pollution on ice cloud particle effective radiusAtmos. Chem. Phys., doi:10.5194/acp-11-457-2011.
  19. de la Torre Juárez, M., A. B. Davis, and E. J. Fetzer (2011), Scale-by-scale analysis of probability distributions for global MODIS-AQUA cloud properties: how the large scale signature of turbulence may impact statistical analyses of cloudsAtmos. Chem. Phys., 11, 2893–2901, doi:10.5194/acp-11-2893-2011.
  20. Kato, S., F. G. Rose, S. Sun-Mack, W. F. Miller, Y. Chen, D. A. Rutan, G. L. Stephens, N. G. Loeb, P. Minnis, B. A. Wielicki, D. M. Winkler, T. P. Charlock, P. W. Stackhouse Jr., K.-M. Xu, and W. D. Collins (2011), Improvements of top-of-atmosphere and surface irradiance computations with CALIPSO-, CloudSat-, and MODIS- derived cloud and aerosol propertiesJ. Geophys. Res., 116(D19), D19209, doi:10.1029/2011JD016050.
  21. King, M. D., S. Platnick, P. Yang, G. T. Arnold, M. A. Gray, J. C. Riedi, S. A. Ackerman, and K. N. Liou (2004), Remote sensing of liquid water and ice cloud optical thickness and effective radius in the Arctic: Application of airborne multispectral MAS dataJ. Atmos. Oceanic Technol., 21, 857–875.
  22. King, M. D., S. Platnick, P. A. Hubanks, G. T. Arnold, E. G. Moody, G. Wind, and B Wind (2006), Collection 005 Change Summary for the MODIS Cloud Optical Property (06_OD) Algorithm, NASA Collection 005 Change Summary Doc., 23 pp.
  23. King, M. D., S.-C. Tsay, S. E. Platnick, M. Wang, and K.-N. Liou (1997), Cloud Retrieval Algorithms for MODIS: Optical Thickness, Effective Particle Radius, and Thermodynamic Phase, MODIS Science Team, MODIS Algorithm Theoretical Basis Document No. ATBD-MOD-05.
  24. L'Ecuyer, T. S., P. Gabriel, K. Leesman, S. J. Cooper, and G. L. Stephens (2006), Objective Assessment of the Information Content of Visible and Infrared Radiance Measurements for Cloud Microphysical Property Retrievals over the Global Oceans. Part I: Liquid CloudsJ. Appl. Meteorol. Clim., 45, 20–41.
  25. Li, J., C.-Y. Liu, H.-L. Huang, T. J. Schmit, X. Wu, W. P. Menzel, and J. J. Gurka (2005), Optimal Cloud-Clearing for AIRS Radiances Using MODISIEEE Geosci. Remote Sens., 43(6), 1266–1278.
  26. Liu, Y., J. R. Key, R. A. Freya, S. A. Ackerman, and W. P. Menzel (2004), Nighttime polar cloud detection with MODISRem. Sen. Env., 92, 181–194, doi:10.1016/j.rse.2004.06.004.
  27. Mace, G. G., Y. Zhang, S. Platnick, M. D. King, P. Minnis, and P. Yang (2005), Evaluation of Cirrus Cloud Properties Derived from MODIS Data Using Cloud Properties Derived from Ground-Based Observations Collected at the ARM SGP SiteJ. Appl. Meteorol., 44(2), 221–240, doi:10.1175/JAM2193.1.
  28. Marchand, R., T. Ackerman, M. Smyth, and W. B. Rossow (2010), A review of cloud top height and optical depth histograms from MISR, ISCCP, and MODISJ. Geophys. Res., 115, D16206, doi:10.1029/2009JD013422.
  29. Menzel, W. P., R. A. Frey, and B. A. Baum (2010), Cloud top properties and cloud phase algorithm theoretical basis document, , Modis theoretical basis document.
  30. Meyer, K., P. Yang, and B.-C. Gao (2006), Tropical ice cloud optical depth, ice water path, and frequency fields inferred from the MODIS level-3 dataAtmos. Res., 85, 171–182, doi:10.1016/j.atmosres.2006.09.009.
  31. Minnis, P., G. Hong, S. Sun-Mack, W. L. Smith Jr., Y. Chen, and S. D. Miller (2016), Estimating nocturnal opaque ice cloud optical depth from MODIS multispectral infrared radiances using a neural network methodJ. Geophys. Res., 121(9), 4907–4932, doi:10.1002/ 2015JD024456.
  32. Mitchell, D. L., R. P. D'Entremont, and R. P. Lawson (2009), Inferring Cirrus Size Distributions through Satellite Remote Sensing and Microphysical DatabasesJ. Atmos. Sci., 67(4), 1106–1125, doi:10.1175/2009JAS3150.1.
  33. Nakajima, T., M. D. King, and J. D. Spinhirne (1991), Determination of the Optical Thickness and Effective Particle Radius of Clouds from Reflected Solar Radiation Measurements. Part II: Marine Stratocumulus ObservationsJ. Atmos. Sci., 48(5), 728–750, doi:10.1175/1520-0469(1991)048<0728:DOTOTA>2.0.CO;2.
  34. Pittman, J. V., F. R. Robertson, R. J. Atkinson, and C. Blankenship (2008), Understanding Differences Between Co-Incident CloudSat, Aqua/MODIS and NOAA18 MHS Ice water Path Retrievals Over the Tropical Oceans, In: AGU Fall Meeting Abstracts.
  35. Platnick, S., M. D. King, S. A. Ackermann, W. P. Menzel, B. A. Baum, J. C. Riedi, and R. A. Frey (2003), The MODIS Cloud Products: Algorithms and Examples From TerraIEEE T. Geosci. Remote, 41(2), 459–473.
  36. Quaas, J., B. Stevens, P. Stier, and U. Lohmann (2010), Interpreting the cloud cover — Aerosol optical depth relationship found in satellite data using a general circulation modelAtmos. Chem. Phys., 10, 6129–6135, doi:10.5194/acp-10-6129-2010.
  37. Redemann, J., M. A. Vaughan, Q. Zhang, Y. Shinozuka, P. B. Russell, J. M. Livingston, M. Kacenelenbogen, and L. A. Remer (2012), The comparison of MODIS-Aqua (C5) and CALIOP (V2 & V3) aerosol optical depthAtmos. Chem. Phys., 12, 3025–3043, doi:10.5194/acp-12-3025-2012.
  38. Stein, T. H. M., J. Delanoë, and R. J. Hogan (2011), A Comparison among Four Different Retrieval Methods for Ice-Cloud Properties Using Data from CloudSat, CALIPSO, and MODISJ. Appl. Meteorol. Clim., 50, 1952–1969, doi:10.1175/2011JAMC2646.1.
  39. Strabala, K. I., S. A. Ackerman, and W. P. Menzel (1994), Cloud properties inferred from 8–12-μm dataJ. Appl. Meteorol., 33(2), 212–229.
  40. Waliser, D. E., J-L. F. Li, C. P. Woods, R. T. Austin, J. Bacmeister, J. Chern, A. Del Genio, J. H. Jiang, Z. Kuang, H. Meng, P. Minnis, S. Platnick, W. B. Rossow, G. L. Stephens, S. Sun-Mack, W-K. Tao, A. M. Tompkins, D. G. Vane, C. Walker, and D. Wu (2009), Cloud ice: A climate model challenge with signs and expectations of progressJ. Geophys. Res., 114, D00A21, doi:10.1029/2008JD010015.
  41. Young, A. H., J. J. Bates, and J. A. Curry (2013), Application of cloud vertical structure from CloudSat to investigate MODIS-derived cloud properties of cirriform, anvil, and deep convective cloudsJ. Geophys. Res., 118(10), 4689–4699, doi:10.1002/jgrd.50306.
  42. Zhang, Z., P. Yang, G. Kattawar, J. Riedi, L. C. Labonnote, B. A. Baum, S. Platnick, and H. L. Huang (2009), Influence of ice particle model on satellite ice cloud retrieval: lessons learned from MODIS and POLDER cloud product comparisonAtmos. Chem. Phys., 9, 7115–7129, doi:10.5194/acp-9-7115-2009.