Show tag cloud

Filter by author:
Filter by year:
Filter by bibtex key:
Filter by type:
Filter by keyword:
and
and
 

Filtered by keyword:optical depth

There is currently a filter applied. To see the complete list of publications, clear the filter.
  1. Austin, R. T. and G. L. Stephens (2001), Retrieval of stratus cloud microphysical parameters using millimeter-wave radar and visible optical depth in preparation for CloudSat 1. Algorithm formulationJ. Geophys. Res., 106(D22), 28,233–28,242.
  2. Baran, A. J., P. J. Connolly, and C. Lee (2009), Testing an ensemble model of cirrus ice crystals using midlatitude in situ estimates of Ice water content, volume extinction coefficient and the total solar optical depthJ. Quant. Spectrosc. Radiat. Transfer, 110, 1579–1598, doi:10.1016/j.jqsrt.2009.02.021.
  3. Baran, A. J., P. J. Connolly, A. J. Heymsfield, and A. Bansemer (2010), Using in situ estimates of ice water content, volume extinction coefficient, and the total solar optical depth obtained during the tropical ACTIVE campaign to test an ensemble model of cirrus ice crystalsQ. J. R. Meteorol. Soc., doi:10.1002/qj.731.
  4. Benedetti, A., G. L. Stephens, and J. M. Haynes (2003), Ice cloud microphysics retrievals from millimeter radar and visible optical depth using an estimation theory approachJ. Geophys. Res., 108(D11), 4335, doi:10.1029/2002JD002693.
  5. Cattani, E., S. Melani, V. Levizzani, and M. J. Costa (2007), Measuring Precipitation from Space: EURAINSAT and the Future, chap. The retrieval of cloud top properties using VIS-IR channels, pp. 79–95, Springer, doi:10.1007/978-1-4020-5835-6.
  6. Heymsfield, A. J., S. Matrosov, and B. Baum (2003), Ice water path - optical depth relationships for cirrus and deep stratiform ice cloud layersJ. Appl. Meteorol., 42(20), 1369–1390.
  7. Hong, G., P. Yang, H.-L. Huang, B. A. Baum, Y. Hu, and S. Platnick (2007), The Sensitivity of Ice Cloud Optical and Microphysical Passive Satellite Retrievals to Cloud Geometrical ThicknessIEEE T. Geosci. Remote, 45(5), doi:10.1109/TGRS.2007.894549.
  8. Marshak, A., S. Platnick, T. Várnai, G. Wen, and R. F. Cahalan (2006), Impact of three-dimensional radiative effects on satellite retrievals of cloud droplet sizesJ. Geophys. Res., 111, D09207, doi:10.1029/2005JD006686.
  9. Minnis, P., G. Hong, S. Sun-Mack, W. L. Smith Jr., Y. Chen, and S. D. Miller (2016), Estimating nocturnal opaque ice cloud optical depth from MODIS multispectral infrared radiances using a neural network methodJ. Geophys. Res., 121(9), 4907–4932, doi:10.1002/ 2015JD024456.
  10. Nakajima, T. and M. D. King (1990), Determination of the Optical Thickness and Effective Particle Radius of Clouds from Reflected Solar Radiation Measurements. Part I: TheoryJ. Atmos. Sci., 47(15), 1878–1893.
  11. Nakajima, T. and T. Nakajima (1995), Wide-Area determination of cloud microphysical properties from NOAA AVHHR measurements for FIRE and ASTEX regionsJ. Atmos. Sci., 52, 4043–4059.
  12. Quaas, J., B. Stevens, P. Stier, and U. Lohmann (2010), Interpreting the cloud cover — Aerosol optical depth relationship found in satellite data using a general circulation modelAtmos. Chem. Phys., 10, 6129–6135, doi:10.5194/acp-10-6129-2010.
  13. Redemann, J., M. A. Vaughan, Q. Zhang, Y. Shinozuka, P. B. Russell, J. M. Livingston, M. Kacenelenbogen, and L. A. Remer (2012), The comparison of MODIS-Aqua (C5) and CALIOP (V2 & V3) aerosol optical depthAtmos. Chem. Phys., 12, 3025–3043, doi:10.5194/acp-12-3025-2012.
  14. Twohy, C. H., J. A. Coakley, and W. R. Tahnk (2009), Effect of changes in relative humidity on aerosol scattering near cloudsJ. Geophys. Res., 114, D05205, doi:10.1029/2008JD010991.
  15. Wylie, D., P. Piironen, W. Wolf, and E. Eloranta (1995), Understanding satellite cirrus cloud climatologies with calibrated lidar optical depthsJ. Atmos. Sci., 52, 4327–4343.
  16. Zhang, Z., S. Platnick, P. Yang, A. K. Heidinger, and J. M. Comstock (2010), Effects of ice particle size vertical inhomogeneity on the passive remote sensing of ice cloudsJ. Geophys. Res., 115, D17203, doi:10.1029/2010JD013835.