There is currently a filter applied. To see the complete list of publications, clear the filter.
Brient, F., T. Schneider, Z. Tan, S. Bony, X. Qu, and A. Hall (2015), Shallowness of tropical low clouds as a predictor fo climate models' response to warming, Climate Dynamics, 1–17, doi:10.1007/s00382-015-2846-0.
Chaboureau, J.-P., J.-P. Cammas, J. Duron, P. J. Mascart, N. M. Sitnikov, and H.-J. Voessing (2007), A numerical study of tropical cross-tropopause transport by convective overshoots, Atmos. Chem. Phys., 7(7), 1731–1740, doi:10.5194/acp-7-1731-2007.
Chae, J. H., D. L. Wu, W. G. Read, and S. C. Sherwood (2011), The role of tropical deep convective clouds on temperature, water vapor, and dehydration in the tropical tropopause layer (TTL), Atmos. Chem. Phys., 11, 3811–3821, doi:10.5194/acp-11-3811-2011.
Chung, E. S., B. J. Sohn, and V. Ramanathan (2004), Moistening Processes in the Upper Troposphere by Deep Convection: A Case Study over the Tropical Indian Ocean, J. Meteorol. Soc. Jpn., 82(3), 959–965.
Chung, E. S., B. J. Sohn, J. Schmetz, and M. Koenig (2007), Diurnal variation of upper tropospheric humidity and its relations to convective activities over tropical Africa, Atmos. Chem. Phys., 7(10), 2489–2502, doi:10.5194/acp-7-2489-2007.
Claud, C., B. Alhammoud, B. M. Funatsu, C. Lebeaupin Brossier, J.-P. Chaboureau, K. Béranger, and P. Drobinski (2012), A high resolution climatology of precipitation and deep convection over the Mediterranean region from operational satellite microwave data: development and application to the evaluation of model uncertainties, Nat. Hazards and Earth Syst. Sci, 12, 785–798, doi:10.5194/nhess-12-785-2012.
Cronin, T. W. and A. A. Wing (2017), Clouds, Circulation, and Climate Sensitivity in a Radiative-Convective Equilibrium Channel Model, J. Adv. Model. Earth Syst., 9(8), 2883–2905, doi:10.1002/2017MS001111.
Emanuel, K. A., J. D. Neelin, and C. S. Bretherton (1994), On large-scale circulations in convecting atmospheres, Q. J. R. Meteorol. Soc., 120(519), 1111–1143, doi:10.1002/qj.49712051902.
Folkins, I., K. K. Kelly, and E. M. Weinstock (2002), A simple explanation for the increase in relative humidity between 11 and 14 km in the tropics, J. Geophys. Res., 107(D23), 4736, doi:10.1029/2002JD002185.
Folkins, I. and R. V. Martin (2004), The Vertical Structure of Tropical Convection and Its Impact on the Budgets of Water Vapor and Ozone, J. Atmos. Sci., 62, 1560–1573.
Folkins, I., P. Bernath, C. Boone, L. J. Donner, A. Eldering, G. Lesins, R. V. Martin, B.-M. Sinnhuber, and K. Walker (2006), Testing convective parameterizations with tropical measurements of HNO3, CO, H2O, and O3: Implications for the water vapor budget, J. Geophys. Res., 111, D23304, doi:10.1029/2006JD007325.
Jiang, J. H., H. Su, C. Zhai, S. T. Massie, M. R. Schoeberl, P. R. Colarco, S. Platnick, Y. Gu, and K. N. Liou (2011), Influence of convection and aerosol pollution on ice cloud particle effective radius, Atmos. Chem. Phys., doi:10.5194/acp-11-457-2011.
Kiladis, G. N., K. H. Straub, G. C. Reid, and K. S. Gage (2001), Aspects of interannual and intraseasonal variability of the tropopause and lower stratosphere, Q. J. R. Meteorol. Soc., 127(576), 1961–1983, doi:10.1002/qj.49712757606.
Kubar, T. L., D. L. Hartmann, and R. Wood (2007), Radiative and Convective Driving of Tropical High Clouds, J. Climate, 20(22), 5510–5526, doi:10.1175/2007JCLI1628.1.
Mapes, B. E. (2016), Gregarious convection and radiative feedbacks in idealized worlds, J. Adv. Model. Earth Syst., 8(2), 1029–1033, doi:10.1002/2016MS000651.
Rossow, W. B. and C. Pearl (2007), 22-Year survey of tropical convection penetrating into the lower stratosphere, Geophys. Res. Lett., 34(4), L04803, doi:10.1029/2006GL028635.
Sherwood, S. C., R. Roca, T. M. Weckwerth, and N. G. Andronova (2010), Tropospheric water vapor, convection, and climate, Rev. Geophys., 48(2), RG2001, doi:10.1029/2009RG000301.
Sherwood, S. C., S. Bony, and J.-L. Dufresne (2014), Spread in model climate sensivity traced to atmospheric convective mixing, Nature, 505(7481), 37–42, doi:10.1038/nature12829.
Tobin, I., S. Bony, and R. Roca (2012), Observational Evidence for Relationships between the Degree of Aggregation of Deep Convection, Water Vapor, Surface Fluxes, and Radiation, J. Climate, 25(20), 6885–6904, doi:10.1175/JCLI-D-11-00258.1.
Wing, A. A. and K. A. Emanuel (2014), Physical mechanisms controlling self-aggregation of convection in idealized numerical modeling simulations, J. Adv. Model. Earth Syst., 6(1), 59–74, doi:10.1002/2013MS000269.
Wu, J., A. D. Del Genio, M.-S. Yao, and A. B. Wolf (2009), WRF and GISS SCM simulations of convective updraft properties during TWP-ICE, J. Geophys. Res., 114, D04206, doi:10.1029/2008JD010851.