| a-train | abs lookup | absorption | aerosols | aggregation | airs | albedo | algorithm | amsu | annual cycle | anomalies | aqua | ar4 | ar5 | arctic | arm | arts | arts-dev | asr | assimilation | astrophysics | atmosphere | atmospheric composition | atmospheric dynamics | atmospheric profiles | atsr-2 | avhrr | backscattering | basics | bayes | book | calculation | calculations | calibration | calipso | ccn | cdr | ceres | cfmip | chemistry | cia | ciraclim | cirrus | cirrus anvil sublimation | cirrus cloud | cirrus clouds | cirrusstudy | ciwsir/cloudice | claus | climate | climate change | climate dynamics | climate feedbacks | climate sensitivity | climate sensivity | climate variability | climatology | cloud feedback | cloud forcing | cloud fraction | cloud ice | cloud properties | cloud radiative effects | cloud radiative forcing | cloud regimes | clouds | cloudsat | cmip3 | cmip5 | cmip6 | cmsaf | co2 | collocation | comparison | computer science | continua | contrail | convection | convective clouds | convective processes | convective self-aggregation | correlated k | cosmic background | cosmic rays | cosp | cross-calibration | cth | cumulus | dardar | data bases | dda | deep convection | delta m | dimer | disort | diurnal cycle | dmsp | documentation | droplet size | dynamics | earth | earthcare | echam | ecmwf | effective radius | electromagnetism | electron content | elevation | elevation satellite-2 | emd | emissivity | enso | eof-pca-svd | erbe | error assessment | ers | eruption | esa planetary | exoplanets | extraterrestrial | fall speed | far-infrared | faraday-voigt | fcdr | feedback | feedbacks | fingerprinting | flux uav | forcing | forest fire | fox19_airborne_amt.pdf | friend | fun | gcm | genesis | geostationary | gerrit_erca | global warming | gnss | goes | gps | gras | graupel | greenhouse effect | groundbased | hadley circulation | hail | heating rate | heating rates | herschel | hiatus | hirs | history | hsb | humidity | hydrological sensitivity | hydrological sensivity | iasi | ice | ice clouds | ice crystal growth | ice nucleation | ice water | icesat-2 | ici | icon | icz | in situ | infrared | instruments | intercalibration | intercomparison | interference | inverse modelling | ipcc | ir/vis | iris | isccp | ismar | isotopes | itcz | iwc | iwp | iwv | jupiter | kessler scheme | lblrtm | lidar | limb effect | limb sounding | limb-correction | linemixing | lineshape | liquid water | liquid water path | longwave radiation | low-cloud feedback | magnetic field | magnetism | mars | mas | mass-dimension relation | masters thesis | math | megha-tropiques | mendrok | mesoscale organization | meteorology | meteosat | metop | mhs | microphysics | microwave | mipas | mirs | misr | mixed phase | mls | model | modeling | models | modis | monte carlo | mspps | msu | mth | multi-moment scheme | multisensor | mwhs | mwi | net radiation | neural network | nicam | nlte | noaa | nonsphericity | npoess | observation | ocean | ocean reflection | ocean-atmosphere interactions | odin | olr | one-moment scheme | open loop | optical | optical depth | optical properties | optics | orbital drift | orbits | ozone | pacific ocean | particle orientation | particle shape | particle size | particle size distribution | patmos-x | phase function | phd thesis | polarimetry | polarization | polder | potss | precipitation | profile datasets | programming | projection | promet | propagation modeling | python | radar | radiation | radiation profiles | radiative convective equilibrium | radiative equilibrium | radiative feedback | radiative fluxes | radiative forcing | radiative processes | radiative transfer | radiative-convective equilibrium | radiative-equilibrium | radio occultation | radiometers | radiosonde | radiosonde cloud liquid | radiosonde correction | rain | reanalysis | refractive index | relative humidity | remote sensing | retrieval | review | rodgers | rttov | sahara | sahel | sampling | sand/dust | sar | satellite | satellite missions | satellite observations | satellite simulator | sbuehler_habil | scattering | scattering databases | scintillations | scout-amma | self-aggregation | sensor geometry | seviri | shallow convection | simulated annealing | single scattering | smiles | sno | snow | snowfall | software | soil | solar | soot | sounders | spectral information | spectroscopy | split window technique | ssm/i | ssm/t | ssmis | ssmt2 | stability | statistics | ste | stereo | stratosphere | submillimeter | submm | sun | supersaturation | surface | synergies | task2 | tempera | temperature | terra | thermodynamics | time series | titan | toa radiation | top of the atmosphere | total column | tovs | trade-wind clouds | trajectory analysis | trend | trmm | tropical circulation | tropical convection | tropical meteorology | tropics | tropopause | troposphere | ttl | turbulence | tutorial | two-moment scheme | upper troposphere | uth | utls | validation | vater vapor | venus | visualization | volcanic ash | walker circulation | walker rirculation | water | water cycle | water dimer | water vapor | water vapor continuum | water vapour | water vapour path | water-vapour | wind | zeeman |

Hide tag cloud

Filter by author:
Filter by year:
Filter by bibtex key:
Filter by type:
Filter by keyword:
and
and
 

Filtered by keyword:particle size distribution

There is currently a filter applied. To see the complete list of publications, clear the filter.
  1. Auer, A. H. (1972), Distribution of graupel and hail with sizeMon. Weather Rev., 100, 325–328.
  2. Baran, A. J. (2005), The dependence of cirrus infrared radiative properties in ice crystal geometry and shape of the size-distribution functionQ. J. R. Meteorol. Soc., 131, 1129–1142.
  3. Baran, A. J., P. J. Connolly, A. J. Heymsfield, and A. Bansemer (2010), Using in situ estimates of ice water content, volume extinction coefficient, and the total solar optical depth obtained during the tropical ACTIVE campaign to test an ensemble model of cirrus ice crystalsQ. J. R. Meteorol. Soc., doi:10.1002/qj.731.
  4. Baran, A. J., A. Bodas-Salcedo, R. Cottona, and C. Lee (2011), Simulating the equivalent radar reflectivity of cirrus at 94 GHz using an ensemble model of cirrus ice crystals: a test of the Met Office global numerical weather prediction modelQ. J. R. Meteorol. Soc., Not published yet, doi:10.1002/qj.870.
  5. Baran, Anthony J., Peter Hill, Kalli Furtado, Paul Field, and James Manners (2014), A Coupled Cloud Physics-Radiation Parameterization of the Bulk Optical Properties of Cirrus and its Impact on the Met Office Unified Model GlobalJ. Climate, in press, doi:10.1175/JCLI-D-13-00700.1.
  6. Cairo, F., G. D. Donfrancesco, M. Snels, F. Fierli, M. Viterbini, S. Borrmann, and W. Frey (2010), A comparison of light backscattering and particle size distribution measurements in tropical cirrus cloudsAtmos. Meas. Tech. Discuss., 3, 4059–4089, doi:10.5194/amtd-3-4059-2010.
  7. Clancy, R. T., S. W. Lee, G. R. Gladstone, W. W. McMillan, and T. Rousch (1995), A new model for Mars atmospheric dust based upon analysis of ultraviolet through infrared observations from Mariner 9, Viking, and PhobosJ. Geophys. Res., 100(E3), 5251–5262, doi:10.1029/94JE01885.
  8. Cooper, S. J. and T. J. Garrett (2011), Application of infrared remote sensing to constrain in-situ estimates of ice crystal particle size during SPartICusAtmos. Meas. Tech., 4, 1593–1602, doi:10.5194/amt-4-1593-2011.
  9. Delanoë, J. M. E., A. J. Heymsfield, A. Protat, A. Bansemer, and R. J. Hogan (2014), Normalized particle size distribution for remote sensing applicationJ. Geophys. Res.: Atm., 119, 4204–4227, doi:10.1002/2013JD020700.
  10. Field, P. R., A. J. Heymsfield, and A. Bansemer (2007), Snow Size Distribution Parameterization for Midlatitude and Tropical Ice CloudsJ. Atmos. Sci., 64, 4346–4365, doi:10.1175/2007JAS2344.1.
  11. Frey, W., S. Borrmann, D. Kunkel, R. Weigel, M. de Reus, H. Schlager, A. Roiger, C. Voigt, P. Hoor, J. Curtius, M. Krämer, C. Schiller, C. M. Volk, C. D. Homan, F. Fierli, G. Di Donfrancesco, A. Ulanovsky, F. Ravegnani, N. M. Sitnikov, S. Viciani, F. D'Amato, G. N. Shur, G. V. Belyaev, K. S. Law, and F. Cairo (2011), In-situ measurements of tropical cloud properties in the West African monsoon: upper tropospheric ice clouds, mesoscale convective system outflow, and subvisual cirrusAtmos. Chem. Phys., 11, 5569–5590, doi:10.5194/acp-11-5569-2011.
  12. Gunn, K. L. S. and J. S. Marshall (1958), The distribution with size of aggregate snowflakesJ. Meteorol., 15, 452–461, doi:10.1175/1520-0469(1958)015<0452:TDWSOA>2.0.CO;2.
  13. Hagen, M. and S. E. Yuter (2003), Relations between radar reflectivity, liquid-water content, and rainfall rate during the MAP SOPQ. J. R. Meteorol. Soc., 129, 477–493, doi:10.1256/qj.02.23.
  14. Heymsfield, A. J., C. Schmitt, A. Bansemer, and C. H. Twohy (2010), Improved Representation of Ice Particle Masses Based on Observations in Natural CloudsJ. Atmos. Sci., 67, 3303–3318, doi:10.1175/2010JAS3507.1.
  15. Heymsfield, A. J., C. Schmitt, and A. Bansemer (2013), Ice Cloud Particle Size Distributions and Pressure-Dependent Terminal Velocities from In Situ Observations at Temperatures from 0 to -86 degrees CJ. Atmos. Sci., 70(12), 4123–4154, doi:10.1175/JAS-D-12-0124.1.
  16. Heymsfield, A. J. and C. M. R. Platt (1984), A Parameterization of the Particle Size Spectrum of Ice Clouds in Terms of the Ambient Temperature and the Ice Water ContentJ. Atmos. Sci., 41(5), 846–855, doi:10.1175/1520-0469(1984)041<0846:APOTPS>2.0.CO;2.
  17. Knollenberg, R. G. and D. M. Hunten (1980), The Microphysics of the Clouds of Venus: Results of the Pioneer Venus Particle Size Spectrometer ExperimentJ. Geophys. Res., 85(A13), 8039–8058, doi:10.1029/JA085iA13p08039.
  18. Korablev, O., V. I. Moroz, E. V. Petrova, and A. V. Rodin (2005), Optical properties of dust and the opacity of the Martian atmosphereAdv. Space. Res., 35(1), 21–30, doi:10.1016/j.asr.2003.04.061.
  19. Krasnopolsky, V. A. (1985), Chemical Composition of Venus CloudsPlanet. Space Sci., 33(1), 109–117, doi:10.1016/0032-0633(85)90147-3.
  20. Macke, A., P. N. Francis, G. M. McFarquhar, and S. Kinne (1998), The Role of Ice Particle Shapes and Size Distributions in the Single Scattering Properties of Cirrus CloudsJ. Atmos. Sci., 55(17), 2874–2883, doi:10.1175/1520-0469(1998)055<2874:TROIPS>2.0.CO;2.
  21. Marshall, J. S. and W. McK. Palmer (1948), The distribution of raindrops with sizeJ. Meteorol., 5, 165–166, Short Contribution, doi:10.1175/1520-0469(1948)005<0165:TDORWS>2.0.CO;2.
  22. Marten, A., D. Rouan, J. P. Baluteau, D. Gautier, B. J. Conrath, R. A. Hanel, V. Kunde, R. Samuelson, A. Chedin, and N. Scott (1981), Study of the Ammonia Ice Cloud Layer in the Equatorial Region of Jupiter from the Infrared Interferometric Experiment on VoyagerIcarus, 46, 233–248.
  23. McFarquhar, G. M. and A. J. Heymsfield (1997), Parameterization of Tropical Cirrus Ice Crystal Size Distribution and Implications for Radiative Transfer: Results from CEPEXJ. Atmos. Sci., 54, 2187–2200, doi:10.1175/1520-0469(1997)054<2187:POTCIC>2.0.CO;2.
  24. Milbrandt, J. A. and R. Mctaggart (2010), Sedimentation-Induced Errors in Bulk Microphysics SchemesJ. Atmos. Sci., 67, 3931–3948, doi:10.1175/2010JAS3541.1.
  25. Mitchell, D. L., R. P. D'Entremont, and R. P. Lawson (2009), Inferring Cirrus Size Distributions through Satellite Remote Sensing and Microphysical DatabasesJ. Atmos. Sci., 67(4), 1106–1125, doi:10.1175/2009JAS3150.1.
  26. Munchak, S. J., C. D. Kummerow, and G. Elsaesser (2012), Relationships between the Raindrop Size Distribution and Properties of the Environment and Clouds Inferred from TRMMJ. Climate, 25(8), 2963–2978, doi:10.1175/JCLI-D-11-00274.1.
  27. Petty, G. W. and W. Huang (2011), The Modified Gamma Size Distribution Applied To Inhomogeneous and Nonspherical Particles: Key Relationships and ConversionsJ. Atmos. Sci., 68, 1460–1473, doi:10.1175/2011JAS3645.1.
  28. Pollack, J. B., D. Colburn, R. Kahn, J. Hunter, W. van Camp, C. E. Carlston, and M. R. Wolf (1977), Properties of Aerosols in the Martian Atmosphere, as Inferred From Viking Lander Imaging DataJ. Geophys. Res., 82(28), 4479–4496, doi:10.1029/JS082i028p04479.
  29. Rosenfeld, D. and I. M. Lensky (1998), Satellite-Based Insights into Precipitation Formation Processes in Continental and Maritime Convective CloudsBull. Amer. Met. Soc., 79(11), 2457–2476, doi:10.1175/1520-0477(1998)079<2457:SBIIPF>2.0.CO;2.
  30. Sun, W., Y. Hu, B. Lin, Z. Liu, and G. Videen (2011), The impact of ice cloud particle microphysics on the uncertainty of ice water content retrievalsJ. Quant. Spectrosc. Radiat. Transfer, 112(2), 189–196, doi:10.1016/j.jqsrt.2010.04.003.
  31. Tomita, H. (2008), New Microphysical Schemes with Five and Six Categories by Diagnostic Generation of Cloud IceJ. Meteorol. Soc. Jpn., 86A, 121–142, doi:10.2151/jmsj.86A.121.
  32. Toon, O. B., J. B. Pollack, and C. Sagan (1977), Physical Properties of the Particles Composing the Martian Dust Storm of 1971–1972Icarus, 30(4), 663–696, doi:10.1016/0019-1035(77)90088-4.
  33. Vollmer, J., A. Papke, and M. Rohloff (2014), Ripening and focusing of aggregate size distributions with overall volume growthFront. in Phys., 2(18), 1–14, doi:10.3389/fphy.2014.00018.
  34. Zhang, Z., S. Platnick, P. Yang, A. K. Heidinger, and J. M. Comstock (2010), Effects of ice particle size vertical inhomogeneity on the passive remote sensing of ice cloudsJ. Geophys. Res., 115, D17203, doi:10.1029/2010JD013835.
  35. Zhang, S., H. Xue, and G. Feingold (2011), Vertical profiles of droplet effective radius in shallow convective cloudsAtmos. Chem. Phys., 11, 4633–4644, doi:10.5194/acp-11-4633-2011.