There is currently a filter applied. To see the complete list of publications, clear the filter.
Baranov, Y. I. and W. J. Lafferty (2011), The water-vapor continuum and selective absorption in the 3–5 μm spectral region at temperatures from 311 to 363 K, J. Quant. Spectrosc. Radiat. Transfer, 112(8), 1304–1313, doi:10.1016/j.jqsrt.2011.01.024.
Bauer, A. and M. Godon (2001), Continuum for H2O-X mixtures in the H2O spectral window at 239 GHz; X=C2H4, C2H6 Are collision-induced absorption processes involved?, J. Quant. Spectrosc. Radiat. Transfer, 69, 277–290.
Bauer, A., B. Duterage, and M. Godon (1986), Temperature dependence of water-vapor absorption in the wing of the 183 GHz line, J. Quant. Spectrosc. Radiat. Transfer, 36(4), 307–318.
Bauer, A., M. Godon, M. Kheddar, and J. M. Hartmann (1989), Temperature and perturber dependences of water vapor line-broadening. Experiments at 183 GHz; Calculations below 1000 GHz, J. Quant. Spectrosc. Radiat. Transfer, 41(1), 49–54.
Bauer, A. and M. Godon (1991), Temperature dependence of water-vapor absorption in linewings at 190 GHz, J. Quant. Spectrosc. Radiat. Transfer, 46(3), 211–220.
Bauer, A., M. Godon, and Q. Ma (1995), Water vapor absorption in the atmospheric window at 239 GHz, J. Quant. Spectrosc. Radiat. Transfer, 53(4), 411–423.
Bauer, A., M. Godon, J. Carlier, and R. R. Gamache (1996), Absorption of a H2O-CO2 Mixture in the Atmospheric Windows at 239 GHz; H2O-CO2 Linewidths and Continuum, J. Molec. Spectro., 45–57.
Bauer, A., M. Godon, J. Carlier, and R. R. Gamache (1998), Continuum in the Windows of the Water Vapor Spectrum. Absorption of H2O-Ar at 239 GHz and Linewidth Calculations, J. Quant. Spectrosc. Radiat. Transfer, 59(3–5), 273–285.
Ben-Reuven, A. (xx), The meaning of collision broadening of spectral lines: the classical-oscillator analog, The Weizman Institutwe of Science, Rehovot Israel.
Bézard, B., A. Fedorova, J.-L. Bertaux, A. Rodin, and O. Korablev (2011), The 1.10- and 1.18-μm nightside windows of Venus observed by SPICAV-IR aboard Venus Express, Icarus, 216(1), 173–183, doi:10.1016/j.icarus.2011.08.025.
Burch, D. E. (1968), Absorption of Infrared Radiant Energy by CO2 and H2O. III. Absorption by H2O between 0.5 and 36 cm-1 ( 287 μ – 2 cm), J. Optical Soc. o. Am., 58(10), 1383–1394.
Clough, S. A., M. W. Shephard, E. J. Mlawer, J. S. Delamere, M. Iacono, K. Cady-Pereira, S. Boukabara, and P. D. Brown (2005), Atmospheric radiative transfer modeling: a summary of the AER codes, J. Quant. Spectrosc. Radiat. Transfer, 91(2), 233–244, doi:10.1016/j.jqsrt.2004.05.058.
Clough, S. A., F. X. Kneizys, and R. W. Davies (1989), Line Shape and the Water Vapor Continuum, Atmos. Res., 23, 229–241, doi:10.1016/0169-8095(89)90020-3.
Dagg, I. R., G. E. Reesor, and M. Wong (1978), A microwave cavity measurement of collision-induced absorption in N2 and CO2 at 4.6 cm-1, Can. J. Phys., 56, 1037–1045.
Dagg, I. R., A. Anderson an S. Yan, W. Smith, and L. A. A. Read (1985), Collision-induced absorption in nitrogen at low temperatures, Can. J. Phys., 63, 625–631.
Delamere, J. S., S. A. Clough, V. H. Payne, E. J. Mlawer, D. D. Turner, and R. R. Gamache (2010), A far-infrared radiative closure study in the Arctic: Application to water vapor, J. Geophys. Res., 115, D17106, doi:10.1029/2009JD012968.
Ellingson, R. G., J. Ellis, and S. Fels (1991), The Intercomparison of Radiation Codes in Climate Models: Long Wave Results, J. Geophys. Res., 96(D5), 8929–8953.
Emmons, L. K. and R. L. de Zafra (1990), Observation of a Strong Inverse Temperature Dependence for the Opacity of Atmospheric Water Vapor in the mm Continuum near 280 GHz, Int. J. Inf. Millim. Waves, 11(4), 469–489.
English, S. J., C. Guillou, C. Prigent, and D. C. Jones (1994), Aircraft measurements of water vapour continuum absorption millimetre wavelengths, Q. J. R. Meteorol. Soc., 120, 603–625.
English, S. J., D. C. Jones, P. J. Rayer, T. J. Hewison, R. W. Saunders, C. Guillou, C. Prigent, J. Wang, and G. Anderson (1995), Observations of water vapour absorption using airborne microwave radiometers at 89 and 157 Ghz, IEEE, 1395–1404.
Fomin, B. A., T. A. Udalova, and E. A. Zhitnitskii (2004), Evolution of spectroscopic information over the last decade and its effect on line-by-line calculations for validation of radiation codes for climate models, J. Quant. Spectrosc. Radiat. Transfer, 86(1), 73–85.
Gamache, R. R., J.-M. Hartmann, and L. Rosenmann (1994), Collisional broadening of water vapour lines - I. A survey of experimental results, J. Quant. Spectrosc. Radiat. Transfer, 52(3/4), 481–499, doi:10.1016/0022-4073(94)90175-9.
Godon, M., A. Bauer, and R. R. Gamache (2000), The Continuum of Water Vapor Mixed with Methane: Absolute Absorption at 239 GHz and Linewidth Calculations, J. Molec. Spectro., 202, 293–202.
Godon, M., J. Carlier, and A. Bauer (1992), Laboratory studies of water vapor absorption in the atmospheric window at 213 GHz, J. Quant. Spectrosc. Radiat. Transfer, 47(4), 275–285.
Golovko, V. F. (2001), Continuous absorption of water vapor and a problem of the absorption enhancement in the humid atmosphere, J. Quant. Spectrosc. Radiat. Transfer, 69, 431–446.
Gordley, L. L., B. T. Marshall, and D. A. Chu (1994), Linepak: algorithms for modeling spectral transmittance and radiance, J. Quant. Spectrosc. Radiat. Transfer, 52(5), 563–580.
Hartmann, J. M., M. Y. Perrin, Q. Ma, and R. H. Tipping (1993), The Infrared Continuum of Pure Water Vapor: Calculations and High-Temperature Measurements, J. Quant. Spectrosc. Radiat. Transfer, 49(6), 675–691.
Haus, R. and G. Arnold (2010), Radiative transfer in the atmosphere of Venus and application to surface emissivity retrieval from VIRTIS/VEX measurements, Planet. Space Sci., 58(12), 1578–1598, doi:10.1016/j.pss.2010.08.001.
Hinderling, J., M. W. Sigrist, and F. K. Kneubuehl (1987), Laser-photoacoustic spectroscopy of water-vapor continuum and line absorption in the 8 to 14 μm atmospheric window, Infrared Phys., 27(2), 63–120.
Ho, W., I. A. Kaufman, and P. Thaddeus (1966), Laboratory measurement of microwave absorption in models of the atmosphere of Venus, J. Geophys. Res., 71(21), 5091–5108.
Hudis, E., Y. Ben-Aryeh, and U. P. Oppenheim (1992), The Contribution of Third Order Linear Absorption to the Water Vapor Continuum, J. Quant. Spectrosc. Radiat. Transfer, 47(5), 319–323.
Inamdar, A. K., V. Ramanathan, and N. G. Loeb (2004), Satellite observations of the water vapor greenhouse effect and column longwave colling rates: Relative roles of the continuum and vibration-rotation to pure rotation bands, J. Geophys. Res., 109, doi:10.1029/2003JD003980.
Jenkins, J. M., M. A. Kolodner, B. J. Butler, S. H. Suleimann, and P. G. Steffes (2002), Microwave Remote Sensing of the Temperature and Distribution of Sulfur Compounds in the Lower Atmosphere of Venus, Icarus, 158(2), 312–328, doi:10.1006/icar.2002.6894.
Kempkens, H., R. Mann, and J. Uhlenbusch (1979), Measruements of absorption coefficient of water vapor by means of an H2O laser in the far-infrared, Infrared Phys., 19, 585–592.
Kilsby, C. G., D. P. Edwards, R. W. Saunders, and J. S. Foot (1992), Water-vapour continuum absorption in the tropics: Aircraft measurements and model comparisons, Q. J. R. Meteorol. Soc., 118, 715–748.
Kuz'menko, V. A. (2002), Problem of water vapor absorption continuum in atmospheric windows. Return of dimer hypothesis, Troitsk Institute for Fusion Research.
Liebe, H. J., G. A. Hufford, and M. G. Cotton (1993), Propagation modeling of moist air and suspended water/ice particles at frequencies below 1000 GHz, In: AGARD 52nd Specialists' Meeting of the Electromagnetic Wave Propagation Panel, pp. 3-1–3-10.
Ma, Q. and R. H. Tipping (2002), Water vapor millimeter wave foreign continuum: A Lanczos calculation in the coordinate representation, J. Chem. Phys., 117(23), 10581–10596.
Ma, Q. and R. H. Tipping (1990), The atmospheric water continuum in the infrared: Extension of the statistical theory of Rosenkranz, J. Chem. Phys., 93(10), 7066–7075.
Ma, Q. and R. H. Tipping (1991), A far wing line shape theory and its application to the water continuum absorption in the infrared region.I, J. Chem. Phys., 95(9), 6290–6301.
Ma, Q. and R. H. Tipping (1992), A far wing line shape theory and its application to the foreign-broadened water continuum absorption. III, J. Chem. Phys., 97(2), 818–828.
Ma, Q. and R. H. Tipping (1994), The Detailed Balance Requirement and General Empirical Formalisms for Continuum Absorption, J. Quant. Spectrosc. Radiat. Transfer, 51(5), 751–757.
Manabe, T., Y. Furuhama, T. Ihara, S. Saito, H. Tanaka, and A. Ono (1985), Measurements of attenuation and refractive dispersion due to atmospheric water vapor at 80 and 240 GHz, Int. J. Inf. Millim. Waves, 6(4), 313–322.
Maric, D. and J. P. Burrow (1996), Application of a Gaussian Distribution Function To Describe Molecular UV-Visible Absorption Continua. 1. Theory, J. Phys. Chem., 100(21), 8645–8659.
Mate, B., C Lugez, G. T. Fraser, and W. J. Latterty (1999), Absolute intensities for the O2 1.27 μm continuum absorption, J. Geophys. Res., 104(D23), 30,585–30,590.
Mlawer, E. J., V. H. Payne, J.-L. Moncet, J. S. Delamere, M. J. Alvarado1, and D. C. Tobin (2012), Development and recent evaluation of the MT_CKD model of continuum absorption, Phil. Trans. R. Soc. A, 370(1968), 2520–2556, doi:10.1098/rsta.2011.0295.
Mlawer, E. J., S. A. Clough, P. D. Brown, and D. C. Tobin (1998), Collision-Induced Effects and the Water Vapor Continuum, Atmospheric and Environmental Research and the University of Wisconsin.
Mlawer, E. J., S. A. Clough, P. D. Brown, and D. C. Tobin (1999), Recent Developments in the Water Vapor Continuum, Atmospheric and Environmental Research, Inc., and University of Wisconsin.
Occelli, R., H. Chaaban, J. M. Moynault, R. Coulon, and A. Balsamo (1991), Submillimetric and millimetric collision-induced absorption spectra in compressed gaseous nitrogen using very low-frequency optical source, Can. J. Phys., 69, 1264–1272.
Olsen, R., D. V. Rogers, and D. B. Hodge (1978), The aRbrelation in the calculation of rain attenuation, IEEE Trans. Antennas Propag., 26(2), 318–329, doi:10.1109/TAP.1978.1141845.
Pardo, J. R., J. Cernicharo, E. Lellouch, T. Encrenaz, and G. Paubert (1995), Ground-based measurements of middle atmospheric water vapor at 183 GHz during very dry tropospheric conditions, Unknown IEEE journal, 1401–1403.
Payne, V. H., E. J. Mlawer, K. E. Cady-Pereira, and J.-L. Moncet (2011), Water Vapor Continuum Absorption in the Microwave, IEEE Geosci. Remote Sens., 49(6), 2194–2208, doi:10.1109/TGRS.2010.2091416.
Paynter, D. J. and V. Ramaswamy (2011), An assessment of recent water vapor continuum measurements upon longwave and shortwave radiative transfer, J. Geophys. Res., 116, D20302, doi:10.1029/2010JD015505.
Paynter, D. and V. Ramaswamy (2012), Variations in water vapor continuum radiative transfer with atmospheric conditions, J. Geophys. Res., 117, D16310, doi:10.1029/2012JD017504.
Podobedov, V. B., D. F. Plusquellic, and G. T. Fraser (2005), Investigation of the water-vapor continuum in the THz region using a multipass cell, J. Quant. Spectrosc. Radiat. Transfer, 91, 287–295.
Podobedov, V.B., D.F. Plusquellic, K.E. Siegrist, G.T. Fraser, Q. Ma, and R.H. Tipping (2008), New measurements of the water vapor continuum in the region from 0.3 to 2.7 THz, J. Quant. Spectrosc. Radiat. Transfer, 109(3), 458–467, doi:10.1016/j.jqsrt.2007.07.005.
Podobedov, V.B., D.F. Plusquellic, K.M. Siegrist, G.T. Fraser, Q. Ma, and R.H. Tipping (2008), Continuum and magnetic dipole absorption of the water vapor-oxygen mixtures from 0.3 to 3.6 THz, J. Molec. Spectro., 251(1–2), 203–209, doi:10.1016/j.jms.2008.02.021.
Richard, C., I. E. Gordon, L. S. Rothman, M. Abel, L. Frommhold, M. Gustafsson, J.-M. Hartmann, C. Hermans, W. J. Lafferty, G. S. Orton, K.M. Smith, and H. Tran (2012), New section of the HITRAN database: Collision-induced absorption (CIA), J. Quant. Spectrosc. Radiat. Transfer, 113, 1276–1285, doi:10.1016/j.jqsrt.2011.11.004.
Rosenkranz, P. W. (1998), Water vapor microwave continuum absorption: A comparison of measurements and models, Radio Sci., 33(4), 919–928, (correction in 34, 1025, 1999).
Rudman, S. D., R. W. Saunders, C. G. Kilsby, and P. J. Minnett (1994), Water vapour continuum absorption in mid-latitudes: Aircraft measurements and model comparisons, Q. J. R. Meteorol. Soc., 120, 795–807.
Stone, N. W. B., L. A. A. Read, A. Anderson, I. R. Dagg, and W. Smith (1984), Temperature dependent collision-induced absorption in nitrogen, Can. J. Phys., 62, 338–347.
Strow, L. L., D. C. Tobin, W. W. McMillan, S. E. Hannon, W. L. Smith, H. E. Revercomb, and R. O. Knuteson (1998), Impact of a new Water Vapor Continuum and Line Shape Model on Observed High Resolution Infrared Radiances, J. Quant. Spectrosc. Radiat. Transfer, 59(3–5), 303–317.
Taylor, J. P., S. M. Newman, T. J. Hewison, and A. McGrath (2003), Water vapour line and continuum absorption in the thermal infrared-reconciling models and observations, Q. J. R. Meteorol. Soc., 129, 2949–2696, doi:10.1256/qj.03.08.
Thomas, M. E. and R. J. Nordstrom (1982), The N2-broadened water vapor absorption line shape and infrared continuum absorption- I. Theoretical development, J. Quant. Spectrosc. Radiat. Transfer, 28(2), 81–101.
Thomas, M. E. and R. J. Nordstrom (1982), The N2-broadened water vapor absorption line shape and infrared continuum absorption- II. Implementation of the line shape, J. Quant. Spectrosc. Radiat. Transfer, 28(2), 102–112.
Thomas, M. E. (1990), Atmospheric absorption model from 0.01 to 10 wave numbers, In: Propagation Engineering: Third in a Series, pp. 355–363, Edited by Bissonnette, Luc R. and Walter B. Miller, SPIE, doi:10.1117/12.21892.
Thomas, M. E. (1990), Infrared- and millimeter-wavelength continuum absorption in the atmospheric windows: Measurements and models, Infrared Phys., 30(2), 161–174.
Tobin, D. C., L. L. Strow, W. J. Lafferty, and W. B. Olson (1996), Experimental investigation of the self- and N2-broadened continuum within the ν2 band of water vapor, Appl. Opt., 35(24), 4724–4734.
Tretyakov, M. Y., M. A. Koshelev, E. A. Serov, V. V. Parshin, T. A. Odintsova, and G. M. Bubnov (2014), Water dimer and the atmospheric continuum, Phys. Usp., 11(1), 1083–1098, doi:10.3367/UFNe.0184.201411c.1199.
Vigasin, A. A. (2000), Water vapor continuous absorption in various mixtures: possible role of weakly bound complexes, J. Quant. Spectrosc. Radiat. Transfer, 64, 25–40.
Vigasin, A. A. (1996), On the nature of collision-induced absorption in gaseous homonuclear diatomics, J. Quant. Spectrosc. Radiat. Transfer, 56(3), 409–422.
Vogelmann, A. M., V. Ramanathan, W. C. Contant, and W. E. Hunter (1998), Observational Constraints on Non-Lorentzian Continuum Effects in the Near-Infrared Solar Spectrum using ARM Arese Data, J. Quant. Spectrosc. Radiat. Transfer, 60(2), 231–246.