Show tag cloud

Filter by author:
Filter by year:
Filter by bibtex key:
Filter by type:
Filter by keyword:
and
and
 

Filtered by keyword:lineshape

There is currently a filter applied. To see the complete list of publications, clear the filter.
  1. Albers, J. and J. M. Deutch (1973), On the Rate Equation Description of the Spectral LinesChem. Phys., 89–98.
  2. Allard, N. and J. Kielkopf (1982), The effect of neutral nonresonant collisions on atomic spectral linesRev. Mod. Phys., 54(4), 1103–1182.
  3. Anderson, P. W. (1949), Pressure Broadening in the Microwave and Infra-Red RegionsPhys. Rev., 76(5), 647–661.
  4. Anderson, P. W. (1952), A Method of Synthesis of the Statistical and Impact Theories of Pressure BroadeningPhys. Rev., 809.
  5. Armstrong, B. H. (1967), Spectrum line profiles: the Voigt functionJ. Quant. Spectrosc. Radiat. Transfer, 7, 61–88.
  6. Baranger, M. (1958), General Impact Theory of Pressure BroadeningPhys. Rev., 112(3), 855–865.
  7. Baranger, M. (1958), Problem of Overlapping Line in the Theory of Pressure BroadeningPhys. Rev., 111(2), 494–504.
  8. Baranger, M. (1958), Simplified Quantum-Mechanical Theory of Pressure BroadeningPhys. Rev., 111(2), 481–493.
  9. Barlow, H. M. and A. L. Cullen (1950), Micro-Wave measurements, University College London, University of Sheffield.
  10. Belov, S. P., A. F. Krupnov, V. N. Markov, A. A. Mel'nikov, V. A. Skvortsov, and M. Y. Tret'yakov (1983), Study of Microwave Pressure Lineshifts: Dynamic and Isotopic DependencesJ. Molec. Spectro., 101, 258–270.
  11. Ben-Aryeh, Y. and A. Sorgen (1971), Self-Broadening of Molecular Spectral Lines. I. General TheoryPhys. Rev., 4(6), 2170–2188.
  12. Ben-Reuven, A. (1965), Transition from Resonant to Nonresonant Line Shape in Microwave AbsorptionPhys. Rev., 14(10), 349–351.
  13. Ben-Reuven, A. (1966), Impact Broadening of Microwave SpectraPhys. Rev., 145(1), 7–22.
  14. Ben-Reuven, A. (1971), Resonance Broadening of Spectral LinesPhys. Rev., 4(6), 2215–2120.
  15. Benedict, W. S. and L. D. Kaplan (1959), Calculation of Line Widths in H2O-N2 CollisionsJ. Chem. Phys., 30(2), 388–399.
  16. Benedict, W. S., R. Herman, G. E. Moore, and S. Silverman (1962), The Strengths, Widths, and Shapes of Lines in the Vibration-Rotation Bands of COAstrophys. J., 135, 277–297.
  17. Birnbaum, G. and E. R. Cohen (1976), Theory of line shape in pressure-induced absorptionCan. J. Phys., 54, 593–602.
  18. Birnbaum, G. (1979), The shape of collision broadened lines from resonance to the far wingsJ. Quant. Spectrosc. Radiat. Transfer, 21, 597–607.
  19. Birnbaum, G., S.-I. Chu, A. Dalgarno, L. Frommhold, and E. L. Wright (1984), Theory of collision-induced translation-rotation spectra: H2-HePhys. Rev., 29(2), 595–603.
  20. Bloom, S. and H. Margenau (1953), Quantum Theory of Spectral Line BroadeningPhys. Rev., 90(5), 791–794.
  21. Boone, C. D., K. A. Walker, and P. F. Bernath (2011), An efficient analytical approach for calculating line mixing in atmospheric remote sensing applicationsJ. Quant. Spectrosc. Radiat. Transfer, 112(6), 980–989, doi:10.1016/j.jqsrt.2010.11.013.
  22. Boulet, C., D. Robert, and L. Galatry (1980), Influence of the finite duration of collisions on the infrared line shapeJ. Chem. Phys., 72(1), 751–759.
  23. Breene, R. G. Jr. (1957), Line ShapeRev. Mod. Phys., 29(1), 94–143.
  24. Buffa, G. and O. Tarrini (1983), Comparison of Pressure Shift Impact Calculations with Experimental ResultsJ. Molec. Spectro., 101, 271–277.
  25. Chaussard, F., X. Michaut, R. Saint-Loup, H. Berger, P. Joubert, B. Lance, J. Bonamy, and D. Robert (2000), Collisional effects on spectral line shape from the Doppler to the collisional regime: A rigorous test of a unified modelJ. Chem. Phys., 112(1), 158–166.
  26. Ch'en, S.-Y. and M. Takeo (1957), Broadening and Shift of Spectral Lines Due to the Presence of Foreign GasesRev. Mod. Phys., 29(1), 20–73.
  27. Chou, S.-I., D. S. Baer, and R. K. Hanson (1999), Spectral Intensity and Lineshape Measurements in the First Overtune Band of HF Using Tunable Diode LasersJ. Molec. Spectro., 195, 123–131.
  28. Ciurylo, R. and A. S. Pine (2000), Speed-dependent line mixing profilesJ. Quant. Spectrosc. Radiat. Transfer, 67, 375–393.
  29. Ciurylo, R., A. S. Pine, and J. Szudy (2001), A generalized speed-dependent line profile combining soft and hard partially correlated Dicke-narrowing collisionsJ. Quant. Spectrosc. Radiat. Transfer, 68, 257–271.
  30. Ciurylo, R. and J. Szudy (2001), Line-mixing and collision-time asymmetry of spectral line shapePhys. Rev., 63, 042814-1–042714-6.
  31. Cooper, J. (1967), Broadening of Isolated Lines in the Impact Approximation Using a Density Matrix FormulationRev. Mod. Phys., 39(1), 167–177.
  32. Dattagupta, S. and L. A. Turski (1985), Boltzmann-Lorentz model of collisional broadening of spectraPhys. Rev., 32(3), 1439–1446.
  33. Davies, R. W. (1975), Many-body treatment of pressure shifts associated with collisional broadeningPhys. Rev., 12(3), 927–946.
  34. del Toro Iniesta, J. C. (2003), Introduction to Spectropolarimetry, Cambridge University Press, ISBN 0-521-81827-3.
  35. de Pater, I. and S. T. Massie (1985), Models of the Millimeter-Centimeter Spectra of the Giant PlanetsIcarus, 62(1), 143–171, doi:10.1016/0019-1035(85)90177-0.
  36. De Souza-Machade, S., L. L. Strow, D. Tobin, H. Motteler, and S. Hannon (2002), UMBC-LBL vers 7: An Algorithm to Compute Line-by-Line Spectra, University of Maryland Baltimore Country.
  37. Dicke, R. H. (1953), The Effect of Collision upon the Doppler Width of Spectral LinesPhys. Rev., 89(2), 472–473.
  38. Dicke, R. H. (1953), The Effect of Collisions upon the Doppler Width of Spectral LinesPhys. Rev., 89(2), 472–473, doi:10.1103/PhysRev.89.472.
  39. Dillon, T. A., E. W. Smith, J. Cooper, and M. Mizushima (1970), Semiclassical Treatment of Strong Collision in Pressure BroadeningPhys. Rev., 2(5), 1839–18846.
  40. Dillon, T. A. and J. T. Godfrey (1972), Pressure Broadening of the O2 Microwave SpectrumPhys. Rev., 5(2), 599–605.
  41. Drayson, S. R. (1976), Rapid computation of the Voigt profileJ. Quant. Spectrosc. Radiat. Transfer, 16, 611–614.
  42. Drouin, B. J., J. Fischer, and R. R. Gamache (2002), Temperature dependent pressure induced lineshape of O3 rotational transitions in airJ. Quant. Spectrosc. Radiat. Transfer, 83, 63–81.
  43. Drouin, B. J. (2004), Temperature dependent pressure-induced lineshape of the HCl J = 1 ← 0 rotational in nitrogen and oxygenJ. Quant. Spectrosc. Radiat. Transfer, 83, 321–331.
  44. Dryagin, Y. A., V. V. Parshin, A. F. Krupnov, N. Gopalsami, and A. C. Raptis (1996), Precision Broadband Wavemeter for Millimeter and Submillimeter RangeIEEE T. Microw. Theory, 44(9), 1610–1613.
  45. Duggan, P., P. M. Sinclair, M. P. Le Flohic, J. W. Forsman, R. Berman, A. D. May, and J. R. Drummond (1993), Testing the validity of the optical diffusion coefficient: Line-shape measurements of CO perturbed by N2Phys. Rev., 48(3), 2077–2083.
  46. Edwards, D. P. and L. L. Strow (1991), Spectral Line Shape Considerations for Limb Temperatur SoundersJ. Geophys. Res., 96(D11), 20,859–20,868.
  47. Evenson, K. M. and M. Mizushima (1972), Laser Magnetic Resonance of the O2 Molecule Using 119- and 78-μm H2O Laser LinesPhys. Rev., 6(5), 2197–2204.
  48. Fano, U. (1963), Pressure Broadening as a Prototype of RelaxationPhys. Rev., 131(1), 259–268, doi:10.1103/PhysRev.131.259.
  49. Filippov, N. N. and M. V. Tonkov (1996), Line mixing in the infrared spectra of simple gases at moderate and high densitiesSpectro. Acta Part A: Molec. and Biomolec. Spectro., 52(8), 901–918, doi:10.1016/0584-8539(96)01669-8.
  50. Foley, H. M. (1946), The Pressure Broadening of Spectral LinesPhys. Rev., 69(11–12), 616–628.
  51. Futurelle, R. P. (1972), Unified Theory of Spectral Line Broadening in GasesPhys. Rev., 5(5), 2162–2182.
  52. Galatry, L. (1961), Simultaneous Effect of Doppler and Foreign Gas Broadening on Spectral LinesPhys. Rev., 122(4), 1218–1223.
  53. Gallagher, A. (1996), Line Shape and Radiation Transfer, University of Colorado and National Institute of Standards and Technology.
  54. Gamache, R. R. and J.-M. Hartmann (2004), Collisional parameters of the H2O lines: effects of vibrationJ. Quant. Spectrosc. Radiat. Transfer, 83, 119–147.
  55. Gamache, R. R., A. Goldman, and L. S. Rothman (1998), Improved Spectral Parameters for the three most abundant Isotopomers of the Oxygen MoleculeJ. Quant. Spectrosc. Radiat. Transfer, 59(3–5), 495–509.
  56. Gamache, R. R., R. Lynch, and S. P. Neshyba (1998), New Developments in the Theory of Pressure-Broadening and Pressure-Shifting of Spectral Lines of H2O: The Complex Robert-Bonamy FormalismJ. Quant. Spectrosc. Radiat. Transfer, 59(3–5), 319–335.
  57. Gamache, R. R., E. Arie, C. Boursier, and J.-M. Hartmann (1998), Pressure-broadening and pressure-shifting of spectral lines of ozoneSpectrochimica Acta, 54, 35–63.
  58. Gao, B., G. C. Tabisz, M. Trippenbach, and J. Cooper (1991), Spectral line shape arising from collisional interference between electric-dipole-allowed and collision-induced transitionsPhys. Rev., 44(11), 7379–7391.
  59. Gersten, J. I. and H. M. Foley (1969), Theory of Pressure Broadeing of Microwave Spectral LinesPhys. Rev., 182(1), 24–38.
  60. Gordon, R. G. (1966), Semiclassical Theory of Spectra and Relaxation in Molecular GasesJ. Chem. Phys., 45(5), 1649–1655.
  61. Gordon, R. G. (1967), On the Pressure Broadening of Molecular Multiplet SpectraJ. Chem. Phys., 46(2), 448–455.
  62. Gross, E. P. (1955), Shape of Collision-Broadened Spectral LinesPhys. Rev., 97(2), 395–403.
  63. Harvey, J. N., J. O. Jung, and R. B. Gerber (1998), Ultraviolet spectroscopy of water clusters: Excited electronic states and absorption line shape of (H2O)n, n=2-6J. Chem. Phys., 109(20), 8747–8750.
  64. Heer, C. V. (1972), Statistical Mechanics, Kinetic Theory, and Stochastic Processes, Ohio State University.
  65. Hill, R. J. (1986), Water vapor-absorption line shape comparison using 22-GHz line: The Van Vleck-Weisskopf shape affirmedRadio Sci., 21(3), 447–451.
  66. Houdeau, J. P., C. Boulet, and D. Robert (1985), A theoretical and experimental study of the infrared line shape from resonance to the wings for uncoupled linesJ. Chem. Phys., 82(4), 1661–1673.
  67. Huber, D. L. and J. H. van Vleck (1966), The Role of Boltzmann Factors in Line ShapeRev. Mod. Phys., 38(1), 187–204, doi:10.1103/RevModPhys.38.187.
  68. Hui, A. K., B. H. Armstrong, and A. A. Wray (1977), Rapid computation of the Voigt and complex error functionsJ. Quant. Spectrosc. Radiat. Transfer, 19, 509–516.
  69. Johri, G. K., P. Gupta, and M. Johri (2000), Theoretical study of molecular collisions and microwave linewidthJ. Quant. Spectrosc. Radiat. Transfer, 66, 215–221.
  70. Kolb, A. C. and H. Griem (1958), Theory of Line Broadening in Multiplet SpectraPhys. Rev., 111(2), 514–521.
  71. Kuntz, M. (1997), A new implementation of the Humlicek algorithm for the calculation of the Voigt profile functionJ. Quant. Spectrosc. Radiat. Transfer, 57, 819–824.
  72. Lance, B. and D. Robert (1998), An analytical model for collisional effects on spectral line shape from the Doppler to the collision regimeJ. Chem. Phys., 109(19), 8283–8288.
  73. Loss, D., A: Thellung, and L. A. Turski (1990), Quantum Boltzmann-Lorentz model approach to the line-shape problemPhys. Rev., 41(6), 3005–3015.
  74. Ma, Q. and R. H. Tipping (2000), The density matrix of H2O-N2 in the coordinate representation: A Monte Carlo calculation on the far-wing line shapeJ. Chem. Phys., 112(2), 574–584.
  75. Ma, Q. and R. H. Tipping (2002), The frequency detuning correction and the asymmetry of line shapes: The far wings of H2O-H2J. Chem. Phys., 116(10), 4102–4115.
  76. Ma, Q. and R. H. Tipping (1991), A far wing line shape theory and its application to the water continuum absorption in the infrared region.IJ. Chem. Phys., 95(9), 6290–6301.
  77. Ma, Q. and R. H. Tipping (1992), A far wing line shape theory and its application to the water vibrational bands IIJ. Chem. Phys., 96(12), 8655–8663.
  78. Ma, Q. and R. H. Tipping (1992), A far wing line shape theory and its application to the foreign-broadened water continuum absorption. IIIJ. Chem. Phys., 97(2), 818–828.
  79. Ma, Q. and R. H. Tipping (1994), A near-wing correction to the quasistatic far-wing line shape theoryJ. Chem. Phys., 100(4), 2537–2546.
  80. Ma, Q. and R. H. Tipping (1998), The distribution of density matrices over potential-energy surfaces: Application to the calculation of the far-wing line shapes for CO2J. Chem. Phys., 108(9), 3386–3399.
  81. Ma, Q., R. H. Tipping, and C. Boulet (1998), A Far-Wing Line Shape Theory which Satisfies the Detailed Balance PrincipleJ. Quant. Spectrosc. Radiat. Transfer, 59(3–5), 245–257.
  82. Ma, Q., R. H. Tipping, G. Birnbaum, and C. Boulet (1998), Sum Rules and the Symmetry of the Memory Function in Spectral Line Shape TheoriesJ. Quant. Spectrosc. Radiat. Transfer, 59(3–5), 259–271.
  83. Ma, Q. and R. H. Tipping (1999), The averaged density matrix in the coordinate representation: Application to the calculation on the far-wing line shapes for CO2J. Chem. Phys., 111(13), 5909–5921.
  84. Margenau, H. (1933), Pressure Effects on Spectral Lines.II.Phys. Rev., 43, 129–134.
  85. Margenau, H. (1935), Theory of Pressure Effects of Foreign Gases on Spectral LinesRev. Mod. Phys., 48, 755–765.
  86. Margenau, H. and W. W. Watson (1936), Pressure Effects on Spectral LinesRev. Mod. Phys., 8, 22–53.
  87. Margenau, H. and R. Meyerott (1954), Quantum Theory of Line Broadening by an Ionic Plasma, Yale University.
  88. Margenau, H. and M. Lewis (1959), Structure of Spectral Lines from PlasmasRev. Mod. Phys., 31(3), 569–615.
  89. Marteau, P., C. Boulet, and D. Robert (1984), Finite duration of collisions and vibrational dephasing effects on the Ar broadened HF infrared line shapes: Asymmetric profilesJ. Chem. Phys., 80(8), 3632–3639.
  90. Maryott, A. A. and G. Birnbaum (1967), Line Shape and Collision Effects in the Microwave Wing of Far-Infrared Rotational LinesJ. Chem. Phys., 47(9), 3200–3205.
  91. Meyer, R., H. Mannstein, R. Meerkoetter, U. Schumann, and P. Wendling (2002), Regional radiative forcing by line-shaped contrails derived from satellite dataJ. Geophys. Res., 107(D10), doi:10.1029/2001JD000426.
  92. Minnis, P., U. Schumann, D. R. Doelling, K. M. Gierens, and D. W. Fahey (1999), Global distribution of contrail radiative forcingGeophys. Res. Lett., 26(13), 1853–1856.
  93. Mizushima, M. (1951), The Theory of Pressure Broadening and Its Application to Microwave SpectraPhys. Rev., 83(1), 94–102.
  94. Osborn, T. A., M. F. Kondrat'eva, G. C. Tabisz, and B. R. McQuarrie (1999), Mixed Weyl Symbol Calculus and Spectral Line Shape TheoryJ. Optical Soc. o. Am., 32, 4143–4169.
  95. Ouyang, X. and P. L. Varghese (1989), Reliable and efficient program for fitting Galatry and Voigt profiles to spectral data on multiple linesAppl. Opt., 28(8), 1538–1545.
  96. Ozanne, L., J.-P. Bouanich, R. Rodrigues, J.-M. Hartmann, G. Blanquet, and J. Walrand (1998), Diode-Laser Measurements of He- and N2- Broadening Coefficients and Line-Mixing Effects in the Q-Branch of the ν$_1−\nu$2 Band of CO2J. Quant. Spectrosc. Radiat. Transfer, 59(3–5), 337–344.
  97. Payne, V. H., J. S. Delamere, K. E. Cady-Pereira, R. R. Gamache, J.-L. Moncet, E. J. Mlawer, and S. A. Clough (2008), Air-Broadened Half-Widths of the 22- and 183-GHz Water-Vapor LinesIEEE T. Geosci. Remote, 46(11), 3601–3617, doi:10.1109/TGRS.2008.2002435.
  98. Peach, G. (1975), The Width of Spectral LinesContemp. Phys., 16(1), 17–34.
  99. Pickett, H. M. (1980), Effects of velocity averaging on the shapes of absorption linesJ. Chem. Phys., 73, 919–928, doi:10.1063/1.440145.
  100. Pickett, H. M., E. A. Cohen, and D. E. Brinza (1981), Pressure Broadening of Oxygen and its Implications for Cosmic Background MeasurementsAstrophys. J., 248, 49–51.
  101. Pieroni, D., N. Van-Thanh, C. Brodbeck, C. Claveau, A. Valentin, J. M. Hartmann, T. Gabard, J.-P. Champion, D. Bermejo, and J.-L. Domenech (1999), Experimental and theoretical study of line mixing in methane spectra. I. The N2-broadenend band at room temperaturJ. Chem. Phys., 110(16), 7717–7732.
  102. Pine, A. S. (1997), Line Mixing Sum Rules for the Analysis of Multiplet SpectraJ. Quant. Spectrosc. Radiat. Transfer, 57(2), 145–155.
  103. Priem, D., J.-M. Colmont, F. Rohart, G. Wlodarczak, and R. R. Gamache (2000), Relaxation and Lineshape of the 500.4.-GHz Line of Ozone Perturbed by N2 and O2J. Molec. Spectro., 204, 204–215.
  104. Puzzarini, C., L. Dore, and G. Cazzoli (2002), A Comparison of Lineshape Models in the Analysis of Modulated and Natural Rotational Line Profiles: Application to the Pressure Broadening of OCS and COJ. Molec. Spectro., 216, 428–436, doi:10.1029/jmsp.2002.8663.
  105. Rabitz, H. (1974), Rotation and Rotation-Vibration Pressure-Broadened Spectral Lineshapes, Princeton University.
  106. Rautian, S. G. (1111), Collision Anisotropy and Impact Contour of Spectral Lines, Institute of Automation and Electrometry.
  107. Robert, D., J. M. Thuet, J. Bonamy, and S. Temkin (1993), Effect of speed-changing collisions on spectral line shapePhys. Rev., 47(2), 771–773.
  108. Robert, D. and L. Bonamy (1998), Memory effects in speed-changing collisions and their consequences for spectral lineshape: I. Collision regimeThe European Physical Journal D, 2, 245–252.
  109. Rodgers, C. D. (1976), Collisional narrowing: its effect on the equivalent widths of spectral linesAppl. Opt., 15(3), 714–716.
  110. Roney, P. L. (1994), Theory of spectral line shape. II. Collision time theory and the line wingJ. Chem. Phys., 101(2), 1050–1060.
  111. Roney, P. L. (1994), Theory of spectral line shape. I. Formulation and line couplingJ. Chem. Phys., 101(2), 1037–1049.
  112. Rosenkranz, P. W. (1985), Pressure broadening of rotational bands. I. A statistical theoryJ. Chem. Phys., 83(12), 6139–6144.
  113. Rosenkranz, P. W. and D. H. Staelin (1988), Polarized thermal microwave emission from oxygen in the mesosphereRadio Sci., 23(5), 721–729.
  114. Rosenkranz, P. W. (1990), Oxygen Line Emission as a measure of Temperature in the Upper Stratosphere and Mesosphere, University of Maryland.
  115. Schmuecker, N., C. Trojan, T. Giesen, R. Schieder, K. M. T. Yamada, and G. Winnewisser (1997), Pressure Broadening and Shift of Some H2O Lines in the ν2 Band: RevisitedJ. Molec. Spectro., 184, 250–256.
  116. Schreier, F. (1992), The Voigt and complex error function: a comparison of computational methodsJ. Quant. Spectrosc. Radiat. Transfer, 48(5/6), 743–762.
  117. Schuller, F. (1998), Extended Impact Theory of Pressure Broadening of Spectral Lines for Van der Waals Interaction PotentialsJ. Quant. Spectrosc. Radiat. Transfer, 60(1), 43–51.
  118. Shippony, Z. and W. G. Read (2003), A highly accurate Voigt function algorithmJ. Quant. Spectrosc. Radiat. Transfer, 50(6), 635–646.
  119. Sinclair, P. M., J. W. Forsman, J. R. Drummond, and A. D. May (1993), Line mixing and state-to-state rotational relaxation rates in D2 determined from the Raman Q branchPhys. Rev., 48(4), 3030–3035.
  120. Smith, W. V. and R. Howard (1950), Microwave Collision Diameters II. Theory and Correlation with Molecular Quadrupole MomentsPhys. Rev., 79(1), 132–136.
  121. Smith, E. W. and M. Giraud (1979), Pressure broadening of the O2 microwave spectrumJ. Chem. Phys., 71(11), 4209–4217.
  122. Spiering, F. R., M. B. Kiseleva, N. N. Filippov, H. Naus, B. van Lieshout, C. Weijenborg, and W. J. van der Zande (2010), Line mixing and collision induced absorption in the oxygen A-band using cavity ring-down spectroscopyJ. Chem. Phys., 133(11), 114305, doi:10.1063/1.3460924.
  123. Strow, L. L., D. C. Tobin, and S. E. Hannon (1994), A Compilation of First-Order Line-Mixing Coefficient for CO2 Q-BranchesJ. Quant. Spectrosc. Radiat. Transfer, 52(3/4), 281–294.
  124. Strow, L. L., D. C. Tobin, W. W. McMillan, S. E. Hannon, W. L. Smith, H. E. Revercomb, and R. O. Knuteson (1998), Impact of a new Water Vapor Continuum and Line Shape Model on Observed High Resolution Infrared RadiancesJ. Quant. Spectrosc. Radiat. Transfer, 59(3–5), 303–317.
  125. Tennyson, J., P. F. Bernath, A. Campargue, A. G. Császár, L. Daumont, R. R. Gamache, J. T. Hodges, D. Lisak, O. V. Naumenko, L. S. Rothman, H. Tran, N. F. Zobov, J. Buldyreva, C. D. Boone, M. Domenica De Vizia, L. Gianfrani, J.-M. Hartmann, R. McPheat, D. Weidmann, J. Murray, N. Hoa Ngo, and O. L. Polyansky (2014), Recommended isolated-line profile for representing high-resolution spectroscopic transitions (IUPAC Technical Report)Pure Appl. Chem., 86(12), 1931–1943, doi:10.1515/pac-2014-0208.
  126. Thomas, M. E. and R. J. Nordstrom (1985), Line shape model for describing infrared absorption by water vaporAppl. Opt., 24(21), 3526–3530.
  127. Tinkham, M. and M. W. P. Strandberg (1955), Interaction of Molecular Oxygen with a Magnetic FieldPhys. Rev., 97(4), 951–966.
  128. Tinkham, M. and M. W. P. Strandberg (1955), Line Breadths in the Microwave Magnetic Resonance Spectrum of OxygenPhys. Rev., 99(2), 537–539.
  129. Tobin, D. C. (1996), Infrared Spectral Lineshapes of Water Vapor and Carbon Dioxid, University of Maryland, PhD Thesis.
  130. Van de Hulst, H. C. and J. J. M. Reesinck (1947), Line Breadths and Voigt ProfilesAstrophys. J., 106, 121–127.
  131. Van Vleck, J. H. (1945), On the Shape of Collision-Broadened LinesRev. Mod. Phys., 17(2–3), 227–236.
  132. Van Vleck, J. H. and H. Margenau (1949), Collision Theories of Pressure Broadening of Spectral LinesPhys. Rev., 76(8), 1211–1214.
  133. Varghese, P. L. and R. K. Hanson (1984), Collisional narrowing effects on spectral line shape measured at high resolutionAppl. Opt., 23(14), 2376–2385.
  134. Wells, R. J. (1999), Rapid approximation to the Voigt/Faddeeva function and its derivativesJ. Quant. Spectrosc. Radiat. Transfer, 62, 29–48.
  135. Wilson, J. and J. F. B. Hawkes (1987), Lasers, Principles and Applications, Newcastle upon Tyne Polytechnic.
  136. Wodkiewicz, K. and N. H. Cong (1111), Stochastic Model of Line Shapes, Warsaw University.
  137. Yamada, M. M., M. Kobayashi, H. Habara, T. Amano, and B. J. Drouin (2003), Submillimeter-wave measurements of the pressure broadening of BrOJ. Quant. Spectrosc. Radiat. Transfer, 83, 391–399.