Show tag cloud

Filter by author:
Filter by year:
Filter by bibtex key:
Filter by type:
Filter by keyword:
and
and
 

Filtered by keyword:spectroscopy

There is currently a filter applied. To see the complete list of publications, clear the filter.
  1. Althorpe, S. C. and D. C. Clary (1994), Calculation of the intermolecular bound states for water dimerJ. Chem. Phys., 101(5), 3603–3609.
  2. Amano, T. and E. Hirota (1974), Microwave Spectrum of the Molecular Oxygen in the Excited Vibrational StateJ. Molec. Struct., 53, 346–363.
  3. Arnold, F., J. Curtius, B. Sierau, V. Buerger, R. Busen, and U. Schumann (1999), Detection of massive negative chemiions in the exhause plume of a jet aircraft in flightGeophys. Res. Lett., 36(11), 1577–1580.
  4. Bacic, Z. and R. E. Miller (1996), Molecular Clusters: Structure and Dynamics of Weakly Bound SystemsJ. Chem. Phys., 1000, 12945–12959.
  5. Baker, E. A. M. and B. Walker (1982), Fabry-Perot interferometers for use at submillimetre wavelengthsJ. of Phys. E: Sci. Instrum., 15, 25–31.
  6. Baldecchi, M. G., B. Carli, M. Carlotti, G. Di Lonardo, F. Forni, F. Mencaraglia, and A. Trombetti (1984), High resolution molecular spectroscopy in the submillimetre regionInt. J. Inf. Millim. Waves, 5(3), 381–401.
  7. Ball, C. D., J. M. Dutta, M. M. Beaky, T. M. Goyette, and F. C. De Lucia (1999), Variable-temperature pressure broadening of H2S by O2 and N2J. Quant. Spectrosc. Radiat. Transfer, 61(6), 775–780, doi:10.1016/S0022-4073(98)00065-X.
  8. Battaglia, A., A. Gozzini, and G. Boudouris (1970), Experimental Study of Confocal Fabry-Perot Microwave Resonators, Insituto di Fisicia dell'Universita, Universite de Grenoble.
  9. Bennartz, R. and U. Lohmann (2001), Impact of improved near infrared water vapor line data on absorption of solar radiation in GCMsGeophys. Res. Lett., 28(24), 4591–4594.
  10. Beringer, R. and J. G. Castler Jr. (1951), Microwave Magnetic Resonance Spectrum of OxygenPhys. Rev., 81(1), 82–88.
  11. Birnbaum, G. (1967), Microwave Pressure Broadening and ITs Application to Intermolecular Forces, North American Aviation Science Center.
  12. Birnbaum, G. (1111), Collision Induced Spectroscopy: Absorption and Light Scattering, Gaithersburg MD, University of Texas at Austin, University of Manitoba.
  13. Blake, N. O. (1990), A quantum electrodynamical study of intermolecular line broadening and line shiftJ. Chem. Phys., 93(9), 6165–6183.
  14. Blake, G. A. (1111), Microwave and Terahertz SpectroscopyEncyclopedia of Chemical Physics and Physical Chemistry.
  15. Blanes, B. L. and G. E. Ewing (1976), Van der Waals MoleculeAnnu. Rev. Phys. Chem., 27, 553–586.
  16. Bleaney, B. (1947), The Radio-Frequency Spectroscopy of GasesRep. Prog. Phys., 12, 178–204.
  17. Boissoles, J., C. Boulet, R. H. Tipping, A. Brown, and Q. Ma (2003), Theoretical calculation of the translation-rotation collision-induced absorption in N2-N2, O2-O2, and N2-O2 pairsJ. Quant. Spectrosc. Radiat. Transfer, 82, 505–516.
  18. Braly, L. B., K. Liu, M. G. Brown, F. N. Keutsch, R. S. Fellers, and R. J. Saykally (2000), Terahertz laser spectroscopy of the wate dimer intermolecular vibrations. II. (H2O)2J. Chem. Phys., 112(23), 10314–10326.
  19. Brocks, G. and A van der Avoird (1985), Infrared spectra of the van der Waals molecule (N2)2Molecular Physics, 55(1), 11–32.
  20. Brown, L. R., C. B. Farmer, C. P. Rinsland, and R. A. Toth (1987), Molecular line parameters for the atmospheric trace molecule spectroscopy experimentAppl. Opt., 26(23), 5154–5182.
  21. Brown, L. R. and D. B. Peterson (1994), An Empirical Expression for Linewidths of Ammonia from Far-Infrared MeasurementsJ. Molec. Spectro., 168(2), 593–606, doi:10.1006/jmsp.1994.1305.
  22. Brown, L. R., M. R. Gunson, R. A. Toth, F. W. Irion, C. P. Rinsland, and A. Goldman (1996), 1995 Atmospheric Trace Molecule Spectroscopy (ATMOS) linelistAppl. Opt., 35(16), 2828–2848.
  23. Bryant, C. H., P. B. Davies, and T. J. Sears (1996), The N2 pressure broadening coefficient of the J = 1 ← 0 transition of 1H35Cl measured by tunable far infrared (TuFIR) spectroscopyGeophys. Res. Lett., 23(15), 1945–1947.
  24. Burkhalter, J. H., R. S. Anderson, W. V. Smith, and W. Gordy (1950), The Fine Structur of the Microwave Absorption Spectrum of OxygenPhys. Rev., 79(4), 651–655.
  25. Bussery, B. and P. E. S. Wormer (1993), A van der Waals intermolecular potential for (O2)2J. Chem. Phys., 99(2), 1230–1239.
  26. Carli, B. (19884), The high resolutions submillimetre spectrum of the stratosphereJ. Quant. Spectrosc. Radiat. Transfer, 32(5/6), 397–405.
  27. Carli, B. (1985), Spectroscopy: an ill-posed problemSPIE, 553, 90–96.
  28. Carli, B., M. Carlotti, F. Mencaraglia, and E. Rossi (1987), Far-infrared high-resolution Fourier transform spectrometerAppl. Opt., 26(18), 3818–3822.
  29. Chance, K., P. Denatale, M. Bellini, M. Inguscio, G. Dilonardo, and L. Fusina (1994), Pressure Broadening of the 2.4978-THz Rotational Lines of HO2 by N2 and O2J. Molec. Spectro., 163(1), 67–70, doi:10.1006/jmsp.1994.1007.
  30. Chance, K., K. W. Jucks, D. G. Johnson, and W. A. Traub (1994), The smithsonian astrophysical observatory database SAO92J. Quant. Spectrosc. Radiat. Transfer, 52(3/4), 447–457.
  31. Clarke, R. N. and C. B. Rosenberg (1982), Fabry-Perot and open resonators at micorwave and millimetre wave frequencies, 2–300 GHzJ. of Phys. E: Sci. Instrum., 15, 9–21.
  32. Colmont, J.-M., B. Bakri, F. Rohart, and G. Wlodarczak (2003), Experimental determination of pressure-broadening parameters of millimeter-wave transitions of HNO2 perturbed by N2 and O2, and of their temperature dependencesJ. Molec. Spectro., 220, 52–57.
  33. Colthup, N. B. (1987), Infrared SpectroscopyEncyclopedia of Physical Science and Technology, 6, 626–647.
  34. Cook, R. L. (1987), Molecular Microwave SpectroscopyEncyclopedia of Physical Science and Technology, 8, 496–531.
  35. Davies, R. W., R. H. Tipping, and S. A. Clough (1982), Dipole autocorrelation function for molecular pressure broadening: A quantum theory which satisfies the fluctuation-dissipation theoremPhys. Rev., 26(6).
  36. Delamere, J. S., S. A. Clough, V. H. Payne, E. J. Mlawer, D. D. Turner, and R. R. Gamache (2010), A far-infrared radiative closure study in the Arctic: Application to water vaporJ. Geophys. Res., 115, D17106, doi:10.1029/2009JD012968.
  37. de Pater, I. and S. T. Massie (1985), Models of the Millimeter-Centimeter Spectra of the Giant PlanetsIcarus, 62(1), 143–171, doi:10.1016/0019-1035(85)90177-0.
  38. Devaraj, K., P. G. Steffes, and B. M. Karpowicz (2011), Reconciling the centimeter- and millimeter-wavelength ammonia absorption spectra under jovian conditions: Extensive millimeter-wavelength measurements and a consistent modelIcarus, 212(1), 224–235, doi:10.1016/j.icarus.2010.12.010.
  39. Doicu, A., F. Schreier, and M. Hess (2004), Iterative regularization methods for atmospheric remote sensingJ. Quant. Spectrosc. Radiat. Transfer, 83, 47–61.
  40. Dumesh, B. S. and L. A. Surin (1996), Two highly sensitive microwave cavity spectrometersRev. Sci. Inst., 67(10), 3458–3465.
  41. Dunn, T. M. (1987), Molecular Optical SpectroscopyEncyclopedia of Physical Science and Technology, 8, 532–553.
  42. Dyke, T. R., K. M. Mack, and J. S. Muenter (1977), The structure of water dimer from molecular beam electric resonance spectroscopyJ. Chem. Phys., 66(2), 498–510.
  43. Fischer, J., R. R. Gamache, A. Goldman, L. S. Rothman, and A. Perrin (2003), Total internal partition sums for molecular species in the 2000 edition of the HITRAN databaseJ. Quant. Spectrosc. Radiat. Transfer, 82(1–4), 401–412, doi:10.1016/S0022-4073(03)00166-3.
  44. Fomin, B. A., T. A. Udalova, and E. A. Zhitnitskii (2004), Evolution of spectroscopic information over the last decade and its effect on line-by-line calculations for validation of radiation codes for climate modelsJ. Quant. Spectrosc. Radiat. Transfer, 86(1), 73–85.
  45. Frommhold, L. (1111), Collision-Induced Spectroscopy, University of Texas.
  46. Funke, B., G. P. Stiller, T. von Clarmann, G. Echle, and H. Fischer (1998), CO2 Line Mixing in MIPAS Limb Emission Spectra and its Influence on Retrieval of Atmospheric ParametersJ. Quant. Spectrosc. Radiat. Transfer, 59(3–5), 215–230.
  47. Gagliardi, G., G. Rusciano, and L. Gianfrani (2000), Narrow H218O lines and new absolute frequency references in the near-IRJ. Opt. A: Pure Appl. Opt., 2, 310–313.
  48. Gamache, R. R. and A. Goldman (2001), Einstein A coefficient, integrated band intensity, and population factors: application to the a1Δg – X3Σg- (0,0) O2 bandJ. Quant. Spectrosc. Radiat. Transfer, 69, 389–401.
  49. Gamache, R. R. and J. Fischer (2002), Half-widths of H216O, H218O, H217O, HD16O, and D216O: II. Comparison with measurementJ. Quant. Spectrosc. Radiat. Transfer.
  50. Gamache, Robert R., Anne L. Laraia, and Julien Lamouroux (2011), Half-widths, their temperature dependence, and line shifts for the HDO-CO2 collision system for applications to CO2-rich planetary atmospheresIcarus, 213(2), 720–730, doi:10.1016/j.icarus.2011.03.021.
  51. Gamache, R. R., B. Vispoel, M. Rey, A. Nikitin, V. Tyuterev, O. Egorov, I. E. Gordon, and V. Boudon (2021), Total internal partition sums for the HITRAN2020 databaseJ. Quant. Spectrosc. Radiat. Transfer, 271, 107713, doi:10.1016/j.jqsrt.2021.107713.
  52. Gamache, R. R., R. L. Hawkins, and L. S. Rothman (1990), Total Internal Partition Sums in the Temperature Range 70–3000 K: Atmospheric Linear MoleculesJ. Molec. Spectro., 142, 205–219.
  53. Gamache, R. R. and L. S. Rothman (1992), Extension of the HITRAN database to non-lite applicationsJ. Quant. Spectrosc. Radiat. Transfer, 48(5/6), 519–525.
  54. Gamache, R. R., F. R. Lynch, J. J. Plateaux, and A. Barbe (1997), Halfwidths and line shifts of water vapour broadened by CO2: measurements and complex Robert-Bonamy formalism calculationsJ. Quant. Spectrosc. Radiat. Transfer, 57(4), 485–496, doi:10.1016/S0022-4073(96)00148-3.
  55. Gebbie, H. A. (1991), Comment on: Water vapor continuum in the millimeter spectral regionJ. Chem. Phys., 95(2), 1427–1428.
  56. Goldman, A., M. T. Coffey, J. W. Hannigan, W. G. Mankin, K. V. Chance, and C. P. Rinsland (2003), HBr and HI line parameters update for atmospheric spectroscopy databasesJ. Quant. Spectrosc. Radiat. Transfer, 82, 313–317.
  57. Golubiatnikov, G. Y. and A. F. Krupnov (2003), Microwave study of the rotational spectrum of oxygen molecule in the range up to 1.12 THzJ. Molec. Spectro., 217, 282–287.
  58. Golubiatnikov, G. Y., M. A. Koshelev, and A. F. Krupnov (2003), Reinvestigation of pressure broadening parameters at 60-GHz band and single 118.75 GHz oxygen lines at room temperatureJ. Molec. Spectro., 222, 191–197.
  59. Gopalsami, N., A. C. Raptis, and J. Meier (2002), Millimeter-wave cavity ringdown spectroscopyRev. Sci. Inst., 73(2), 259–262.
  60. Gordon, I. E., S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, B. J. Drouin, J. M. Flaud, R. R. Gamache, J. T. Hodges, D. Jacquemart, V. I. Perevalov, A. Perrin, K. P. Shine, M. A. H. Smith, J. Tennyson, G. C. Toon, H. Tran, V. G. Tyuterev, A. Barbe, A. G. Császár, V. M. Devi, T. Furtenbacher, J. J. Harrison, J. M. Hartmann, A. Jolly, T. J. Johnson, T. Karman, I. Kleiner, A. A. Kyuberis, J. Loos, O. M. Lyulin, S. T. Massie, S. N. Mikhailenko, N. Moazzen-Ahmadi, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, O. L. Polyansky, M. Rey, M. Rotger, S. W. Sharpe, K. Sung, E. Starikova, S. A. Tashkun, J. Vander Auwera, G. Wagner, J. Wilzewski, P. Wcisło, S. Yu, and E. J. Zak (2017), The HITRAN2016 molecular spectroscopic databaseJ. Quant. Spectrosc. Radiat. Transfer, 203, 3–69, doi:10.1016/j.jqsrt.2017.06.038.
  61. Gordon, R. G. (1973), Correlation Functions for Molecular Motion, Harvard University.
  62. Gordy, W. (1948), Microwave SpectroscopyRev. Mod. Phys., 20(4), 668–717.
  63. Gordy, W. and R. L. Cook (1970), Microwave Molecular SpectraChemical Applications of Spectroscopy.
  64. Groenenboom, G. C., P. E. S. Wormer, A. van der Avoird, E. M. Mas, R. Bukowski, and K. Szalewicz (2000), Water pair potential of near spectroscopic accuracy. II. Vibration- rotation- tunneling levels of the water dimerJ. Chem. Phys., 113(16), 6702–6715.
  65. Gubner, J. A. (1994), A New Serie for Approximating Voigt FunctionsJ. of Phys. A: Math. Gen., 27(19), L745–L749.
  66. Han, Y., P. van Delst, and F. Weng (2010), An improved fast radiative transfer model for special sensor microwave imager/sounder upper atmosphere sounding channelsJ. Geophys. Res., 115, D15109, doi:10.1029/2010JD013878.
  67. Hansson, A. and J. K. G. Watson (2005), A comment on Hönl–London factorsJ. Molec. Struct., 233(2), 169–173, doi:10.1016/j.jms.2005.06.009.
  68. Hartmann, J.-M. and H. Tran G. C. Toon (2009), Influence of line mixing on the retrievals of atmospheric CO2 from spectra in the 1.6 and 2.1 μm regionsAtmos. Chem. Phys., 9(19), 7303–7312, doi:10.5194/acp-9-7303-2009.
  69. Harvey, J. N., J. O. Jung, and R. B. Gerber (1998), Ultraviolet spectroscopy of water clusters: Excited electronic states and absorption line shape of (H2O)n, n=2-6J. Chem. Phys., 109(20), 8747–8750.
  70. Hill, C., I. E. Gordon, L. S. Rothman, and J. Tennyson (2013), A new relational database structure and online interface for the HITRAN databaseJ. Quant. Spectrosc. Radiat. Transfer, 130, 51–61, doi:10.1016/j.jqsrt.2013.04.027.
  71. Hill, E. and J. H. Van Vleck (1928), On the Quantum Mechanics of the Rotational Distortion of Multiplet in Molecular SpectraPhys. Rev., 32, 250–272.
  72. Hinderling, J., M. W. Sigrist, and F. K. Kneubuehl (1987), Laser-photoacoustic spectroscopy of water-vapor continuum and line absorption in the 8 to 14 μm atmospheric windowInfrared Phys., 27(2), 63–120.
  73. Holstein, B. R. (2000), The van der Waals interaction, University of Massachusetts.
  74. Hoogeveen, R. W. M., R. J. van der A., and A. P. H. Goede (2001), Extended wavelength InGaAs infrared (1.0–2.4μm) detector arrays on SCIAMACHY for space-based spectroscopy of the Earth atmosphereInfrared Phys. & Tech., 42, 1–16.
  75. Howard, B. J. (1975), The Structur and Properties of van der Waals Molecules, University of Southampton.
  76. Husson, N., B. Bonnet, N. A. Scott, and A. Chedin (1992), Management and study of spectroscopic information: the GEISA programJ. Quant. Spectrosc. Radiat. Transfer, 48(5/6), 509–518.
  77. Husson, N., A. Chedin, and B. Bonne (1993), Review of existing spectral line data catalogs, In: High Spectral Resolution Infrared Remote Sensing for Earth's Weather and Climate Studies, pp. 443–457, Springer-Verlag.
  78. Husson, N., B. Bonnet, A. Chedin, N. A. Scott, A. A. Chursin, V. F. Golovko, and Vl. G. Tyuterev (1994), The GEISA data base in 1993: a PC/AT compatible computers' new versionJ. Quant. Spectrosc. Radiat. Transfer, 52(3/4), 425–438.
  79. Hutson, J. M. (1990), Atom-asymmetric top van der Waals complexes: Angular momentum coupling in AR-H2OJ. Chem. Phys., 92(1), 157–167.
  80. Jacquemart, D., A. Laraia, F. Kwabia Tchana, R. R. Gamache, A. Perrin, and N. Lacome (2010), Formaldehyde around 3.5 and 5.7-μm: Measurement and calculation of broadening coefficientsJ. Quant. Spectrosc. Radiat. Transfer, 111(9), 1209–1222, doi:10.1016/j.jqsrt.2010.02.004.
  81. Jacquinet-Husson, N., L. Crepeau, R. Armante, C. Boutammine, A. Chédin, N. A. Scott, C. Crevoisier, V. Capelle, C. Boone, N. Poulet-Crovisier, A. Barbe, A. Campargue, D. Chris Benner, Y. Benilan, B. Bézard, V. Boudon, L. R. Brown, L. H. Coudert, A. Coustenis, V. Dana, V. M. Devi, S. Fally, A. Fayt, J.-M. Flaud, A. Goldman, M. Herman, G. J. Harris, D. Jacquemart, A. Jolly, I. Kleiner, A. Kleinböhl, F. Kwabia-Tchana, N. Lavrentieva, N. Lacome, Li-Hong Xu, O. M. Lyulin, J.-Y. Mandin, A. Maki, S. Mikhailenko, C. E. Miller, T. Mishina, N. Moazzen-Ahmadi, H. S. P. Müller, A. Nikitin, J. Orphal, V. Perevalov, A. Perrin, D. T. Petkie, A. Predoi-Cross, C. P. Rinsland, J. J. Remedios, M. Rotger, M. A. H. Smith, K. Sung, S. Tashkun, J. Tennyson, R. A. Toth, A.-C. Vandaele, and J. Vander Auwera (2011), The 2009 edition of the GEISA spectroscopic databaseJ. Quant. Spectrosc. Radiat. Transfer, 112(15), 2395–2445, doi:10.1016/j.jqsrt.2011.06.004.
  82. Jacquinot, P. (1960), New Developments in Interference SpectroscopyRep. Prog. Phys., 23, 268–289.
  83. Jolie, J. and N. Stritt (2000), Neutrino Induced Doppler BroadeningJournal of Research of the National Institute of Standards and Technology, 105(1), 89–96.
  84. Kalmykov, Y. P. and S. V. Titov (1999), Dielectric relaxation and extended rotational diffusion of asymmetric top molecules with account of finite duration of collisionsJ. Molec. Struct., 479, 123–133.
  85. Karman, T., I.E. Gordon, A. van der Avoird, Y. I. Baranov, C. Boulet, B. J. Drouin, G. C. Groenenboom, M. Gustafsson, J.-M. Hartmann, R. L. Kurucz, L. S. Rothman, K. Sun, K. Sung, R. Thalman, H. Tran, E. H. Whishnow, R. Wordsworth, A. A. Vigasin, R. Volkamer, and W. J. van der Zande (in press 2019), Update of the HITRAN collision-induced absorption sectionIcarus, doi:10.1016/j.icarus.2019.02.034.
  86. Karpowicz, B. M. and P. G. Steffes (2011), In search of water vapor on Jupiter: Laboratory measurements of the microwave properties of water vapor under simulated jovian conditionsIcarus, 212(1), 210–223, doi:10.1016/j.icarus.2010.11.035.
  87. Kasuga, T., H. Kuze, and T. Shimizu (1978), Determinations of relaxation rate constants on the 22 GHz rotational transition of H2O by coherent transient spectroscopyJ. Chem. Phys., 69(11), 5195–5198.
  88. Kikuchi, K., Y. Fujii, and J. Inatani (2002), Simple FTS Measurement System for Submillimeter SIS MixerInt. J. Inf. Millim. Waves, 23(7), 1019–1027.
  89. King, W. C. and W. Gordy (1954), One-to-Two Millimeter Wave Spectroscopy. IV. Experimental Methody and Results for OCS, CH3F, and H2OPhys. Rev., 93(3), 407–412.
  90. Kissel, A., H.-D. Kronfeldt, B. Sumpf, Yu. N. Ponomarev, and B. A. Tikhomirov (2001), Line broadening and line shift of H2S absorption lines in the ν2 band – collisions with H2O and Ar in a three component mixtureJ. Quant. Spectrosc. Radiat. Transfer, 69(5), 573–583, doi:10.1016/S0022-4073(00)00102-3.
  91. Krupnov, A. F., M. Yu. Tretyakov, V. V. Parshin, V. N. Shanin, and S. E. Myasnikova (2000), Modern Millimeter-Wave Resonator Spectroscopy of Broad LinesJ. Molec. Spectro., 107–115, doi:10.1006/jmsp.2000.8104.
  92. Krupnov, A. F. (1996), Present state of submillimeterwave spectroscopy at the Nizhnii Novgorod LaboratorySpectrochimica Acta Part A, 52, 967–993.
  93. Krupnov, A. F., M. Y. Tretyakov, V. V. Parshin, V. N. Shanin, and M. I. Kirillov (1999), Precision Resonator Microwave Spectroscopy in Millimeter and Submillimeter RangeInt. J. Inf. Millim. Waves, 20, 1731–1737.
  94. Kuntz, M. (1997), A new implementation of the Humlicek algorithm for the calculation of the Voigt profile functionJ. Quant. Spectrosc. Radiat. Transfer, 57, 819–824.
  95. Lamb Jr., W. E. (1946), Theory of a Microwave SpectroscopePhys. Rev., 70(5–6), 308–317.
  96. Laraia, A. L., R. R. Gamache, J. Lamouroux, I. E. Gordon, and L. S. Rothman (2011), Total internal partition sums to support planetary remote sensingIcarus, 215(1), 391–400, doi:10.1016/j.icarus.2011.06.004.
  97. Lawson, J. D. (1970), Some Attributes of Real and Virtual PhotonsContemp. Phys., 11(6), 575–580.
  98. Learner, R. C. M. (1982), A simple (and unexpected) experimental law relating to the number of weak line in a complex spectrumJ. Phys. B.: A7. Mol. Phys, 24, L891–L895.
  99. Le Moal, M. F. and F. Severin (1986), N2 and H2 broadening parameters in the fundamental band of COJ. Quant. Spectrosc. Radiat. Transfer, 35(2), 145–152, doi:10.1016/0022-4073(86)90111-1.
  100. Lepere, M., A. Henry, A. Valentin, and C. Camy-Peyret (2001), Diode-Laser Spectroscopy: Line Profiles of CO2 in the Region of 1.39 μmJ. Molec. Struct., 208, 25–31.
  101. Li, J. S., K. Liu, W. J. Zhang, W. D. Chen, and X. M. Gao (2008), Self-, N2-, and O2-broadening coefficients for the 12C16O2 transitions near-IR measured by a diode laser photoacoustic spectrometerJ. Molec. Spectro., 252(1), 9–16, doi:10.1016/j.jms.2008.03.018.
  102. Liebe, H. J. and T. A. Dillon (1969), Accurate Foreign-Gas-Broadening Parameters of the 22-GHz H2O Line from Refraction SpectroscopyJ. Chem. Phys., 50(2), 727–732.
  103. Liebe, H. J., P. W. Rosenkranz, and G. A. Hufford (1992), Atmospheric 60 GHz oxygen spectrum: new laboratory measurements and line parametersJ. Quant. Spectrosc. Radiat. Transfer, 48(5/6), 629–643.
  104. Liebe, H. J., G. A. Hufford, and M. G. Cotton (1993), Propagation modeling of moist air and suspended water/ice particles at frequencies below 1000 GHz, In: AGARD 52nd Specialists' Meeting of the Electromagnetic Wave Propagation Panel, pp. 3-1–3-10.
  105. Lisak, D., A. Cygan, D. Bermejo, J. L. Domenech, J. T. Hodges, and H. Tran (2015), Application of the Hartmann-Tran profile to analysis of H2O spectraJ. Quant. Spectrosc. Radiat. Transfer, 164, 221–230, doi:10.1016/j.jqsrt.2015.06.012.
  106. Lynch, R., R. R. Gamache, and S. P. Neshyba (1998), Pressure Broadening of H2O in the (301) ← (000) Band: Effects of Angular Momentum and Close Intermolecular InteractionsJ. Quant. Spectrosc. Radiat. Transfer, 59(6), 615–626.
  107. Ma, Q. and R. H. Tipping (2002), The frequency detuning correction and the asymmetry of line shapes: The far wings of H2O-H2J. Chem. Phys., 116(10), 4102–4115.
  108. Ma, Q., R. H. Tipping, and R. R. Gamache (2010), Uncertainties associated with theoretically calculated N2-broadened half-widths of H2O linesMol. Phys., 108(17), 2225–2252, doi:10.1080/00268976.2010.505209.
  109. Ma, Q. and R. H. Tipping (1990), The atmospheric water continuum in the infrared: Extension of the statistical theory of RosenkranzJ. Chem. Phys., 93(10), 7066–7075.
  110. Ma, Q. and R. H. Tipping (1990), Water vapor continuum in the millimeter spectral regionJ. Chem. Phys., 93(3), 6127–6139.
  111. Ma, Q. and R. H. Tipping (1991), A far wing line shape theory and its application to the water continuum absorption in the infrared region.IJ. Chem. Phys., 95(9), 6290–6301.
  112. Ma, Q. and R. H. Tipping (1992), A far wing line shape theory and its application to the water vibrational bands IIJ. Chem. Phys., 96(12), 8655–8663.
  113. Ma, Q. and R. H. Tipping (1992), A far wing line shape theory and its application to the foreign-broadened water continuum absorption. IIIJ. Chem. Phys., 97(2), 818–828.
  114. Ma, Q. and R. H. Tipping (1994), The Detailed Balance Requirement and General Empirical Formalisms for Continuum AbsorptionJ. Quant. Spectrosc. Radiat. Transfer, 51(5), 751–757.
  115. Margottin-Maclou, M., P. Dahoo, A. Henry, A. Valentin, and L. Henry (1988), Self-, N2-, and O2-broadening parameters in the $\nu_3$ and $\nu_1$ + $\nu_3$ bands of 12C16O2J. Molec. Spectro., 131(1), 21–35, doi:10.1016/0022-2852(88)90102-6.
  116. Markov, V. N., Y. Xu, and W. Jaeger (1998), Microwave-submillimeter wave double-resonance spectrometer for the investigation of van der Waals complexesRev. Sci. Inst., 69(12), 4061–4067.
  117. Matsushima, F., H. Nagase, T. Nakauchi, H. Odashima, and K. Takagi (1999), Frequency Measurement of Pure Rotational Transitions of H217O and H218O from 0.5 to 5 THzJ. Molec. Spectro., 193, 217–223.
  118. McKellar, A. R. W. (1988), Infrared spectra of the (N2)2 and N2-Ar van der Waals moleculesJ. Chem. Phys., 88(7), 4190–4196.
  119. McKnight, J. S. and W. Gordy (1968), Measurement of the Submillimeter-Wave Rotational Transition of Oxygen at 424 kMc/secPhys. Rev. L, 21(27), 1787–1789.
  120. Mizushima, M. and R. M. Hill (1954), Microwave Spectrum of O2Phys. Rev., 93(4), 745–748.
  121. Mizushima, M., J. S. Wells, K. M. Evenson, and W. M. Welch (1972), Laser Magnetic Resonance of the O2 Molecule Using the 337-μm HCN LaserPhys. Rev., 29(13), 831–833.
  122. Mlawer, E. J., D. D. Turner, S. N. Paine, L. Palchetti, G. Bianchini, V. H. Payne, K. E. Cady-Pereira, R. L. Pernak, M. J. Alvarado, D. Gombos, J. S. Delamere, M. G. Mlynczak, and J. C. Mast (2019), Analysis of Water Vapor Absorption in the Far-Infrared and Submillimeter Regions Using Surface Radiometric Measurements From Extremely Dry LocationsJ. Geophys. Res.: Atm., 124(14), 8134–8160, doi:10.1029/2018JD029508.
  123. Mlawer, E. J., K. E. Cady-Pereira, J. Mascio, and I. E. Gordon (2023), The inclusion of the MT_CKD water vapor continuum model in the HITRAN molecular spectroscopic databaseJ. Quant. Spectrosc. Radiat. Transfer, 306, 108645, doi:10.1016/j.jqsrt.2023.108645.
  124. Odintsova, T. A., M. Y. Tretyakov, A. F. Krupnov, and C. Leforestier (2014), The water dimer millimeter-wave spectrum at ambient conditions: A simple model for practical applicationsJ. Quant. Spectrosc. Radiat. Transfer, 140(08), 75–80, doi:10.1016/j.jqsrt.2014.02.016.
  125. Oka, T. (1973), Collision-Induced Transitions between Rotational Levels, National Research Council of Canada.
  126. Palmer, I. J., W. B. Brown, and I. H. Hillier (1996), Simulation of the charge transfer absorption of the H2O/O2 van der Waals complex using high level ab initio calculationsJ. Chem. Phys., 104(9), 3198–3204.
  127. Park, J. H. (1984), Analysis and application of Fourier transform spectroscopy in atmospheric remote sensingAppl. Opt., 23(15), 2604–2613.
  128. Paul, J. B., L. Lapson, and J. G. Anderson (2001), Ultrasensitive absorption spectroscopy with a high-finesse optical cavity and off-axis alignmentAppl. Opt., 40(27), 4904–4910.
  129. Paul, J. B., C. P. Collier, R. J. Saykally, J. J. Scherer, and A. O'Keefe (1997), Direct Measurement of Water Cluster Concentrations by Infrared Cavity Ringdown Laser Absorption SpectroscopyJ. Chem. Phys., 101, 5211–5214.
  130. Payne, V. H., J. S. Delamere, K. E. Cady-Pereira, R. R. Gamache, J.-L. Moncet, E. J. Mlawer, and S. A. Clough (2008), Air-Broadened Half-Widths of the 22- and 183-GHz Water-Vapor LinesIEEE T. Geosci. Remote, 46(11), 3601–3617, doi:10.1109/TGRS.2008.2002435.
  131. Paynter, D. J. and V. Ramaswamy (2011), An assessment of recent water vapor continuum measurements upon longwave and shortwave radiative transferJ. Geophys. Res., 116, D20302, doi:10.1029/2010JD015505.
  132. Pickett, H. M. (1980), Effects of velocity averaging on the shapes of absorption linesJ. Chem. Phys., 73, 919–928, doi:10.1063/1.440145.
  133. Pickett, H.M., R. L. Poynter, E. A. Cohen, M. L. Delitsky, J. C. Pearson, and H. S. P. Müller (1998), Submillimeter, millimeter, and microwave spectral line catalogJ. Quant. Spectrosc. Radiat. Transfer, 60(5), 883–890, doi:10.1016/S0022-4073(98)00091-0.
  134. Pine, A. S. (1997), N2 and Ar Broadening and Line Mixing in the P and R Branches of the ν3 Band of CH4J. Quant. Spectrosc. Radiat. Transfer, 57(2), 157–176.
  135. Plass, G. N. (1956), The influence of the 15μ carbon-dioxide band on the atmospheric infra-red cooling rateQ. J. R. Meteorol. Soc., 82(353), 310–324, doi:10.1002/qj.49708235307.
  136. Polyansky, O. L., J. Tennyson, and N. F. Zobov (1999), Spectroscopy from first principles: a breaktrough in water line assignmentsSpectrochimica Acta Part A, 55, 659–693.
  137. Poynter, R. L. and H. M. Pickett (1985), Submillimeter, millimeter, and microwave spectral line catalogAppl. Opt., 24(14), 2235–2240.
  138. Predoi-Cross, A., C. Holladay, H. Heung, J.-P. Bouanich, G. Ch. Mellau, R. Keller, and D. R. Hurtmans (2008), Nitrogen-broadened lineshapes in the oxygen A-band: Experimental results and theoretical calculationsJ. Molec. Spectro., 251(1–2), 159–175, doi:10.1016/j.jms.2008.02.010.
  139. Predoi-Cross, A., K. Hambrook, R. Keller, C. Povey, I. Schofield, D. Hurtmans, H. Over, and G. Ch. Mellau (2008), Spectroscopic lineshape study of the self-perturbed oxygen A-bandJ. Molec. Spectro., 248(2), 85–110, doi:10.1016/j.jms.2007.11.007.
  140. Prigent, C., P. Abba, P. Encrenaz, and C. Guillou (1992), Transfert radiatif en ondes millimetrique pour la teledetction a vocation meteorologiqueL'Onde Electrique, 72(3), 47–53.
  141. Puliafito, E., R. Bevilacqua, J. Oliverio, and W. Degenhardt (1995), Retrieval error comparison for several inversion techniques used in limb-scanning millimeter-wave spectroscopyJ. Geophys. Res., 100(D7), 14,257–14,267.
  142. Rinsland, C. P., et al. (1998), Spectroscopic parameters for ozone and its isotopes: recent measurements, outstanding issus, and prospects for improvements to HITRANJ. Quant. Spectrosc. Radiat. Transfer.
  143. Roney, P. L. (1994), Theory of spectral line shape. II. Collision time theory and the line wingJ. Chem. Phys., 101(2), 1050–1060.
  144. Roney, P. L. (1994), Theory of spectral line shape. I. Formulation and line couplingJ. Chem. Phys., 101(2), 1037–1049.
  145. Rosenkranz, P. W. (1975), Shape of the 5 mm Oxygen Band in the AtmosphereIEEE Trans. Antennas Propag., AP-23(4), 498–506.
  146. Rosenkranz, P. W. (1985), Pressure broadening of rotational bands. I. A statistical theoryJ. Chem. Phys., 83(12), 6139–6144.
  147. Rosenkranz, P. W. (1987), Pressure broadening of rotational bands. II. Water vapor from 300 to 1100 cm-1J. Chem. Phys., 87(1), 163–170.
  148. Rosenkranz, P. W. (1988), Interference Coefficients For Overlapping Oxygen Lines In AirJ. Quant. Spectrosc. Radiat. Transfer, 39(4), 287–297.
  149. Rothman, L. S., et al. (2003), The HITRAN molecular spectroscopic database: edition of 2000 including updates through 2001J. Quant. Spectrosc. Radiat. Transfer, 82, 5–44.
  150. Rothman, L. S., N. Jacquinet-Husson, C. Boulet, and A. M. Perrin (2005), History and future of the molecular spectroscopic databasesComptes Rendus Phys., 6(8), 897–907, doi:10.1016/j.crhy.2005.09.001.
  151. Rothman, L. S., D. Jacquemart, A. Barbe, D. Chris Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian Jr., K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J.-M. Flaud, R. R. Gamache, A. Goldman, J.-M. Hartmann, K. W. Jucks, A. G. Maki, J.-Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner (2005), The HITRAN 2004 molecular spectroscopic databaseJ. Quant. Spectrosc. Radiat. Transfer, 96, 139–204, doi:10.1016/j.jqsrt.2004.10.008.
  152. Rothman, L. S., I. E. Gordon, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, V. Boudon, L. R. Brown, A. Campargue, J.-P. Champion, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, S. Fally, J.-M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. J. Lafferty, J.-Y. Mandin, S. T. Massie, S. N. Mikhailenko, C. E. Miller, N. Moazzen-Ahmadi, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, A. Predoi-Cross, C. P. Rinsland, M. Rotger, M. Simeckova, M. A. H. Smith, K. Sung, S. A. Tashkun, J. Tennyson, R. A. Toth, A. C. Vandaele, and J. Vander Auwera (2009), The HITRAN 2008 molecular spectroscopic databaseJ. Quant. Spectrosc. Radiat. Transfer, 110, 533–572, doi:10.1016/j.jqsrt.2009.02.013.
  153. Rothman, L. S., I. E. Gordon, R. J. Barber, H. Dothe R. R. Gamache, A. Goldman, V. I. Perevalov, S. A. Tashkun, and J. Tennyson (2010), HITEMP, the high-temperature molecular spectroscopic databaseJ. Quant. Spectrosc. Radiat. Transfer, 111, 2139–2150, doi:10.1016/j.jqsrt.2010.05.001.
  154. Rothman, L. S., I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner (2013), The HITRAN2012 molecular spectroscopic databaseJ. Quant. Spectrosc. Radiat. Transfer, 130, 4–50, doi:10.1016/j.jqsrt.2013.07.002.
  155. Rothman, L. S., R. R. Gamache, A. Goldman, L. R. Brown, R. A. Toth, H. M. Pickett, R. L. Poynter, J.-M. Flaud, C. Camy-Peyret, A. Barbe, N. Husson, C. P. Rinsland, and M. A. H. Smith (1987), The HITRAN database: 1986 editionAppl. Opt., 26(19), 4058–4097.
  156. Rothman, L. S., C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanasi (1998), The HITRAN Molecular Spectroscopic Database and HAWKS (HITRAN Atmospheric Workstation): 1996 editionJ. Quant. Spectrosc. Radiat. Transfer, 60, 665–710.
  157. Schlapp, R. (1937), Fine Structure in the 3-sigma Ground State of the Oxygen Molecule, and the Rotational Intensity Distribution in the Atmospheric Oxygen BandPhys. Rev., 51, 342–345.
  158. Schreier, F. (1992), The Voigt and complex error function: a comparison of computational methodsJ. Quant. Spectrosc. Radiat. Transfer, 48(5/6), 743–762.
  159. Schuller, F. (1998), Extended Impact Theory of Pressure Broadening of Spectral Lines for Van der Waals Interaction PotentialsJ. Quant. Spectrosc. Radiat. Transfer, 60(1), 43–51.
  160. Setzer, B. J. and H. M. Pickett (1977), Pressure broadening measurements of the 118.750 GHz oxygen transitionJ. Chem. Phys., 67(1), 340–343.
  161. Shephard, M. W., A. Goldman, S. A. Clough, and E. J. Mlawer (2003), Spectroscopic improvements providing evidence of formic acid in AERI-LBLRTM validation spectraJ. Quant. Spectrosc. Radiat. Transfer, 82, 383–390.
  162. Šimečková, M., D. Jacquemart, L. S. Rothman, R. R. Gamache, and A. Goldman (2006), Einstein A-coefficients and statistical weights for molecular absorption transitions in the HITRAN databaseJ. Quant. Spectrosc. Radiat. Transfer, 98, 130–155, doi:10.1016/j.jqsrt.2005.07.003.
  163. Steinbach, W. and W. Gordy (1973), Millimeter and Submillimeter Wave Spectrum of 18O2Phys. Rev., 8(4), 1753–1757.
  164. Stockmann, P. A., R. E. Bumgarner, S. Suzuki, and G. A. Blake (1992), Microwave and tunable far-infrared laser spectroscopy of the ammonia-water dimerJ. Chem. Phys., 96(4), 2496–2509.
  165. Stogryn, D. E. and J. O. Hirschfelder (1959), Contribution of Bound, Metastable, and Free Molecules to the Second Virial Coefficient and Some Properties of Double MoleculesJ. Chem. Phys., 31(6), 1531–1545.
  166. Strandberg, M. W. P., C. Y. Meng, and J. G. Ingersoll (1949), The Microwave Absorption Spectrum of OxygenPhys. Rev., 75(10), 1524–1528.
  167. Strow, L. L., S. Hannon, and W. W. McMillan (1996), The AIRS Forward Transmittance Model, University of Maryland Baltimore Country.
  168. Surin, L. A., B. S. Dumesh, F. Lewen, D. A. Roth, V. P. Kostromin, F. S. Rusin, G. Winnewisser, and I. Pak (2001), Millimeter-wave intracavity-jet OROTRON-spectrometer for investigation of van der Waals complexesRev. Sci. Inst., 72(6), 2535–2542.
  169. Tennyson, J., P. F. Bernath, A. Campargue, A. G. Császár, L. Daumont, R. R. Gamache, J. T. Hodges, D. Lisak, O. V. Naumenko, L. S. Rothman, H. Tran, N. F. Zobov, J. Buldyreva, C. D. Boone, M. Domenica De Vizia, L. Gianfrani, J.-M. Hartmann, R. McPheat, D. Weidmann, J. Murray, N. Hoa Ngo, and O. L. Polyansky (2014), Recommended isolated-line profile for representing high-resolution spectroscopic transitions (IUPAC Technical Report)Pure Appl. Chem., 86(12), 1931–1943, doi:10.1515/pac-2014-0208.
  170. Tennyson, J. (1111), Variational calculations of rotation-vibration spectra, University College London.
  171. Tinkham, M. and M. W. P. Strandberg (1955), Theory of the Fine Structure of the Molecular Oxygen Ground StatePhys. Rev., 97(4), 937–951.
  172. Tipping, R. H. and Q. Ma (1995), Theory of the water vapor continuum and validationsAtmos. Res., 36, 69–94.
  173. Tretyakov, M. Yu., V. V. Parshin, E. A. Myasnikova, M. A. Koshelev, and A. F. Krupnov (2001), Real Atmosphere Laboratory Measurements of the 118-GHz Oxygen Line: Shape, Shift, and Broadening of the LineJ. Molec. Spectro., 110–112, doi:10.1006/jmsp.2001.8363.
  174. Tretyakov, M. Y., G. Y. Golubiatnikov, V. V. Parshin, M. A. Koshelev, S. E. Myasnikova, A. F. Krupnov, and P. W. Rosenkranz (2004), Experimental study of the line mixing coefficient for 118.75 GHz oxygen lineJ. Molec. Spectro., 223, 31–38.
  175. Tretyakov, M. Y., M. A. Koshelev, E. A. Serov, V. V. Parshin, T. A. Odintsova, and G. M. Bubnov (2014), Water dimer and the atmospheric continuumPhys. Usp., 11(1), 1083–1098, doi:10.3367/UFNe.0184.201411c.1199.
  176. Tretyakov, M. Y. (2016), Spectroscopy underlying microwave remote sensing of atmospheric water vaporJ. Molec. Spectro., doi:10.1016/j.jms.2016.06.006.
  177. Tsao, C. J. and B. Curnutte (1961), Line-widths of pressure-broadened spectral linesJ. Quant. Spectrosc. Radiat. Transfer, 2, 41–91.
  178. van Exter, M., C. Fattinger, and D. Grischkowsky (1989), Terahertz time-domain spectroscopy of water vaporOptics Letters, 14(20), 1128–1130.
  179. Van Vleck, J. H. (1927), On Dielectric constants and magnetic susceptibilities in the new Quantum MechanicsPhys. Rev., 29, 727–744.
  180. Varanasi, P. (1975), Measurement of line widths of CO of planetary interest at low temperaturesJ. Quant. Spectrosc. Radiat. Transfer, 15(2), 191–196, doi:10.1016/0022-4073(75)90017-5.
  181. Vigasin, A. A. (1998), Mass-action law for highly excited dimersChem. Phys. Lett., 290, 495–501.
  182. Wada, A., H. Kanamori, and S. Iwata (1998), Ab initio MO studies of van der Waals molecule (N2)2: Potential energy surface and internal motionJ. Chem. Phys., 109(21), 9434–9438.
  183. Watson, J. K. G. (2008), Hönl–London factors for multiplet transitions in Hund's case a or bJ. Molec. Struct., 252(1), 5–8, doi:10.1016/j.jms.2008.04.014.
  184. Welch, W. M. and M. Mizushima (1972), Molecular Parameters of the O2 MoleculePhys. Rev., 5(6), 2692–2695.
  185. Wilheit, T. T. and A. H. Barrett (1970), Microwave Spectrum of Molecular OxygenPhys. Rev., 1(1), 213–215.
  186. Wormer, P. E. S. and A. van der Avoird (2000), Intermolecular Potentials, Internal Motions, and Spectra of van der Waals and Hydrogen-Bonded ComplexesChem. Rev., 100, 4109–4143.
  187. Zhu, Z., I. P. Matthews, and A. H. Samuel (1996), Quantitative measurement of analyte gases in a microwave spectrometer using a dynamic sampling methodRev. Sci. Inst., 67(7), 2496–2501.
  188. Zimmerer, P. W. and M. Mizushima (1961), Precise Measurements of the Microwave Absorption Frequencies of the Oxygen Molecule and the Velocity of LightPhys. Rev., 121(1), 152–155.
  189. Zou, Q. and P. Varanasi (2003), Laboratory measurements of the spectroscopic line parameters of water vapor in the 610–2100 and 3000–4050 cm-1 regions at lower-tropospheric temperaturesJ. Quant. Spectrosc. Radiat. Transfer.