| a-train | abs lookup | absorption | aerosols | aggregation | airs | albedo | algorithm | amsu | annual cycle | anomalies | aqua | ar4 | ar5 | arctic | arm | arts | arts-dev | asr | assimilation | astrophysics | atmosphere | atmospheric composition | atmospheric dynamics | atmospheric profiles | atsr-2 | avhrr | backscattering | basics | bayes | book | calculation | calculations | calibration | calipso | ccn | cdr | ceres | cfmip | chemistry | cia | ciraclim | cirrus | cirrus anvil sublimation | cirrus cloud | cirrus clouds | cirrusstudy | ciwsir/cloudice | claus | climate | climate change | climate dynamics | climate feedbacks | climate sensitivity | climate sensivity | climate variability | climatology | cloud feedback | cloud forcing | cloud fraction | cloud ice | cloud properties | cloud radiative effects | cloud radiative forcing | cloud regimes | clouds | cloudsat | cmip3 | cmip5 | cmip6 | cmsaf | co2 | collocation | comparison | computer science | continua | contrail | convection | convective clouds | convective processes | convective self-aggregation | correlated k | cosmic background | cosmic rays | cosp | cross-calibration | cth | cumulus | dardar | data bases | dda | deep convection | delta m | dimer | disort | diurnal cycle | dmsp | documentation | droplet size | dynamics | earth | earthcare | echam | ecmwf | effective radius | electromagnetism | electron content | elevation | elevation satellite-2 | emd | emissivity | enso | eof-pca-svd | erbe | error assessment | ers | eruption | esa planetary | exoplanets | extraterrestrial | fall speed | far-infrared | faraday-voigt | fcdr | feedback | feedbacks | fingerprinting | flux uav | forcing | forest fire | fox19_airborne_amt.pdf | friend | fun | gcm | genesis | geostationary | gerrit_erca | global warming | gnss | goes | gps | gras | graupel | greenhouse effect | groundbased | hadley circulation | hail | heating rate | heating rates | herschel | hiatus | hirs | history | hsb | humidity | hydrological sensitivity | hydrological sensivity | iasi | ice | ice clouds | ice crystal growth | ice nucleation | ice water | icesat-2 | ici | icon | icz | in situ | infrared | instruments | intercalibration | intercomparison | interference | inverse modelling | ipcc | ir/vis | iris | isccp | ismar | isotopes | itcz | iwc | iwp | iwv | jupiter | kessler scheme | lblrtm | lidar | limb effect | limb sounding | limb-correction | linemixing | lineshape | liquid water | liquid water path | longwave radiation | low-cloud feedback | magnetic field | magnetism | mars | mas | mass-dimension relation | masters thesis | math | megha-tropiques | mendrok | mesoscale organization | meteorology | meteosat | metop | mhs | microphysics | microwave | mipas | mirs | misr | mixed phase | mls | model | modeling | models | modis | monte carlo | mspps | msu | mth | multi-moment scheme | multisensor | mwhs | mwi | net radiation | neural network | nicam | nlte | noaa | nonsphericity | npoess | observation | ocean | ocean reflection | ocean-atmosphere interactions | odin | olr | one-moment scheme | open loop | optical | optical depth | optical properties | optics | orbital drift | orbits | ozone | pacific ocean | particle orientation | particle shape | particle size | particle size distribution | patmos-x | phase function | phd thesis | polarimetry | polarization | polder | potss | precipitation | profile datasets | programming | projection | promet | propagation modeling | python | radar | radiation | radiation profiles | radiative convective equilibrium | radiative equilibrium | radiative feedback | radiative fluxes | radiative forcing | radiative processes | radiative transfer | radiative-convective equilibrium | radiative-equilibrium | radio occultation | radiometers | radiosonde | radiosonde cloud liquid | radiosonde correction | rain | reanalysis | refractive index | relative humidity | remote sensing | retrieval | review | rodgers | rttov | sahara | sahel | sampling | sand/dust | sar | satellite | satellite missions | satellite observations | satellite simulator | sbuehler_habil | scattering | scattering databases | scintillations | scout-amma | self-aggregation | sensor geometry | seviri | shallow convection | simulated annealing | single scattering | smiles | sno | snow | snowfall | software | soil | solar | soot | sounders | spectral information | spectroscopy | split window technique | ssm/i | ssm/t | ssmis | ssmt2 | stability | statistics | ste | stereo | stratosphere | submillimeter | submm | sun | supersaturation | surface | synergies | task2 | tempera | temperature | terra | thermodynamics | time series | titan | toa radiation | top of the atmosphere | total column | tovs | trade-wind clouds | trajectory analysis | trend | trmm | tropical circulation | tropical convection | tropical meteorology | tropics | tropopause | troposphere | ttl | turbulence | tutorial | two-moment scheme | upper troposphere | uth | utls | validation | vater vapor | venus | visualization | volcanic ash | walker circulation | walker rirculation | water | water cycle | water dimer | water vapor | water vapor continuum | water vapour | water vapour path | water-vapour | wind | zeeman |

Hide tag cloud

Filter by author:
Filter by year:
Filter by bibtex key:
Filter by type:
Filter by keyword:
and
and
 

Filtered by keyword:optical properties

There is currently a filter applied. To see the complete list of publications, clear the filter.
  1. Anderson, C. M. and R. E. Samuelson (2011), Titan's aerosol and stratospheric ice opacities between 18 and 500 μm: vertical and spectral characteristics from Cassini CIRSIcarus, 212, 762–778, doi:10.1016/j.icarus.2011.01.024.
  2. Baran, A. J., S. Havemann, P. N. Francis, and P. D. Watts (2003), A consistent set of single-scattering properties for cirrus cloud: tests using radiance measurements from a dual-viewing multi-wavelength satellite-based instrumentJ. Quant. Spectrosc. Radiat. Transfer, 79–80, 549–567.
  3. Baran, A. J. (2003), Simulation of infrared scattering from ice aggregates using a size/shape distribution of ice cylindersAppl. Opt., 42, 2811–2818.
  4. Baran, A. J. (2005), The dependence of cirrus infrared radiative properties in ice crystal geometry and shape of the size-distribution functionQ. J. R. Meteorol. Soc., 131, 1129–1142.
  5. Baran, A. J. (2009), A review of the light scattering properties of cirrusJ. Quant. Spectrosc. Radiat. Transfer, 110, 1239–1260, doi:10.1016/j.jqsrt.2009.02.026.
  6. Baum, B. A., P. Yang, A. J. Heymsfield, C. G. Schmitt, Y. Xie, A. Bansemer, Y. X. Hu, and Z. Zhang (2011), Improvements in Shortwave Bulk Scattering and Absorption Models for the Remote Sensing of Ice CloudsJ. Appl. Meteorol. Clim., 50, 1037–1056, doi:10.1175/2010JAMC2608.1.
  7. Cairo, F., G. D. Donfrancesco, M. Snels, F. Fierli, M. Viterbini, S. Borrmann, and W. Frey (2010), A comparison of light backscattering and particle size distribution measurements in tropical cirrus cloudsAtmos. Meas. Tech. Discuss., 3, 4059–4089, doi:10.5194/amtd-3-4059-2010.
  8. Edwards, J. M., S. Havemann, J.-C. Telen, and A. J. Baran (2007), A new parametrization for the radiative properties of ice crystals: Comparison with existing schemes and impact in a GCMAtmos. Res., 83, 19–35, doi:10.1016/j.atmosres.2006.03.002.
  9. Galligani, V. S., C. Prigent, E. Defer, C. Jimenez, and P. Eriksson (2013), The impact of the melting layer on the passive microwave cloud scattering signal observed from satellites: A study using TRMM microwave passive and active measurementsJ. Geophys. Res., 118(11), 5667–5678, doi:10.1002/jgrd.50431.
  10. Hess, M., P. Koepke, and I. Schult (1998), Optical Properties of Aerosols and Clouds: The software package OPACBull. Amer. Met. Soc., 79(5), 831–844.
  11. Hong, G. (2007), Parameterization of scattering and absorption properties of nonspherical ice crystals at microwave frequenciesJ. Geophys. Res., 112, D11208, doi:10.1029/2006JD008364.
  12. Hong, G. (2007), Radar backscattering properties of nonspherical ice crystals at 94 GHzGeophys. Res. Lett., 112, D22203, doi:10.1029/2007JD008839.
  13. Hong, G., P. Yang, F. Weng, and Q. Liu (2008), Microwave scattering properties of sand particles: Application to the simulation of microwave radiances over sandstormsJ. Quant. Spectrosc. Radiat. Transfer, 109(4), 684–702, doi:10.1016/j.jqsrt.2007.08.018.
  14. Kim, M.-J., M. S. Kulie, C. O'Dell, and R. Bennartz (2007), Scattering of Ice Particles at Microwave Frequencies: A Physically Based ParameterizationJ. Appl. Meteorol. Clim., 46(5), 615–633, doi:10.1175/JAM2483.1.
  15. Korablev, O., V. I. Moroz, E. V. Petrova, and A. V. Rodin (2005), Optical properties of dust and the opacity of the Martian atmosphereAdv. Space. Res., 35(1), 21–30, doi:10.1016/j.asr.2003.04.061.
  16. Kristjánsson, J. E., J. M. Edwards, and D. L. Mitchell (2000), Impact of a new scheme for optical properties of ice crystals on climates of two GCMsJ. Geophys. Res., 105(D8), 10063–10079, doi:10.1029/2000JD900015.
  17. Kulie, M. S., R. Bennartz, T. J. Greenwald, Y. Chen, and F. Weng (2010), Uncertainties in Microwave Properties of Frozen Precipitation: Implications for Remote Sensing and Data AssimilationJ. Atmos. Sci., 67(11), 3471–3487.
  18. Liu, G. (2008), A Database of Microwave Single-Scattering Properties for Nonspherical Ice ParticlesBull. Amer. Met. Soc., 89(10), 1563–1570, doi:10.1175/2008BAMS2486.1.
  19. Macke, A., P. N. Francis, G. M. McFarquhar, and S. Kinne (1998), The Role of Ice Particle Shapes and Size Distributions in the Single Scattering Properties of Cirrus CloudsJ. Atmos. Sci., 55(17), 2874–2883, doi:10.1175/1520-0469(1998)055<2874:TROIPS>2.0.CO;2.
  20. Mishchenko, M. I. and L. D. Travis (1998), Capabilities and limitations of a current FORTRAN implementation of the T-matrix method for randomly oriented rotationally symmetric scatterersJ. Quant. Spectrosc. Radiat. Transfer, 60(3), 309–324, doi:10.1016/S0022-4073(98)00008-9.
  21. Mitchell, D. L., R. P. Lawson, and B. Baker (2011), Understanding effective diameter and its application to terrestrial radiation in ice cloudsAtmos. Chem. Phys., 11, doi:10.5194/acp-11-3417-2011.
  22. Petty, G. W. and W. Huang (2010), Microwave Backscatter and Extinction by Soft Ice Spheres and Complex Snow AggregatesJ. Atmos. Sci., 67, 769–787, doi:10.1175/2009JAS3146.1.
  23. Platt, C. M. R. (1979), Remote Sounding of High Clouds: I. Calculation of Visible and Infrared Optical Properties from Lidar and Radiometer MeasurementsJ. Appl. Meteorol., 18, 1130–1143.
  24. van de Hulst, H. C. (1981), Light Scattering by Small Particles, Dover Publications.
  25. Warren, S. G. and R. E. Brandt (2008), Optical constants of ice from the ultraviolet to the microwave: A revised compilationJ. Geophys. Res., 113, D14220, doi:10.1029/2007JD009744.
  26. Wiscombe, W. J. (1977), The Delta-M Method: Rapid Yet Accurate Radiative Flux Calculations for Strongly Asymmetric Phase FunctionsJ. Atmos. Sci., 34, 1408–1422.
  27. Xie, Y., P. Yang, G. W. Kattawar, B. A. Baum, and Y. Hu (2011), Simulation of the optical properties of plate aggregates for application to the remote sensing of cirrus cloudsAppl. Opt., 50(8), 1065–1081, doi:10.1364/AO.50.001065.
  28. Yang, P., K. N. Liou, K. Wyser, and D. Mitchell (2000), Parameterization of the scattering and absorption properties of individual ice crystalsJ. Geophys. Res., 105(D4), 4699–4718.
  29. Yang, P., B.-C. Gao, B. A. Baum, Y. X. Hu, W. J. Wiscombe, S.-C. Tsay, D. M. Winker, and S. L. Nasiri (2001), Radiative properties of cirrus clouds in the infrared (8–13μm) spectral regionJ. Quant. Spectrosc. Radiat. Transfer, 70, 473–504.
  30. Yang, R. and Z. Wu (2002), MMW-Band Backscattering Cross Sections from Typical Clouds over Xi'AnInt. J. Inf. Millim. Waves, 23(1), 177–185.
  31. Yang, P., H. Wei, H.-L. Huang, B. A. Baum, Y. X. Hu, G. W. Kattawar, M. I. Mishchenko, and Q. Fu (2005), Scattering and absorption property database for nonspherical ice particles in the near- through far-infrared spectral regionAppl. Opt., 44(26), 5512–5523, doi:10.1364/AO.44.005512.
  32. Yang, P. and K. N. Liou (1998), Single-Scattering Properties of Complex Ice Crystals in Terrestrial AtmosphereContr. Atmos. Phys., 71(2), 223–248.
  33. Zhang, Z., P. Yang, G. Kattawar, J. Riedi, L. C. Labonnote, B. A. Baum, S. Platnick, and H. L. Huang (2009), Influence of ice particle model on satellite ice cloud retrieval: lessons learned from MODIS and POLDER cloud product comparisonAtmos. Chem. Phys., 9, 7115–7129, doi:10.5194/acp-9-7115-2009.