| a-train | abs lookup | absorption | aerosols | aggregation | airs | albedo | algorithm | amsu | annual cycle | anomalies | aqua | ar4 | ar5 | arctic | arm | arts | arts-dev | asr | assimilation | astrophysics | atmosphere | atmospheric composition | atmospheric dynamics | atmospheric profiles | atsr-2 | avhrr | backscattering | basics | bayes | book | calculation | calculations | calibration | calipso | ccn | cdr | ceres | cfmip | chemistry | cia | ciraclim | cirrus | cirrus anvil sublimation | cirrus cloud | cirrus clouds | cirrusstudy | ciwsir/cloudice | claus | climate | climate change | climate dynamics | climate feedbacks | climate sensitivity | climate sensivity | climate variability | climatology | cloud feedback | cloud forcing | cloud fraction | cloud ice | cloud properties | cloud radiative effects | cloud radiative forcing | cloud regimes | clouds | cloudsat | cmip3 | cmip5 | cmip6 | cmsaf | co2 | collocation | comparison | computer science | continua | contrail | convection | convective clouds | convective processes | convective self-aggregation | correlated k | cosmic background | cosmic rays | cosp | cross-calibration | cth | cumulus | dardar | data bases | dda | deep convection | delta m | dimer | disort | diurnal cycle | dmsp | documentation | droplet size | dynamics | earth | earthcare | echam | ecmwf | effective radius | electromagnetism | electron content | elevation | elevation satellite-2 | emd | emissivity | enso | eof-pca-svd | erbe | error assessment | ers | eruption | esa planetary | exoplanets | extraterrestrial | fall speed | far-infrared | faraday-voigt | fcdr | feedback | feedbacks | fingerprinting | flux uav | forcing | forest fire | fox19_airborne_amt.pdf | friend | fun | gcm | genesis | geostationary | gerrit_erca | global warming | gnss | goes | gps | gras | graupel | greenhouse effect | groundbased | hadley circulation | hail | heating rate | heating rates | herschel | hiatus | hirs | history | hsb | humidity | hydrological sensitivity | hydrological sensivity | iasi | ice | ice clouds | ice crystal growth | ice nucleation | ice water | icesat-2 | ici | icon | icz | in situ | infrared | instruments | intercalibration | intercomparison | interference | inverse modelling | ipcc | ir/vis | iris | isccp | ismar | isotopes | itcz | iwc | iwp | iwv | jupiter | kessler scheme | lblrtm | lidar | limb effect | limb sounding | limb-correction | linemixing | lineshape | liquid water | liquid water path | longwave radiation | low-cloud feedback | magnetic field | magnetism | mars | mas | mass-dimension relation | masters thesis | math | megha-tropiques | mendrok | mesoscale organization | meteorology | meteosat | metop | mhs | microphysics | microwave | mipas | mirs | misr | mixed phase | mls | model | modeling | models | modis | monte carlo | mspps | msu | mth | multi-moment scheme | multisensor | mwhs | mwi | net radiation | neural network | nicam | nlte | noaa | nonsphericity | npoess | observation | ocean | ocean reflection | ocean-atmosphere interactions | odin | olr | one-moment scheme | open loop | optical | optical depth | optical properties | optics | orbital drift | orbits | ozone | pacific ocean | particle orientation | particle shape | particle size | particle size distribution | patmos-x | phase function | phd thesis | polarimetry | polarization | polder | potss | precipitation | profile datasets | programming | projection | promet | propagation modeling | python | radar | radiation | radiation profiles | radiative convective equilibrium | radiative equilibrium | radiative feedback | radiative fluxes | radiative forcing | radiative processes | radiative transfer | radiative-convective equilibrium | radiative-equilibrium | radio occultation | radiometers | radiosonde | radiosonde cloud liquid | radiosonde correction | rain | reanalysis | refractive index | relative humidity | remote sensing | retrieval | review | rodgers | rttov | sahara | sahel | sampling | sand/dust | sar | satellite | satellite missions | satellite observations | satellite simulator | sbuehler_habil | scattering | scattering databases | scintillations | scout-amma | self-aggregation | sensor geometry | seviri | shallow convection | simulated annealing | single scattering | smiles | sno | snow | snowfall | software | soil | solar | soot | sounders | spectral information | spectroscopy | split window technique | ssm/i | ssm/t | ssmis | ssmt2 | stability | statistics | ste | stereo | stratosphere | submillimeter | submm | sun | supersaturation | surface | synergies | task2 | tempera | temperature | terra | thermodynamics | time series | titan | toa radiation | top of the atmosphere | total column | tovs | trade-wind clouds | trajectory analysis | trend | trmm | tropical circulation | tropical convection | tropical meteorology | tropics | tropopause | troposphere | ttl | turbulence | tutorial | two-moment scheme | upper troposphere | uth | utls | validation | vater vapor | venus | visualization | volcanic ash | walker circulation | walker rirculation | water | water cycle | water dimer | water vapor | water vapor continuum | water vapour | water vapour path | water-vapour | wind | zeeman |

Hide tag cloud

Filter by author:
Filter by year:
Filter by bibtex key:
Filter by type:
Filter by keyword:
and
and
 

Filtered by keyword:surface

There is currently a filter applied. To see the complete list of publications, clear the filter.
  1. Aires, F., C. Prigent, F. Bernando, C. Jiménez, R. Saunders, and P. Brunel (2011), A tool to estimate land-surface emissivities at microwave frequencies (TELSEM) for use in numerical weather predictionQ. J. R. Meteorol. Soc., 137, 690–699, doi:10.1002/qj.803.
  2. Allan, R. P., K. P. Shine, A. Slingo, and J. A. Pamment (1998), The Dependence of clear-sky Outgoing Longwave Radiation on Surface Temperature and Relative HumidityQ. J. R. Meteorol. Soc., 999, 1–22.
  3. Amante, C. and B.W. Eakins (2009), ETOPO1 1 arc-minute global relief model: procedures, data sources and analysis, NOAA NESDIS NGDC.
  4. Astin, I. (1997), A survey of studies into errors in large scale space-time averages of rainfall, cloud cover, sea surface processes and the earth's radiation budget as derived from low earth orbit satellite instruments because of their incomplete temporal and spatial coverageSur. Geophy., 18, 384–403.
  5. Baldwin, M. P., et al. (2001), The Quasi-Biennial OscillationRev. Geophys., 39(2), 179–229.
  6. Balling Jr., R. C. and R. S. Cerveny (2003), Analysis of radiosonde-based lapse rates and the difference between near-surface and satellite-based lower-tropospheric air temperatures over the central United StatesGeophys. Res. Lett., 30(7), doi:10.1029/2002GL0106693.
  7. Bennartz, R. (1999), On the Use of SSM/I Measurements in Coastal RegionsJ. Atmos. Oceanic Technol., 16(4), 417–431.
  8. Bhat, G. S. (2003), Some salient features of the atmosphere observed over the north Bay of Bengal during BOMBMEXProc. Indian Acad. Sci., 112(2), 131–146.
  9. Cruz-Pol, S. L. and C. S. Ruf (2000), A Modified Model for Specular Sea Surface Emissivity at Microwave FrequenciesIEEE T. Geosci. Remote, 38(2), 858–869.
  10. Fily, M., A. Royer, K. Goita, and C. Pringent (2003), A simple retrieval method for land surface temperature and fraction of water surface determination from satellite microwave brightness temperature in sub-arctic areasRem. Sen. Env., 5832, 1–11.
  11. Francis, J., A. Schweiger, and J. Key (2003), A 20-Year Dataset of Downwelling Longwave Flux at the Arctic Surface from TOVS Satellite Data, Rutgers University, University of Washington, National Environmental Satellite, Data, and Information Service, Thirteenth ARM Science Team Meeting Proceedings.
  12. Fu, R., A. D. Del Genio, W. B. Rossow, and W. T. Liu (1992), Cirrus-cloud thermostat for tropical sea surface temperatures tested using satellite dataNature, 358, 394–397.
  13. Fuhrhop, R. (1997), MWMOD User Manual, Institute fuer Meereskunde.
  14. Hahn, C. J., W. B. Rossow, and S. G. Warren (2001), ISCCP Cloud Properties Associated with Standard Cloud Types Identified in Individual Surface ObservationsJ. Climate, 14, 11–28.
  15. Haller, M. and P. Catalán (2010), Detecting breaking ocean waves through microwave scatteringSPIE News, 1–3, doi:10.1117/2.1201006.003015.
  16. Han, Q.-Y., W. B. Rossow, J. Chou, K.-S. Kuo, and R. M. Welch (1999), The effects of aspect ratio and surface roughness on satellite retrievals of ice-cloud propertiesJ. Quant. Spectrosc. Radiat. Transfer, 63, 559–583.
  17. Hewison, T. (2002), Analysis of emissivity data from POLEX: Initial results and Development of FASTEM for Arctic Surfaces, Met Office.
  18. Inamdar, A. K. and V. Ramanathan (1998), Tropical and global scale interactions among water vapor, atmospheric greenhouse effect, and surface temperatureJ. Geophys. Res., 103(D24), 32,177–32,194.
  19. King, M. D., W. P. Menzel, P. S. Grant, J. S. Myers, G. T. Arnold, S. E. Platnick, L. E. Gumley, S.-C. Tsay, C. C. Moeller, M. Fitzgerald, K. S. Brown, and F. G. Osterwisch (1996), Airborne Scanning Spectormeter for Remote Sensong of Cloud, Aerosol, Water Vapor, and Surface PropertiesJ. Atmos. Oceanic Technol., 13(4), 777–794.
  20. Kistler, R., et al. (2001), The NCEP-NCAR 50-Year Reanalysis: Monthly means CD-ROM and DocumentationBull. Amer. Met. Soc., 82(2), 247–268.
  21. Kleidon, A. and M. Renner (2013), A simple explanation for the sensitivity of the hydrologic cycle to surface temperature and solar radiation and its implications for global climate changeEarth Syst. Dynamics, 4, 455–465, doi:10.5194/esd-4-455-2013.
  22. Klein, S. A., B. J. Soden, and N.-C. Lau (1999), Remote Sea Surface Temperature Variations during ENSO: Evidence for a Tropical Atmospheric BridgeJ. Climate, 12, 917–932.
  23. Knox, R. S. (1999), Physical aspects of the greenhouse effect and global warmingAm. J. Phys., 67(12), 1227–1238.
  24. Lau, K.-M., J. H. Kim, and Y. Sud (1996), Intercomparison of Hydrologic Processes in AMIP GCMsBull. Amer. Met. Soc., 77(10), 2209–2227.
  25. Mace, G. G., T. P. Ackerman, P. Minnis, and D. F. Young (1998), Cirrus Layer Microphysical Properties Derived From Surface-Based Millimeter Radar and Infrared Interferometer DataJ. Geophys. Res., 103, 23207–23216.
  26. Mann, M. E., R. S. Bradley, and M. K. Hughes (1998), Global-scale temperature patterns and climate forcing over the past six centuriesNature, 392, 779–787.
  27. Mason, P. J. and D. J. Thomson (1111), Boundary Layers, xxxx.
  28. Mo, L., K. F. Tsang, E. K. N. Yung, R. S. Chen, and D. G. Fang (2002), Millimeter Wave Scattering of 2-D Frequency Selective Surface by Efficient Method of Lines with Preconditioned CG TechniqueInt. J. Inf. Millim. Waves, 23(10), 1529–1543.
  29. O'Carroll, A. G., J. R. Eyre, and R. W. Saunders (2008), Three-Way Error Analysis between AATSR, AMSR-E, and In Situ Sea Surface Temperature ObservationsJ. Atmos. Oceanic Technol., 25(7), 1197–1207, doi:10.1175/2007JTECHO542.1.
  30. Prigent, C., E. Jaumouillé, F. Chevallier, and F. Aires (2008), A Parameterization of the Microwave Land Surface Emissivity Between 19 and 100 GHz, Anchored to Satellite-Derived EstimatesIEEE Geosci. Remote Sens., 46, 1–9, doi:10.1109/TGRS.2007.908881.
  31. Prigent, C., F. Aires, D. Wang, S. Fox, and C. Harlow (2016), Sea-surface emissivity parametrization from microwaves to millimetre wavesQ. J. R. Meteorol. Soc., doi:10.1002/qj.2953.
  32. Quan, X.-W., H. F. Diaz, and M. P. Hoerling (2004), Change of the Tropical Hadley Cell Since 1950, NOAA-CIRES Climate Diagnostic Center.
  33. Rosenkranz, P. W. (2002), Radiative Transfer Solution Using Initial Values in a Scattering and Absorbing Atmosphere With Surface ReflectionIEEE Geosci. Remote Sens., 40(8), 1889–1892.
  34. Rosenkranz, P. W. and C. D. Barnet (2006), Microwave radiative transfer model validationJ. Geophys. Res., 111, D09S07, doi:10.1029/2005JD006008.
  35. Santer, B. D., et al. (2005), Amplification of Surface Temperature Trends and Variability in the Tropical AtmosphereScience, 309, 1551–1556.
  36. Shaw, T. A. and A. Voigt (2015), Tug of war on summertime circulation between radiative forcing and sea surface warmingNature Geosci., 8(7), 560–566, doi:10.1038/ngeo2449.
  37. Simmer, S. (1999), Contributions of Microwave Remote Sensing from Satellite to Studies on the Earth Energy Budget and the Hydrological CycleAdv. Space. Res., 24(7), 897–905.
  38. Singh, K. P., D. Singh, S. K. Sharma, and P. K. Mukherjee (1995), Remote Sensing of Earth's Surface Roughness at Microwave FrequencyAdv. Space. Res., 16(10), 189–192.
  39. Sobel, A. H. (2003), On the Coexistence of an Evaporation Minimum and Precipitation Maximum in the Warm PoolJ. Climate, 16, 1003–1009.
  40. Stallcop, J. R. and H. Partridge (1997), The N2-N2 potential energy surfaceChem. Phys. Lett., 281, 212–220.
  41. Stofan, E. R., C. Elachi, J. I. Lunine, R. D. Lorenz, B. Stiles, K. L. Mitchell, S. Ostro, L. Soderblom, C. Wood, H. Zebker, S. Wall, M. Janssen, R. Kirk, R. Lopes, F. Paganelli, J. Radebaugh, L. Wye, Y. Anderson, M. Allison, R. Boehmer, P. Callahan, P. Encrenaz, E. Flamini, G. Francescetti, Y. Gim, G. Hamilton, S. Hensley, W. T. K. Johnson, K. Kelleher, D. Muhleman, P. Paillou, G. Picardi, F. Posa, L. Roth, R. Seu, S. Shaffer, S. Vetrella, and R. West (2007), The lakes of TitanNature, 445(7123), 61–64, doi:10.1038/nature05438.
  42. Thies, B. and J. Bendix (2011), Satellite based remote sensing of weather and climate: recent achievements and future perspectivesMet. Appl., 18, 262–295, doi:10.1002/met.288.
  43. Torrence, C. and G. P. Compo (1998), A Practical Guide to Wavelet AnalysisBull. Amer. Met. Soc., 79(1), 61–78.
  44. Trokhimovski, Y. Gaevich, E. R. Westwater, Y. Han, and V. Y. Leuski (1998), Air and Sea Surface Temperature Measurements Using a 60-GHz Microwave Rotating RadiometerIEEE Geosci. Remote Sens., 36(1), 3–15.
  45. Wada, A., H. Kanamori, and S. Iwata (1998), Ab initio MO studies of van der Waals molecule (N2)2: Potential energy surface and internal motionJ. Chem. Phys., 109(21), 9434–9438.
  46. Weng, F., R. R. Ferraro, and N. C. Grody (2000), Effects of AMSU-A cross track asymmetry of brithness temperatures on retrieval of atmospheric and surface parameters, In: Microw. Radiomet. Remote Sens. Earth's Surf. Atmosphere, pp. 255–262, Edited by Pampaloni, P. and S. Paloscia.
  47. Wentz, F. J. and M. Schabel (1998), Effects of orbital decay on satellite-derived lower-tropospheric temperature trendsNature, 394, 661–664.
  48. Zhang, Y.-C., W. B. Rossow, A. A. Lacis, V. Oinas, and M. I. Mishchenko (2004), Calculation of radiative fluxes from the surface to top of atmosphere based on ISCCP and other global data sets: Refinements of the radiative transfer model and the input dataJ. Geophys. Res., 109, doi:10.1029/2003JD004457.
  49. Zhang, C. (2005), Madden-Julian OscillationRev. Geophys., 43.