| a-train | abs lookup | absorption | aerosols | aggregation | airs | albedo | algorithm | amsu | annual cycle | anomalies | aqua | ar4 | ar5 | arctic | arm | arts | arts-dev | asr | assimilation | astrophysics | atmosphere | atmospheric composition | atmospheric dynamics | atmospheric profiles | atsr-2 | avhrr | backscattering | basics | bayes | book | calculation | calculations | calibration | calipso | ccn | cdr | ceres | cfmip | chemistry | cia | ciraclim | cirrus | cirrus anvil sublimation | cirrus cloud | cirrus clouds | cirrusstudy | ciwsir/cloudice | claus | climate | climate change | climate dynamics | climate feedbacks | climate sensitivity | climate sensivity | climate variability | climatology | cloud feedback | cloud forcing | cloud fraction | cloud ice | cloud properties | cloud radiative effects | cloud radiative forcing | cloud regimes | clouds | cloudsat | cmip3 | cmip5 | cmip6 | cmsaf | co2 | collocation | comparison | computer science | continua | contrail | convection | convective clouds | convective processes | convective self-aggregation | correlated k | cosmic background | cosmic rays | cosp | cross-calibration | cth | cumulus | dardar | data bases | dda | deep convection | delta m | dimer | disort | diurnal cycle | dmsp | documentation | droplet size | dynamics | earth | earthcare | echam | ecmwf | effective radius | electromagnetism | electron content | elevation | elevation satellite-2 | emd | emissivity | enso | eof-pca-svd | erbe | error assessment | ers | eruption | esa planetary | exoplanets | extraterrestrial | fall speed | far-infrared | faraday-voigt | fcdr | feedback | feedbacks | fingerprinting | flux uav | forcing | forest fire | fox19_airborne_amt.pdf | friend | fun | gcm | genesis | geostationary | gerrit_erca | global warming | gnss | goes | gps | gras | graupel | greenhouse effect | groundbased | hadley circulation | hail | heating rate | heating rates | herschel | hiatus | hirs | history | hsb | humidity | hydrological sensitivity | hydrological sensivity | iasi | ice | ice clouds | ice crystal growth | ice nucleation | ice water | icesat-2 | ici | icon | icz | in situ | infrared | instruments | intercalibration | intercomparison | interference | inverse modelling | ipcc | ir/vis | iris | isccp | ismar | isotopes | itcz | iwc | iwp | iwv | jupiter | kessler scheme | lblrtm | lidar | limb effect | limb sounding | limb-correction | linemixing | lineshape | liquid water | liquid water path | longwave radiation | low-cloud feedback | magnetic field | magnetism | mars | mas | mass-dimension relation | masters thesis | math | megha-tropiques | mendrok | mesoscale organization | meteorology | meteosat | metop | mhs | microphysics | microwave | mipas | mirs | misr | mixed phase | mls | model | modeling | models | modis | monte carlo | mspps | msu | mth | multi-moment scheme | multisensor | mwhs | mwi | net radiation | neural network | nicam | nlte | noaa | nonsphericity | npoess | observation | ocean | ocean reflection | ocean-atmosphere interactions | odin | olr | one-moment scheme | open loop | optical | optical depth | optical properties | optics | orbital drift | orbits | ozone | pacific ocean | particle orientation | particle shape | particle size | particle size distribution | patmos-x | phase function | phd thesis | polarimetry | polarization | polder | potss | precipitation | profile datasets | programming | projection | promet | propagation modeling | python | radar | radiation | radiation profiles | radiative convective equilibrium | radiative equilibrium | radiative feedback | radiative fluxes | radiative forcing | radiative processes | radiative transfer | radiative-convective equilibrium | radiative-equilibrium | radio occultation | radiometers | radiosonde | radiosonde cloud liquid | radiosonde correction | rain | reanalysis | refractive index | relative humidity | remote sensing | retrieval | review | rodgers | rttov | sahara | sahel | sampling | sand/dust | sar | satellite | satellite missions | satellite observations | satellite simulator | sbuehler_habil | scattering | scattering databases | scintillations | scout-amma | self-aggregation | sensor geometry | seviri | shallow convection | simulated annealing | single scattering | smiles | sno | snow | snowfall | software | soil | solar | soot | sounders | spectral information | spectroscopy | split window technique | ssm/i | ssm/t | ssmis | ssmt2 | stability | statistics | ste | stereo | stratosphere | submillimeter | submm | sun | supersaturation | surface | synergies | task2 | tempera | temperature | terra | thermodynamics | time series | titan | toa radiation | top of the atmosphere | total column | tovs | trade-wind clouds | trajectory analysis | trend | trmm | tropical circulation | tropical convection | tropical meteorology | tropics | tropopause | troposphere | ttl | turbulence | tutorial | two-moment scheme | upper troposphere | uth | utls | validation | vater vapor | venus | visualization | volcanic ash | walker circulation | walker rirculation | water | water cycle | water dimer | water vapor | water vapor continuum | water vapour | water vapour path | water-vapour | wind | zeeman |

Hide tag cloud

Filter by author:
Filter by year:
Filter by bibtex key:
Filter by type:
Filter by keyword:
and
and
 

Filtered by keyword:gcm

There is currently a filter applied. To see the complete list of publications, clear the filter.
  1. Aghedo, A. M., K. W. Bowman, D. T. Shindell, and G. Faluvegi (2011), The impact of orbital sampling, monthly averaging and vertical resolution on climate chemistry model evaluation with satellite observationsAtmos. Chem. Phys. Discuss., 11, 9705–9742, doi:10.5194/acpd-11-9705-2011.
  2. Brogniez, H. and R. T. Pierrehumbert (2007), Intercomparison of tropical tropospheric humidity in GCMs with AMSU-B water vapor dataGeophys. Res. Lett., 34, doi:10.1029/2006GL029118.
  3. Chen, W. T., C. P. Woods, J.L. Li, D. Waliser, J. D. Chern, W. K. Tao, J. Jiang, and A. M. Tompkins (2011), Partitioning CloudSat ice water content for comparison with upper tropospheric ice in global atmospheric modelsJ. Geophys. Res., 116, D19206, doi:10.1029/2010JD015179.
  4. Chepfer, H., S. Bony, D. Winker, M. Chiriaco, J.-L. Dufresne, and G. Sèze (2008), Use of CALIPSO lidar observations to evaluate the cloudiness simulated by a climate modelGeophys. Res. Lett., 35, L15704, doi:10.1029/2008GL034207.
  5. Colman, R. A. and B. J. McAvaney (1997), A study of general circulation model climate feedbacks determined from perturbed seasurface temperature experimentsJ. Geophys. Res., 102(D16), 19383–19402, doi:10.1029/97JD00206.
  6. Coppin, D. and S. Bony (2015), Physical mechanisms controlling the initiation of convective self-aggregation in a General Circulation ModelJ. Adv. Model. Earth Syst., 7(4), 2060–2078, doi:10.1002/2015MS000571.
  7. Delanoë, J., R. J. Hogan, R. M. Forbes, A. Bodas-Salced, and T. H. M Stein (2011), Evaluation of ice cloud representation in the ECMWF and UK Met Office models using CloudSat and CALIPSO dataQ. J. R. Meteorol. Soc., Not published yet, doi:10.1002/qj.882.
  8. Edwards, J. M., S. Havemann, J.-C. Telen, and A. J. Baran (2007), A new parametrization for the radiative properties of ice crystals: Comparison with existing schemes and impact in a GCMAtmos. Res., 83, 19–35, doi:10.1016/j.atmosres.2006.03.002.
  9. Eyring, V., S. Bony, G. A. Meehl, C. A. Senior, B. Stevens, R. J. Stouffer, and K. E. Taylor (2016), Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organizationGeosci. Model Dev., 9(5), 1937–1958, doi:10.5194/gmd-9-1937-2016.
  10. Fomin, B. A., T. A. Udalova, and E. A. Zhitnitskii (2004), Evolution of spectroscopic information over the last decade and its effect on line-by-line calculations for validation of radiation codes for climate modelsJ. Quant. Spectrosc. Radiat. Transfer, 86(1), 73–85.
  11. Frieler, K., M. Meinshausen, T. Schneider von Deimling, T. Andrews, and P. Forster (2011), Changes in global-mean precipitation in response to warming, greenhouse gas forcing and black carbonGeophys. Res. Lett., 38, L04702, doi:10.1029/2010GL045953.
  12. Geer, A. J., J. E. Harries, and H. E. Brindley (1999), Spatial Patterns of Climate Variability in Upper-Tropospheric Water Vapor Radiances from Satellite Data and Climate Model SimulationsJ. Climate, 12, 1940–1955.
  13. Gettelman, A. and Q. Fu (2008), Observed and Simulated Upper-Tropospheric Water Vapor FeedbackJ. Climate, 21, 3282–3289, doi:10.1175/2007JCLI2142.1.
  14. Gettelman, A., X. Liu, S. J. Ghan, H. Morrison, S. Park, A. J. Conley, S. A. Klein, J. Boyle, D. L. Mitchell, and J.-L. F. Li (2010), Global simulations of ice nucleation and ice supersaturation with an improved cloud scheme in the Community Atmosphere ModelJ. Geophys. Res., 115, D18216, doi:10.1029/2009JD013797.
  15. Guan, B., D. E. Waliser, J.-L. F. Li, and A. da Silva (2013), Evaluating the impact of orbital sampling on satellite-climate model comparisonsJ. Geophys. Res., 118, 1–15, doi:10.1029/2012JD018590.
  16. Haynes, J. M., R. T. Marchand, Z. Luo, A. Bodas-Salcedo, and G. L. Stephens (2007), A Multipurpose Radar Simulation Package: QuickBeamBull. Amer. Met. Soc., 1723–1727, doi:10.1175/BAMS-88-11-1723.
  17. Hazeleger, W., C. Severijns, T. Semmler, S. Ştefănescu, S. Yang, X. Wang, K. Wyser, E. Dutra, J. M. Baldasano, R. Bintanja, P. Bougeault, R. Caballero, A. M. L. Ekman, J. H. Christensen, B. van den Hurk, P. Jimenez, C. Jones, P. Kållberg, T. Koenigk, R. McGrath, P. Miranda, T. van Noije, T. Palmer, J. A. Parodi, T. Schmith, F Selten, Trude Storelvmo, A. Sterl, H. Tapamo, M. Vancoppenolle, P. Viterbo, and U. Willén (submitted 2010), EC-Earth: A Seamless Earth System Prediction Approach in ActionBull. Amer. Met. Soc.
  18. Jiang, J. H., H. Su, C. Zhai, V. S. Perun, A. Del Genio, L. S. Nazarenko, L. J. Donner, L. Horowitz, C. Seman, J. Cole, A. Gettelman, M. A. Ringer, L. Rotstayn, S. Jeffrey, T. Wu, F. Brient, J.-L. Dufresne, H. Kawai, T. Koshiro, M. Watanabe, T. S. L'Ecuyer, E. M. Volodin, T. Iversen, H. Drange, M. D. S. Mesquita, W. G. Read, J. W. Waters, B. Tian, J. Teixeira, and G. L. Stephens (2012), Evaluation of cloud and water vapor simulations in CMIP5 climate models using NASA "A-Train" satellite observationsJ. Geophys. Res., 117, D14105, doi:10.1029/2011JD017237.
  19. Kang, S. M., I. M. Held, D. M. W. Frierson, and M. Zhao (2008), The Response of the ITCZ to Extratropical Thermal Forcing: Idealized Slab-Ocean Experiments with a GCMJ. Climate, 21(14), 3521–3532, doi:10.1175/2007JCLI2146.1.
  20. Klein, S. A., Y. Zhang, M. D. Zelinka, R. Pincus, J. Boyle, and P. J. Gleckler (2013), Are climate model simulations of clouds improving? An evaluation using the ISCCP simulatorJ. Geophys. Res., 118, 1–14, doi:10.1002/jgrd.50141.
  21. Li, J.-L. F., D. Waliser, C. Woods, J. Teixeira, J. Bacmeister, J. Chern, B.-W. Shen, A. Tompkins, W.-K. Tao, and M. Köhler (2008), Comparisons of satellites liquid water estimates to ECMWF and GMAO analyses, 20th century IPCC AR4 climate simulations, and GCM simulationsGeophys. Res. Lett., 35, L19710, doi:10.1029/2008GL035427.
  22. Parish, H. F., G. Schubert, C. Covey, R. L. Walterscheid, A. Grossman, and S. Lebonnois (2011), Decadal variations in a Venus general circulation modelIcarus, 212(1), 42–65, doi:10.1016/j.icarus.2010.11.015.
  23. Peixoto, J. P. and A. H. Oort (1992), Physics of Climate, American Institute of Physics.
  24. Rädel, G. and K. P. Shine (2010), Validating ECMWF forecasts for the occurrence of ice supersaturation using visual observations of persistent contrails and radiosonde measurements over EnglandQ. J. R. Meteorol. Soc., doi:10.1002/qj.670.
  25. Reitter, S., K. Fröhlich, A. Seifert, S. Crewell, and M. Mech (2011), Evaluation of ice and snow content in the global numerical weather prediction model GME with CloudSatGeosci. Model Dev., 4(3), 579–589, doi:10.5194/gmd-4-579-2011.
  26. Salzmann, M., Y. Ming, J.-C. Golaz, P. A. Ginoux, H. Morrison, A. Gettelman, M. Krämer, and L. J. Donner (2010), Two-moment bulk stratiform cloud microphysics in the GFDL AM3 GCM: description, evaluation, and sensitivity testsAtmos. Chem. Phys., 10, 8037–8064, doi:10.5194/acp-10-8037-2010.
  27. Satoh, M., T. Matsuno, H. Tomita, H. Miura, T. Nasuno, and S. Iga (2008), Nonhydrostatic icosahedral atmospheric model (NICAM) for global cloud resolving simulationsJ. Chem. Phys., 227(7), 3486–3514, doi:10.1016/j.jcp.2007.02.006.
  28. Soden, B. J. and I. M. Held (2006), An assessment of climate feedbacks in coupled ocean-atmosphere modelsJ. Climate, 19(14), 3354–3360, doi:10.1175/JCLI3799.1.
  29. Storelvmo, T., C. Hoose, and P. Eriksson (2011), Global modeling of mixed-phase clouds: The albedo and lifetime effects of aerosolsJ. Geophys. Res., 116, D05207, doi:10.1029/2010JD014724.
  30. Sundqvist, H. (2002), Cirrus, chap. On cirrus modeling for general circulation and climate models, pp. 297–309, Oxford University Press.
  31. Tomita, H. (2008), New Microphysical Schemes with Five and Six Categories by Diagnostic Generation of Cloud IceJ. Meteorol. Soc. Jpn., 86A, 121–142, doi:10.2151/jmsj.86A.121.
  32. Waliser, D. E., J-L. F. Li, C. P. Woods, R. T. Austin, J. Bacmeister, J. Chern, A. Del Genio, J. H. Jiang, Z. Kuang, H. Meng, P. Minnis, S. Platnick, W. B. Rossow, G. L. Stephens, S. Sun-Mack, W-K. Tao, A. M. Tompkins, D. G. Vane, C. Walker, and D. Wu (2009), Cloud ice: A climate model challenge with signs and expectations of progressJ. Geophys. Res., 114, D00A21, doi:10.1029/2008JD010015.
  33. Waliser, D. E., J.-L. F. Li, T. S. L'Ecuyer, and W.-T. Chen (2011), The impact of precipitating ice and snow on the radiation balance in global climate modelsGeophys. Res. Lett., 38, L06802, doi:10.1029/2010GL046478.
  34. Wetherald, R. T. and S. Manabe (1987), Cloud Feedback Processes in a General Circulation ModelJ. Atmos. Sci., 45(8), 1397–1416, doi:10.1175/1520-0469(1988)045<1397:CFPIAG>2.0.CO;2.
  35. Wyser, K., C. G. Jones, P. Du, E. Girard, U. Willén, J. Cassano, J. H. Christensen, J. A. Curry, K. Dethloff, J.-E. Haugen, D. Jacob, M. Køltzow, R. Laprise, A. Lynch, S. Pfeifer, A. Rinke, M. Serreze, M. J. Shaw, M. Tjernström, and M. Zagar (2007), An evaluation of Arctic cloud and radiation processes during the SHEBA year: simulation results from eight Arctic regional climate modelsClimate Dynamics, 30(2–3), 203–223, doi:10.1007/s00382-007-0286-1.
  36. Zhang, M. H., W. Y. Lin, S. A. Klein, J. T. Bacmeister, S. Bony, R. T. Cederwall, A. D. Del Genio, J. J. Hack, N. G. Loeb, U. Lohmann, P. Minnis, I. Musat, R. Pincus, P. Stier, M. J. Suarez, M. J. Webb, J. B. Wu, S. C. Xie, M.-S. Yao, and J. H. Zhang (2005), Comparing clouds and their seasonal variations in 10 atmospheric general circulation models with satellite measurementsJ. Geophys. Res., 110, D15S02, doi:10.1029/2004JD005021.