| a-train | abs lookup | absorption | aerosols | aggregation | airs | albedo | algorithm | amsu | annual cycle | anomalies | aqua | ar4 | ar5 | arctic | arm | arts | arts-dev | asr | assimilation | astrophysics | atmosphere | atmospheric composition | atmospheric dynamics | atmospheric profiles | atsr-2 | avhrr | backscattering | basics | bayes | book | calculation | calculations | calibration | calipso | ccn | cdr | ceres | cfmip | chemistry | cia | ciraclim | cirrus | cirrus anvil sublimation | cirrus cloud | cirrus clouds | cirrusstudy | ciwsir/cloudice | claus | climate | climate change | climate dynamics | climate feedbacks | climate sensitivity | climate sensivity | climate variability | climatology | cloud feedback | cloud forcing | cloud fraction | cloud ice | cloud properties | cloud radiative effects | cloud radiative forcing | cloud regimes | clouds | cloudsat | cmip3 | cmip5 | cmip6 | cmsaf | co2 | collocation | comparison | computer science | continua | contrail | convection | convective clouds | convective processes | convective self-aggregation | correlated k | cosmic background | cosmic rays | cosp | cross-calibration | cth | cumulus | dardar | data bases | dda | deep convection | delta m | dimer | disort | diurnal cycle | dmsp | documentation | droplet size | dynamics | earth | earthcare | echam | ecmwf | effective radius | electromagnetism | electron content | elevation | elevation satellite-2 | emd | emissivity | enso | eof-pca-svd | erbe | error assessment | ers | eruption | esa planetary | exoplanets | extraterrestrial | fall speed | far-infrared | faraday-voigt | fcdr | feedback | feedbacks | fingerprinting | flux uav | forcing | forest fire | fox19_airborne_amt.pdf | friend | fun | gcm | genesis | geostationary | gerrit_erca | global warming | gnss | goes | gps | gras | graupel | greenhouse effect | groundbased | hadley circulation | hail | heating rate | heating rates | herschel | hiatus | hirs | history | hsb | humidity | hydrological sensitivity | hydrological sensivity | iasi | ice | ice clouds | ice crystal growth | ice nucleation | ice water | icesat-2 | ici | icon | icz | in situ | infrared | instruments | intercalibration | intercomparison | interference | inverse modelling | ipcc | ir/vis | iris | isccp | ismar | isotopes | itcz | iwc | iwp | iwv | jupiter | kessler scheme | lblrtm | lidar | limb effect | limb sounding | limb-correction | linemixing | lineshape | liquid water | liquid water path | longwave radiation | low-cloud feedback | magnetic field | magnetism | mars | mas | mass-dimension relation | masters thesis | math | megha-tropiques | mendrok | mesoscale organization | meteorology | meteosat | metop | mhs | microphysics | microwave | mipas | mirs | misr | mixed phase | mls | model | modeling | models | modis | monte carlo | mspps | msu | mth | multi-moment scheme | multisensor | mwhs | mwi | net radiation | neural network | nicam | nlte | noaa | nonsphericity | npoess | observation | ocean | ocean reflection | ocean-atmosphere interactions | odin | olr | one-moment scheme | open loop | optical | optical depth | optical properties | optics | orbital drift | orbits | ozone | pacific ocean | particle orientation | particle shape | particle size | particle size distribution | patmos-x | phase function | phd thesis | polarimetry | polarization | polder | potss | precipitation | profile datasets | programming | projection | promet | propagation modeling | python | radar | radiation | radiation profiles | radiative convective equilibrium | radiative equilibrium | radiative feedback | radiative fluxes | radiative forcing | radiative processes | radiative transfer | radiative-convective equilibrium | radiative-equilibrium | radio occultation | radiometers | radiosonde | radiosonde cloud liquid | radiosonde correction | rain | reanalysis | refractive index | relative humidity | remote sensing | retrieval | review | rodgers | rttov | sahara | sahel | sampling | sand/dust | sar | satellite | satellite missions | satellite observations | satellite simulator | sbuehler_habil | scattering | scattering databases | scintillations | scout-amma | self-aggregation | sensor geometry | seviri | shallow convection | simulated annealing | single scattering | smiles | sno | snow | snowfall | software | soil | solar | soot | sounders | spectral information | spectroscopy | split window technique | ssm/i | ssm/t | ssmis | ssmt2 | stability | statistics | ste | stereo | stratosphere | submillimeter | submm | sun | supersaturation | surface | synergies | task2 | tempera | temperature | terra | thermodynamics | time series | titan | toa radiation | top of the atmosphere | total column | tovs | trade-wind clouds | trajectory analysis | trend | trmm | tropical circulation | tropical convection | tropical meteorology | tropics | tropopause | troposphere | ttl | turbulence | tutorial | two-moment scheme | upper troposphere | uth | utls | validation | vater vapor | venus | visualization | volcanic ash | walker circulation | walker rirculation | water | water cycle | water dimer | water vapor | water vapor continuum | water vapour | water vapour path | water-vapour | wind | zeeman |

Hide tag cloud

Filter by author:
Filter by year:
Filter by bibtex key:
Filter by type:
Filter by keyword:
and
and
 

Filtered by keyword:iwp

There is currently a filter applied. To see the complete list of publications, clear the filter.
  1. Austin, R. T., A. J. Heymsfield, and G. L. Stephens (2009), Retrieval of ice cloud microphysical parameters using the CloudSat millimeter-wave radar and temperatureJ. Geophys. Res., 114, D00A23, doi:10.1029/2008JD010049.
  2. Baran, A. J., P. J. Connolly, A. J. Heymsfield, and A. Bansemer (2010), Using in situ estimates of ice water content, volume extinction coefficient, and the total solar optical depth obtained during the tropical ACTIVE campaign to test an ensemble model of cirrus ice crystalsQ. J. R. Meteorol. Soc., doi:10.1002/qj.731.
  3. Boukabara, S.-A., K. Garrett, W. Chen, F. Iturbide-Sanchez, C. Grassotti, C. Kongoli, R. Chen, Q. Liu, B. Yan, F. Weng, R. Ferraro, T. J. Kleespies, and H. Meng (2011), MiRS: An All-Weather 1DVAR Satellite Data Assimilation and Retrieval SystemIEEE T. Geosci. Remote, 49(9), 3249–3272, doi:10.1109/TGRS.2011.2158438.
  4. Chen, W. T., C. P. Woods, J.L. Li, D. Waliser, J. D. Chern, W. K. Tao, J. Jiang, and A. M. Tompkins (2011), Partitioning CloudSat ice water content for comparison with upper tropospheric ice in global atmospheric modelsJ. Geophys. Res., 116, D19206, doi:10.1029/2010JD015179.
  5. Choi, Y-S. and C-H. Ho (2006), Radiative effect of cirrus with different optical properties over the tropics in MODIS and CERES observationsGeophys. Res. Lett., 33, L21811, doi:10.1029/2006GL027403.
  6. Deng, M., G. G. Mace, Z. Wang, and H. Okamoto (2010), Tropical Composition, Cloud and Climate Coupling Experiment validation for cirrus cloud profiling retrieval using CloudSat radar and CALIPSO lidarJ. Geophys. Res., 115, D00J15, doi:10.1029/2009JD013104.
  7. Deng, M., G. G. Mace, Z. Wang, and R. P. Lawson (2013), Evaluation of Several A-Train Ice Cloud Retrieval Products with In Situ Measurements Collected during the SPARTICUS CampaignJ. Appl. Meteorol. Clim., 52(4), 1014–1030, doi:10.1175/JAMC-D-12-054.1.
  8. Devasthale, A. and M. A. Thomas (2012), Sensitivity of cloud liquid water content estimates to the temperature dependent thermodynamic phase: a global study using CloudSAT dataJ. Climate, doi:10.1175/JCLI-D-11-00521.1.
  9. Evans, K. F. and G. L. Stephens (1995), Microwave Radiative Transfer through Clouds Composed of Realistically Shaped Ice Crystals. Part I: Single Scattering PropertiesJ. Atmos. Sci., 52(11), 2041–2057, doi:10.1175/1520-0469(1995)052<2041:MRTTCC>2.0.CO;2.
  10. Evans, K. F. and G. L. Stephens (1995), Microwave Radiative Transfer through Clouds Composed of Realistically Shaped Ice Crystals. Part II: Remote Sensing of Ice CloudsJ. Atmos. Sci., 52, 2058–2072, doi:10.1175/1520-0469(1995)052<2058:MRTTCC>2.0.CO;2.
  11. Guan, B., D. E. Waliser, J.-L. F. Li, and A. da Silva (2013), Evaluating the impact of orbital sampling on satellite-climate model comparisonsJ. Geophys. Res., 118, 1–15, doi:10.1029/2012JD018590.
  12. Guignard, A., C. J. Stubenrauch, A. J. Baran, and R. Armante (2012), Bulk microphysical properties of semi-transparent cirrus from AIRS: a six year global climatology and statistical analysis in synergy with geometrical profiling data from CloudSat-CALIPSOAtmos. Chem. Phys., 12, 503–525, doi:10.5194/acp-12-503-2012.
  13. Heymsfield, A. J., S. Matrosov, and B. Baum (2003), Ice water path - optical depth relationships for cirrus and deep stratiform ice cloud layersJ. Appl. Meteorol., 42(20), 1369–1390.
  14. Hong, G., P. Yang, B.-C. Gao, B. A. Baum, Y. X. Hu, M. D. King, and S. Platnick (2007), High Cloud Properties from Three Years of MODIS Terra and Aqua Collection-4 Data over the TropicsJ. Appl. Meteorol. Clim., 46, doi:10.1175/2007JAMC1583.1.
  15. Hong, G., P. Yang, H.-L. Huang, B. A. Baum, Y. Hu, and S. Platnick (2007), The Sensitivity of Ice Cloud Optical and Microphysical Passive Satellite Retrievals to Cloud Geometrical ThicknessIEEE T. Geosci. Remote, 45(5), doi:10.1109/TGRS.2007.894549.
  16. Jiang, J. H., H. Su, C. Zhai, V. S. Perun, A. Del Genio, L. S. Nazarenko, L. J. Donner, L. Horowitz, C. Seman, J. Cole, A. Gettelman, M. A. Ringer, L. Rotstayn, S. Jeffrey, T. Wu, F. Brient, J.-L. Dufresne, H. Kawai, T. Koshiro, M. Watanabe, T. S. L'Ecuyer, E. M. Volodin, T. Iversen, H. Drange, M. D. S. Mesquita, W. G. Read, J. W. Waters, B. Tian, J. Teixeira, and G. L. Stephens (2012), Evaluation of cloud and water vapor simulations in CMIP5 climate models using NASA "A-Train" satellite observationsJ. Geophys. Res., 117, D14105, doi:10.1029/2011JD017237.
  17. Kristjánsson, J. E., J. M. Edwards, and D. L. Mitchell (2000), Impact of a new scheme for optical properties of ice crystals on climates of two GCMsJ. Geophys. Res., 105(D8), 10063–10079, doi:10.1029/2000JD900015.
  18. L'Ecuyer, T. S., N. B. Wood, T. Haladay, G. L. Stephens, and P. W. Stackhouse Jr. (2008), Impact of clouds on atmospheric heating based on the R04 CloudSat fluxes and heating rates data setJ. Geophys. Res., 113, D00A15, doi:10.1029/2008JD009951.
  19. Li, J.-L. F., D. E. Waliser, W.-T. Chen, B. Guan, T. Kubar, G. Stephens, H.-Y. Ma, M. Deng, L. Donner, C. Seman, and L. Horowitz (2012), An observationally based evaluation of cloud ice water in CMIP3 and CMIP5 GCMs and contemporary reanalyses using contemporary satellite dataJ. Geophys. Res., 117, D16105, doi:10.1029/2012JD017640.
  20. Liu, G. and E.-K. Seo (2013), Detecting snowfall over land by satellite high-frequency microwave observations: The lack of scattering signature and a statistical approachJ. Geophys. Res., 118(3), 1376–1387, doi:10.1002/jgrd.50172.
  21. Liu, G. and J. A. Curry (1999), Tropical Ice Water Amount and Its Relations to Other Atmospheric Hydrological Parameters as Inferred from Satellite DataJ. Appl. Meteorol., 38, 1182–1194.
  22. Meyer, K., P. Yang, and B.-C. Gao (2006), Tropical ice cloud optical depth, ice water path, and frequency fields inferred from the MODIS level-3 dataAtmos. Res., 85, 171–182, doi:10.1016/j.atmosres.2006.09.009.
  23. Pittman, J. V., F. R. Robertson, R. J. Atkinson, and C. Blankenship (2008), Understanding Differences Between Co-Incident CloudSat, Aqua/MODIS and NOAA18 MHS Ice water Path Retrievals Over the Tropical Oceans, In: AGU Fall Meeting Abstracts.
  24. Posselt, D. J., T. S. L'Ecuyer, and G. L. Stephens (2008), Exploring the error characteristics of thin ice cloud property retrievals using a Markov chain Monte Carlo algorithmJ. Geophys. Res., 113, D24206, doi:10.1029/2008JD010832.
  25. Reitter, S., K. Fröhlich, A. Seifert, S. Crewell, and M. Mech (2011), Evaluation of ice and snow content in the global numerical weather prediction model GME with CloudSatGeosci. Model Dev., 4(3), 579–589, doi:10.5194/gmd-4-579-2011.
  26. Stein, T. H. M., J. Delanoë, and R. J. Hogan (2011), A Comparison among Four Different Retrieval Methods for Ice-Cloud Properties Using Data from CloudSat, CALIPSO, and MODISJ. Appl. Meteorol. Clim., 50, 1952–1969, doi:10.1175/2011JAMC2646.1.
  27. Sun, N. and F. Weng (2012), Retrieval of Cloud Ice Water Path from Special Sensor Microwave Imager/Sounder (SSMIS)J. Appl. Meteorol. Clim., 51(2), 366–379, doi:10.1175/JAMC-D-11-021.1.
  28. Vivekanandan, J., J. Turk, and V. N. Bringi (1991), Ice Water Path Estimation and Characterization Using Passive Microwave RadiometryJ. Appl. Meteorol., 30, 1407–1421.
  29. Walther, A. and A. K. Heidinger (2012), Implementation of the Daytime Cloud Optical and Microphysical Properties Algorithm (DCOMP) in PATMOS-xJ. Appl. Meteorol. Clim., doi:10.1175/JAMC-D-11-0108.1.
  30. Wu, D. L., J. H. Jiang, W. G. Read, R. T. Austin, C. P. Davis, A. Lambert, G. L. Stephens, D. G. Vane, and J. W. Waters (2008), Validation of the Aurs MLS cloud ice water content measurementsJ. Geophys. Res., 113, D15S10, doi:10.1029/2007JD008931.
  31. Yang, P., K. N. Liou, K. Wyser, and D. Mitchell (2000), Parameterization of the scattering and absorption properties of individual ice crystalsJ. Geophys. Res., 105(D4), 4699–4718.
  32. Zhang, Z., S. Platnick, P. Yang, A. K. Heidinger, and J. M. Comstock (2010), Effects of ice particle size vertical inhomogeneity on the passive remote sensing of ice cloudsJ. Geophys. Res., 115, D17203, doi:10.1029/2010JD013835.