| a-train | abs lookup | absorption | aerosols | aggregation | airs | albedo | algorithm | amsu | annual cycle | anomalies | aqua | ar4 | ar5 | arctic | arm | arts | arts-dev | asr | assimilation | astrophysics | atmosphere | atmospheric composition | atmospheric dynamics | atmospheric profiles | atsr-2 | avhrr | backscattering | basics | bayes | book | calculation | calculations | calibration | calipso | ccn | cdr | ceres | cfmip | chemistry | cia | ciraclim | cirrus | cirrus anvil sublimation | cirrus cloud | cirrus clouds | cirrusstudy | ciwsir/cloudice | claus | climate | climate change | climate dynamics | climate feedbacks | climate sensitivity | climate sensivity | climate variability | climatology | cloud feedback | cloud forcing | cloud fraction | cloud ice | cloud properties | cloud radiative effects | cloud radiative forcing | cloud regimes | clouds | cloudsat | cmip3 | cmip5 | cmip6 | cmsaf | co2 | collocation | comparison | computer science | continua | contrail | convection | convective clouds | convective processes | convective self-aggregation | correlated k | cosmic background | cosmic rays | cosp | cross-calibration | cth | cumulus | dardar | data bases | dda | deep convection | delta m | dimer | disort | diurnal cycle | dmsp | documentation | droplet size | dynamics | earth | earthcare | echam | ecmwf | effective radius | electromagnetism | electron content | elevation | elevation satellite-2 | emd | emissivity | enso | eof-pca-svd | erbe | error assessment | ers | eruption | esa planetary | exoplanets | extraterrestrial | fall speed | far-infrared | faraday-voigt | fcdr | feedback | feedbacks | fingerprinting | flux uav | forcing | forest fire | fox19_airborne_amt.pdf | friend | fun | gcm | genesis | geostationary | gerrit_erca | global warming | gnss | goes | gps | gras | graupel | greenhouse effect | groundbased | hadley circulation | hail | heating rate | heating rates | herschel | hiatus | hirs | history | hsb | humidity | hydrological sensitivity | hydrological sensivity | iasi | ice | ice clouds | ice crystal growth | ice nucleation | ice water | icesat-2 | ici | icon | icz | in situ | infrared | instruments | intercalibration | intercomparison | interference | inverse modelling | ipcc | ir/vis | iris | isccp | ismar | isotopes | itcz | iwc | iwp | iwv | jupiter | kessler scheme | lblrtm | lidar | limb effect | limb sounding | limb-correction | linemixing | lineshape | liquid water | liquid water path | longwave radiation | low-cloud feedback | magnetic field | magnetism | mars | mas | mass-dimension relation | masters thesis | math | megha-tropiques | mendrok | mesoscale organization | meteorology | meteosat | metop | mhs | microphysics | microwave | mipas | mirs | misr | mixed phase | mls | model | modeling | models | modis | monte carlo | mspps | msu | mth | multi-moment scheme | multisensor | mwhs | mwi | net radiation | neural network | nicam | nlte | noaa | nonsphericity | npoess | observation | ocean | ocean reflection | ocean-atmosphere interactions | odin | olr | one-moment scheme | open loop | optical | optical depth | optical properties | optics | orbital drift | orbits | ozone | pacific ocean | particle orientation | particle shape | particle size | particle size distribution | patmos-x | phase function | phd thesis | polarimetry | polarization | polder | potss | precipitation | profile datasets | programming | projection | promet | propagation modeling | python | radar | radiation | radiation profiles | radiative convective equilibrium | radiative equilibrium | radiative feedback | radiative fluxes | radiative forcing | radiative processes | radiative transfer | radiative-convective equilibrium | radiative-equilibrium | radio occultation | radiometers | radiosonde | radiosonde cloud liquid | radiosonde correction | rain | reanalysis | refractive index | relative humidity | remote sensing | retrieval | review | rodgers | rttov | sahara | sahel | sampling | sand/dust | sar | satellite | satellite missions | satellite observations | satellite simulator | sbuehler_habil | scattering | scattering databases | scintillations | scout-amma | self-aggregation | sensor geometry | seviri | shallow convection | simulated annealing | single scattering | smiles | sno | snow | snowfall | software | soil | solar | soot | sounders | spectral information | spectroscopy | split window technique | ssm/i | ssm/t | ssmis | ssmt2 | stability | statistics | ste | stereo | stratosphere | submillimeter | submm | sun | supersaturation | surface | synergies | task2 | tempera | temperature | terra | thermodynamics | time series | titan | toa radiation | top of the atmosphere | total column | tovs | trade-wind clouds | trajectory analysis | trend | trmm | tropical circulation | tropical convection | tropical meteorology | tropics | tropopause | troposphere | ttl | turbulence | tutorial | two-moment scheme | upper troposphere | uth | utls | validation | vater vapor | venus | visualization | volcanic ash | walker circulation | walker rirculation | water | water cycle | water dimer | water vapor | water vapor continuum | water vapour | water vapour path | water-vapour | wind | zeeman |

Hide tag cloud

Filter by author:
Filter by year:
Filter by bibtex key:
Filter by type:
Filter by keyword:
and
and
 

Filtered by keyword:microwave

There is currently a filter applied. To see the complete list of publications, clear the filter.
  1. Aires, F., C. Prigent, F. Bernando, C. Jiménez, R. Saunders, and P. Brunel (2011), A tool to estimate land-surface emissivities at microwave frequencies (TELSEM) for use in numerical weather predictionQ. J. R. Meteorol. Soc., 137, 690–699, doi:10.1002/qj.803.
  2. Battaglia, A., C. Simmer, S. Crewell, H. Czekala, C. Emde, F. Marzano, M. I. Mishchenko, J. R. Pardo, and C. Prigent (2006), Thermal Microwave Radiation: Application for Remote Sensing, chap. Emission and scattering by clouds and precipitation, pp. 101–223, The Institution of Engineering and Technology, London, United Kingdom.
  3. Bauer, P., A. J. Geer, P. Lopez, and D. Salmond (2010), Direct 4D-Var assimilation of all-sky radiances. Part I: ImplementationQ. J. R. Meteorol. Soc., 136(652), 1868–1885, doi:10.1002/qj.659.
  4. Bennartz, R. (1999), On the Use of SSM/I Measurements in Coastal RegionsJ. Atmos. Oceanic Technol., 16(4), 417–431.
  5. Blumenstock, T., G. Kopp, F. Hase, G. Hochschild, S. Mikuteit, U. Raffalski, and R. Ruhnke (2006), Observation of unusual chlorine activation by ground-based infrared and microwave spectroscopy in the late Arctic winter 2000/2001Atmos. Chem. Phys., 6, 897–905, doi:10.5194/acp-6-897-2006.
  6. Boukabara, S.-A., K. Garrett, W. Chen, F. Iturbide-Sanchez, C. Grassotti, C. Kongoli, R. Chen, Q. Liu, B. Yan, F. Weng, R. Ferraro, T. J. Kleespies, and H. Meng (2011), MiRS: An All-Weather 1DVAR Satellite Data Assimilation and Retrieval SystemIEEE T. Geosci. Remote, 49(9), 3249–3272, doi:10.1109/TGRS.2011.2158438.
  7. Bredow, J. W., R. Porco, M. S. Dawson, C. L. Betty, S. Self, and T. Thordarson (1995), A Multifrequency Laboratory Investigation of Attenuation and Scattering from Volcanic Ash CloudsIEEE Geosci. Remote Sens., 33(4), 1071–1082, doi:10.1109/36.406693.
  8. Cadeddu, M. P., J. C. Liljegren, and A. L. Pazmany (2007), Measurements and Retrievals From a New 183-GHz Water-vapor Radiometer in the ArcticIEEE Geosci. Remote Sens., 45, 2207–2215, doi:10.1109/TGRS.2006.888970.
  9. Cimini, D., F. Nasir, E. R. Westwater, V. H. Payne, D. D. Turner, E. J. Mlawer, M. L. Exner, and M. P. Cadeddu (2009), Comparison of Ground-Based Millimeter-Wave Observations and Simulations in the Arctic WinterIEEE T. Geosci. Remote, 47(9), 3098–3106, doi:10.1109/TGRS.2009.2020743.
  10. Costales, J. B., G. F. Smoot, C. Witebsky, and G. De Amici (1986), Simultaneous measurements of atmospheric emissions at 10, 33, and 90 GHzRadio Sci., 21(1), 47–55.
  11. Crewell, S., K. Ebell, U. Lohnert, and D. D. Turner (2009), Can liquid water profiles be retrieved from passive microwave zenith observationsGeophys. Res. Lett., 36, L06803, doi:10.1029/2008GL036934.
  12. Defer, E., V. S. Galligani, C. Prigent, and C. Jimenez (2014), First observations of polarized scattering over ice clouds at close-to-millimeter wavelengths (157 GHz) with MADRAS on board the Megha-Tropiques missionJ. Geophys. Res., 119(21), 12301–12316, doi:10.1002/2014JD022353.
  13. Deirmendjian, D. (1963), Complete Microwave Scattering and Extinction Properties of Polydispersed Cloud and Rain Elements, United States Air Force, RAND, R-422-PR.
  14. Deiveegan, M., C. Balaji, and S. P. Venkateshan (2008), A polarized microwave radiative transfer model for passive remote sensingAtmos. Res., 88, 277–293, doi:10.1016/j.atmosres.2007.11.023.
  15. de Pater, I. and S. T. Massie (1985), Models of the Millimeter-Centimeter Spectra of the Giant PlanetsIcarus, 62(1), 143–171, doi:10.1016/0019-1035(85)90177-0.
  16. Devaraj, K., P. G. Steffes, and B. M. Karpowicz (2011), Reconciling the centimeter- and millimeter-wavelength ammonia absorption spectra under jovian conditions: Extensive millimeter-wavelength measurements and a consistent modelIcarus, 212(1), 224–235, doi:10.1016/j.icarus.2010.12.010.
  17. Di Michele, S. and P. Bauer (2006), Passive microwave radiometer channel selection based on cloud and precipitation information contentQ. J. R. Meteorol. Soc., 132(617), 1299–1323, doi:10.1256/qj.05.164.
  18. Elgered, G., B. O. Roennaeng, and J. I. H. Askne (1982), Measurements of atmospheric water vapor with microwave radiometryRadio Sci., 17(5), 1258–1264.
  19. Evans, K. F. (2004), Submillimeter-wave Ice Cloud Radiometry Channel Selection Study, Univerity of Colorado, Boulder.
  20. Evans, K. F., J. R. Wang, D. O'C Starr, G. Heymsfield, L. Li, L. Tian, R. P. Lawson, A. J. Heymsfield, and A. Bansemer (2012), Ice hydrometeor profile retrieval algorithm for high-frequency microwave radiometers: application to the CoSSIR instrument during TC4Atmos. Meas. Tech., 5(9), 2277–2306, doi:10.5194/amt-5-2277-2012.
  21. Galligani, V. S., C. Prigent, E. Defer, C. Jimenez, and P. Eriksson (2013), The impact of the melting layer on the passive microwave cloud scattering signal observed from satellites: A study using TRMM microwave passive and active measurementsJ. Geophys. Res., 118(11), 5667–5678, doi:10.1002/jgrd.50431.
  22. Geer, A. J. and F. Baordo (2014), Improved scattering radiative transfer for frozen hydrometeors at microwave frequenciesAtmos. Meas. Tech., 7, 1839–1860, doi:10.5194/amt-7-1839-2014.
  23. Ghobrial, S. I. and S. M. Sharief (1987), Microwave Attenuation and Cross Polarization in Dust StormsIEEE Trans. Antennas Propag., 35(4), 418–425, doi:10.1109/TAP.1987.1144120.
  24. Golchert, S. H. W., N. Buschmann, A. Kleindienst, M. Palm, N. Schneider, H. Jønch-Sørensen, and J. Notholt (2005), Starting Long-Term Stratospheric Observations With RAMAS at Summit, GreenlandIEEE T. Geosci. Remote, 43(5), 1022–1027, doi:10.1109/TGRS.2004.840660.
  25. Gueldner, J. and D. Spaenkuch (1999), Results of Year-Round Remotely Sensed Integrated Water Vapor by Ground-Based Microwave RadiometryJ. Appl. Meteorol., 38, 981–988.
  26. Haller, M. and P. Catalán (2010), Detecting breaking ocean waves through microwave scatteringSPIE News, 1–3, doi:10.1117/2.1201006.003015.
  27. Holt, A. R., R. J. Cummings, G. J. G. Upton, and W. J. Bradford (2008), Rain rates, drop size information, and precipitation type, obtained from one-way differential propagation phase and attenuation along a microwave linkRadio Sci., 43, RS5009, doi:10.1029/2007RS003773.
  28. Hong, G., P. Yang, F. Weng, and Q. Liu (2008), Microwave scattering properties of sand particles: Application to the simulation of microwave radiances over sandstormsJ. Quant. Spectrosc. Radiat. Transfer, 109(4), 684–702, doi:10.1016/j.jqsrt.2007.08.018.
  29. Hsu, K.-L., X. Gao, S. Sorooshian, and H. V. Gupta (1997), Precipitation Estimation from Remotely Sensed Information Using Artificial Neural NetworksJ. Appl. Meteorol., 36, 1176–1190.
  30. Huang, J., Y. Li, and X. Ma (2002), Computation of the Backscattering Power Density for Rainfall in Millimeter Waves BandInt. J. Inf. Millim. Waves, 23(9), 1399–1405.
  31. Imaoka, K., M. Kachi, A. Shibata, M. Kasahara, Y. Iida, Y. Tange, K. Nakagawa, and H. Shimoda (2007), Five years of AMSR-E monitoring and successive GCOM-W1/AMSR2 instrument, In: Sensors, Systems, and Next-Generation Satellites XIII, SPIE, doi:10.1117/12.740366.
  32. Karbou, F., C. Prigent, L. Eymard, and J. R. Pardo (2005), Microwave Land Emissivity Calculations Using AMSU MeasurementsIEEE T. Geosci. Remote, 43(5), 948–959, doi:10.1109/TGRS.2004.837503.
  33. Karpowicz, B. M. and P. G. Steffes (2011), In search of water vapor on Jupiter: Laboratory measurements of the microwave properties of water vapor under simulated jovian conditionsIcarus, 212(1), 210–223, doi:10.1016/j.icarus.2010.11.035.
  34. Kidd, C., D. R. Kniveton, M. C. Todd, and T. J. Bellerby (2003), Satellite Rainfall Estimation Using Combined Passive Microwave and Infrared AlgorithmsJ. Hydrometeorol., 4, 1088–1104.
  35. Kim, M.-J., M. S. Kulie, C. O'Dell, and R. Bennartz (2007), Scattering of Ice Particles at Microwave Frequencies: A Physically Based ParameterizationJ. Appl. Meteorol. Clim., 46(5), 615–633, doi:10.1175/JAM2483.1.
  36. Kleespies, T. J. (2007), Relative Information Content of the Advanced Technology Microwave Sounder and the Combination of the Advanced Microwave Sounding Unit and the Microwave Humidity SounderIEEE T. Geosci. Remote, 45, 2224–2227, doi:10.1109/TGRS.2007.898088.
  37. Klein, M. and A. J. Gasiewski (1998), The Sensitivity of Millimeter and Sub-millimeter Frequencies to Atmospheric Temperature and Water Vapor Variations, , pp. 568–571, This paper appears in Geoscience and Remote Sensing Symposium Proceedings, 1998. IGARSS '98. 1998 IEEE International.
  38. Kummerow, C. D., S. Ringerud, J. Crook, D. Randel, and W. Berg (2011), An Observationally Generated A Priori Database for Microwave Rainfall RetrievalsJ. Atmos. Oceanic Technol., 28, doi:10.1175/2010JTECHA1468.1.
  39. Lesht, B. M. and J. C. Liljegren (1996), Comparison of Precipitable Water Vapor Measurements Obtained by Microwave Radiometry and Radiosondes at the Southern Great Plains Cloud and Radiation Testbed Site, Argonne National Laboratory, Pacific Northwest National Laboratory.
  40. Liljegren, James C., S.-A. Boukabara, K. Cady-Pereira, and S. A. Clugh (2005), The Effect of the Half-Width of the 22-GHz Water Vapor Line on Retrievals of Temperature and Water Vapor Profiles With a 12-Channel Microwave RadiometerIEEE T. Geosci. Remote, 43(5), 1102–1108, doi:10.1109/TGRS.2004.839593.
  41. Liljegren, J. C. (1994), Two-channel Microwave Radiometer for Observations of Total Column Precipitable Water Vapor and Cloud Liquid Water Path, In: Proceedings of the Fifth Symposium on Global Change Studies, pp. 262–269.
  42. Lin, B. and W. B. Rossow (1997), Precipitation water path and rainfall rate estimates for oceans using special sensor microwave imager and International Satellite Cloud Climatology Project dataJ. Geophys. Res., 102, 9359–9374.
  43. Lin, B., B. Wielicks, P. Minnis, and W. Rossow (1998), Estimation of water cloud properties from satellite microwave, infrared and visible measurements in oceanic environments 1. Microwave brightness temperature simulationsJ. Geophys. Res., 103(D4), 3873–3886.
  44. Liu, G. (1998), A Fast and Accurate Model for Microwave Radiance CalculationsJ. Meteorol. Soc. Jpn., 76(2), 335–343.
  45. Liu, G. and J. A. Curry (1999), Tropical Ice Water Amount and Its Relations to Other Atmospheric Hydrological Parameters as Inferred from Satellite DataJ. Appl. Meteorol., 38, 1182–1194.
  46. Mätzler, C. (2006), Thermal Microwave Radiation: Application for Remote Sensing, chap. Microwave dielectric properties of ice, pp. 455–462, Inst. Eng. Technol., Stevenage, U. K.
  47. Manabe, T., K. Sato, and T. Ihara (1992), Measurement of Complex Refractive Index of Soda-Lime Glass at 60 GHz by Vector-Network-Analyser-Based ScatterometerElec. Lett., 28(14), 1354–1355, doi:10.1049/el:19920859.
  48. Marzano, F. S., M. Palmacci, D. Cimini, G. Giuliani, and F. J. Turk (2004), Multivariate Statistical Integration of Satellite Infrared and Microwave Radiometric Measurements for Rainfall Retrieval at the Geostationary ScaleIEEE T. Geosci. Remote, 42(5), 1018–1032, doi:10.1109/TGRS.2003.820312.
  49. Marzano, F. S., M. Lamantea, M. Montopoli, S. Di Fabio, and E. Picciotti (2011), The Eyjafjöll explosive volcanic eruption from a microwave weather radar perspectiveAtmos. Chem. Phys. Discuss., 12367–12409, doi:10.5194/acpd-11-12367-2011.
  50. Masunaga, H. and C. D. Kummerow (2005), Combined Radar and Radiometer Analysis of Precipitation Profiles for a Parametric Retrieval AlgorithmJ. Atmos. Oceanic Technol., 22, 909–929, doi:10.1175/JTECH1751.1.
  51. Mattioli, V., E. R. Westwater, D. Cimini, A. J. Gasiewski, M. Klein, and V. Y. Leuski (2008), Microwave and Millimeter-Wave Radiometric and Radiosonde observations in an Arctic EnvironmentJ. Atmos. Oceanic Technol., 25, 1768–1777, doi:10.1175/2008JTECHA1078.1.
  52. McKinney, R. P. and N. I. Yamane (1981), ORION — Microwave Water Vapor Radiometer Subsystem Design, NASA JPL, Microwave Observational Systems Section, The Telecommunications and Data Acquisition Progress Report, TDA PR 42-62.
  53. Mech, M., E. Orlandi, S. Crewell, F. Ament, L. Hirsch, M. Hagen, G. Peters, and B. Stevens (2014), HAMP - the microwave package on the High Altitude and LOng range research aircraft (HALO)Atmos. Meas. Tech., 7(12), 4539–4553, doi:10.5194/amt-7-4539-2014.
  54. Melsheimer, C. and G. Heygster (2008), Improved Retrieval of Total Water Vapor Over Polar Regions From AMSU-B Microwave Radiometer DataIEEE T. Geosci. Remote, 46, 2307–2322, doi:10.1109/TGRS.2008.918013.
  55. Mo, T. and Q. Liu (2008), A study of AMSU-A measurement of brightness temperatures over the oceanJ. Geophys. Res., 113, D17120, doi:10.1029/2008JD009784.
  56. Mugnai, A., H. J. Cooper, E. A. Smith, and G. J. Tripoli (1990), Simulation of Microwave Brightness Temperatures of an Evolving Hailstorm at SSM/I FrequenciesBull. Amer. Met. Soc., 71(1), 2–13, doi:10.1175/1520-0477(1990)071<0002:SOMBTO>2.0.CO;2.
  57. Ning, T., G. Elgered, and J.M. Johansson (2011), The impact of microwave absorber and radome geometries on GNSS measurements of station coordinates and atmospheric water vapourAdv. Space. Res., 47(2), 186–196, doi:10.1016/j.asr.2010.06.023.
  58. Njoku, E. G. and D. Entekhabi (1996), Passive microwave remote sensing of soil moistureJ. Hydrology, 184, 101–129.
  59. Payne, V. H., J. S. Delamere, K. E. Cady-Pereira, R. R. Gamache, J.-L. Moncet, E. J. Mlawer, and S. A. Clough (2008), Air-Broadened Half-Widths of the 22- and 183-GHz Water-Vapor LinesIEEE T. Geosci. Remote, 46(11), 3601–3617, doi:10.1109/TGRS.2008.2002435.
  60. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart (1999), Magnetism from Conductors and Enhanced Nonlinear PhenomenaIEEE T. Microw. Theory, 47(11), 2075–2084.
  61. Petty, G. W. and W. Huang (2010), Microwave Backscatter and Extinction by Soft Ice Spheres and Complex Snow AggregatesJ. Atmos. Sci., 67, 769–787, doi:10.1175/2009JAS3146.1.
  62. Prigent, C., E. Jaumouillé, F. Chevallier, and F. Aires (2008), A Parameterization of the Microwave Land Surface Emissivity Between 19 and 100 GHz, Anchored to Satellite-Derived EstimatesIEEE Geosci. Remote Sens., 46, 1–9, doi:10.1109/TGRS.2007.908881.
  63. Pritchard, E. W., C. Lee, B. Moyna, M. Philipp, J. E. Charlton, and V. Kangas (2012), The Cloud and Precipitation Airborne Radiometer — Populating the International Sub-Millimetre Airborne Radiometer, In: Geoscience and Remote Sensing Symposium (IGARSS), 2012 IEEE International, doi:10.1109/IGARSS.2012.6351301.
  64. Rapp, A. D., G. Elsaesser, and C. Kummerow (2009), A Combined Multisensor Optimal Estimation Retrieval Algorithm for Oceanic Warm Rain CloudsJ. Appl. Meteorol. Clim., 48, 2242–2256.
  65. Rose, T., S. Crewell, U. Löhnert, and C. Simmer (2005), A network suitable microwave radiometer for operational monitoring of the cloudy atmosphereAtmos. Res., 75, 183–200, doi:10.1016/j.atmosres.2004.12.005.
  66. Rosenkranz, P. W. (1993), Absorption of microwaves by atmospheric gases, In: Atmospheric remote sensing by microwave radiometry, pp. 37–90, Edited by Janssen, M. A., John Wiley and Sons, Inc., ISBN 0-471-62891-3.
  67. Sheu, R.-S., J. A. Curry, and G. Liu (1996), Satellite retrieval of tropical precipitation using combined International Satellite Cloud Climatology Project DX and SSM/I DataJ. Geophys. Res., 101(D16), 21,291–21,301.
  68. Smith, E. A., P. Bauer, F. S. Marzano, C. D. Kummerow, D. McKague, A. Mugnai, and G. Panegrossi (2002), Intercomparison of Microwave Radiative Transfer Models for Precipitating CloudsIEEE Geosci. Remote Sens., 40(3), 541–549.
  69. Sorooshian, S., K.-L. Hsu, X. Gao, H. V. Gupta, B. Imam, and D. Braithwaite (2000), Evaluation of PERSIANN System Satellite-Based Estimates of Tropical RainfallBull. Amer. Met. Soc., 81(9), 2035–2046.
  70. Spencer, R. W. and J. R. Christy (1992), Precision and Radiosonde Validation of Satellite Gridpoint Temperature Anomalies. Part I: MSU Channel 2J. Climate, 5(8), 847–857, doi:10.1175/1520-0442.
  71. Staelin, D. H. and C. Surussavadee (2006), Precipitation Retrieval Accuracies for Geo-Microwave SoundersIEEE T. Geosci. Remote, 41–44.
  72. Taylor, J. P. and S. J. English (1995), The retrieval of cloud radiative and microphysical properties using combined near-infrared and microwave radiometryQ. J. R. Meteorol. Soc., 121, 1083–1112.
  73. Thies, B. and J. Bendix (2011), Satellite based remote sensing of weather and climate: recent achievements and future perspectivesMet. Appl., 18, 262–295, doi:10.1002/met.288.
  74. Tian, M., X. Zou, and F. Weng (2015), Use of Allan Deviation for Characterizing Satellite Microwave Sounder Noise Equivalent Differential Temperature (NEDT)IEEE Geosci. Remote Sens. Let., 12(12), 2477–2480, doi:10.1109/LGRS.2015.2485945.
  75. Turner, D. D., S. Kneifel, and M. P. Cadeddu (2016), An Improved Liquid Water Absorption Model at Microwave Frequencies for Supercooled Liquid Water CloudsJ. Atmos. Oceanic Technol., 33(1), 33–44, doi:10.1175/JTECH-D-15-0074.1.
  76. Urban, J., K. Dassas, F. Forget, and P. Ricaud (2005), Retrieval of vertical constituents and temperature profiles from passive submillimeter wave limb observations of the Martian atmosphere: a feasibility studyAppl. Opt., 44, 2438–2455.
  77. Vivekanandan, J., J. Turk, and V. N. Bringi (1991), Ice Water Path Estimation and Characterization Using Passive Microwave RadiometryJ. Appl. Meteorol., 30, 1407–1421.
  78. Westwater, E. R., Y. Han, M. D. Shupe, and S. Y. Matrosov (2001), Analysis of integrated cloud liquid and precipitable water vapor retrievals from microwave radiometers during the Surface Heat Budget of the Arctic Ocean projectJ. Geophys. Res., 106(D23), 32019–32030, doi:10.1029/2000JD000055.
  79. Westwater, E. R. (1978), The accuracy of water vapor and cloud liquid determination by dual-frequency ground-based microwave radiometryRadio Sci., 13(4), 677–685, doi:10.1029/RS013i004p00677.
  80. Wood, N. B., T. S. L'Ecuyer, A. J. Heymsfield, and G. L. Stephens (2015), Microphysical Constraints on Millimeter-Wavelength Scattering Properties of Snow ParticlesJ. Appl. Meteorol. Clim., 54, 909–931, doi:10.1175/JAMC-D-14-0137.1.
  81. Wu, D. L., A. Lambert, W. G. Read, P. Eriksson, and J. Gong (2014), MLS and CALIOP Cloud Ice Measurements in the Upper Troposphere: A Constraint from Microwave on Cloud MicrophysicsJ. Appl. Meteorol. Clim., 53(1), 157–165, doi:10.1175/JAMC-D-13-041.1.
  82. Xie, X. and J. Miao (2011), Polarization difference due to nonrandomly oriented ice particles at millimeter/submillimeter wavebandJ. Quant. Spectrosc. Radiat. Transfer, 112, 1090–1098, doi:10.1016/j.jqsrt.2010.11.020.
  83. Ku, L., X. Gao, S. Sorooshian, P. A. Arkin, and B. Imam (1999), A Microwave Infrared Threshold Technique to Improve the GOES Precipitation IndexJ. Appl. Meteorol., 38, 569–579.
  84. Zou, X., Y. Ma, and Z. Qin (2012), Fengyun-3B MicroWave Humidity Sounder (MWHS) Data Noise Characterization and Filtering Using Principle Component AnalysisIEEE T. Geosci. Remote, 50(12), 4892–4902, doi:10.1109/TGRS.2012.2202122.