There is currently a filter applied. To see the complete list of publications, clear the filter.
Baran, A. J. (2009), A review of the light scattering properties of cirrus, J. Quant. Spectrosc. Radiat. Transfer, 110, 1239–1260, doi:10.1016/j.jqsrt.2009.02.026.
Baran, A. J., P. J. Connolly, and C. Lee (2009), Testing an ensemble model of cirrus ice crystals using midlatitude in situ estimates of Ice water content, volume extinction coefficient and the total solar optical depth, J. Quant. Spectrosc. Radiat. Transfer, 110, 1579–1598, doi:10.1016/j.jqsrt.2009.02.021.
Baran, A. J., A. Bodas-Salcedo, R. Cottona, and C. Lee (2011), Simulating the equivalent radar reflectivity of cirrus at 94 GHz using an ensemble model of cirrus ice crystals: a test of the Met Office global numerical weather prediction model, Q. J. R. Meteorol. Soc., Not published yet, doi:10.1002/qj.870.
Baran, A. J., R. Cotton, K. Furtado, S. Havemann, L.-C. Labonnote, F. Marenco, A. Smith, and J.-C. Thelen (2014), A self-consistent scattering model for cirrus. II: The high and low frequencies, Q. J. R. Meteorol. Soc., 140(680), 1039–1057, doi:10.1002/qj.2193.
Battaglia, A. and S. Mantovani (2005), Forward Monte Carlo computations of fully polarized microwave radiation in non-isotropic media, J. Quant. Spectrosc. Radiat. Transfer, 95, 285–308.
Clough, S. A., M. W. Shephard, E. J. Mlawer, J. S. Delamere, M. Iacono, K. Cady-Pereira, S. Boukabara, and P. D. Brown (2005), Atmospheric radiative transfer modeling: a summary of the AER codes, J. Quant. Spectrosc. Radiat. Transfer, 91(2), 233–244, doi:10.1016/j.jqsrt.2004.05.058.
Czekala, H. (1998), Effects of ice particle shape and orientation on polarized microwave radiation for off-nadir problems, Geophys. Res. Lett., 25(10), 1669–1672.
Deirmendjian, D. (1963), Complete Microwave Scattering and Extinction Properties of Polydispersed Cloud and Rain Elements, United States Air Force, RAND, R-422-PR.
Geer, A. J. and F. Baordo (2014), Improved scattering radiative transfer for frozen hydrometeors at microwave frequencies, Atmos. Meas. Tech., 7, 1839–1860, doi:10.5194/amt-7-1839-2014.
Kim, M.-J., M. S. Kulie, C. O'Dell, and R. Bennartz (2007), Scattering of Ice Particles at Microwave Frequencies: A Physically Based Parameterization, J. Appl. Meteorol. Clim., 46(5), 615–633, doi:10.1175/JAM2483.1.
Liu, G. and E.-K. Seo (2013), Detecting snowfall over land by satellite high-frequency microwave observations: The lack of scattering signature and a statistical approach, J. Geophys. Res., 118(3), 1376–1387, doi:10.1002/jgrd.50172.
Mayer, B. and A. Kylling (2005), Technical note: The libRadtran software package for radiative transfer calculations - description and examples of use, Atmos. Chem. Phys., 5, 1855–1877, doi:10.5194/acp-5-1855-2005.
Mishchenko, M. I. (2009), Gustav Mie and the fundamental concept of electromagnetic scattering by particles: A perspective, J. Quant. Spectrosc. Radiat. Transfer, 110, 1210–1222, doi:10.1016/j.jqsrt.2009.02.002.
Mishchenko, M. I. and L. D. Travis (1998), Capabilities and limitations of a current FORTRAN implementation of the T-matrix method for randomly oriented rotationally symmetric scatterers, J. Quant. Spectrosc. Radiat. Transfer, 60(3), 309–324, doi:10.1016/S0022-4073(98)00008-9.
Naud, C., F. Di Guiseppe, J. E. Russell, R. Rizzi, and J. E. Harries (1111), Comparison of a two-stream parameterisation and high resolution full scattering calculation for cirrus effect on atmospheric heating rates in the far infrared, Space and Atmospheric Physics group, University of Bologna.
Prigent, C., E. Defer, J. R. Pardo, C. Pearl, W. B. Rossow, and J.-P. Pinty (2005), Relations of polarized scattering signatures observed by the TRMM Microwave Instrument with electrical processes in cloud systems, Geophys. Res. Lett., 32, L04810, doi:10.1029/2004GL022225.
Wiscombe, W. J. (1977), The Delta-M Method: Rapid Yet Accurate Radiative Flux Calculations for Strongly Asymmetric Phase Functions, J. Atmos. Sci., 34, 1408–1422.
Wood, N. B., T. S. L'Ecuyer, A. J. Heymsfield, and G. L. Stephens (2015), Microphysical Constraints on Millimeter-Wavelength Scattering Properties of Snow Particles, J. Appl. Meteorol. Clim., 54, 909–931, doi:10.1175/JAMC-D-14-0137.1.
Yang, P., H. Wei, H.-L. Huang, B. A. Baum, Y. X. Hu, G. W. Kattawar, M. I. Mishchenko, and Q. Fu (2005), Scattering and absorption property database for nonspherical ice particles in the near- through far-infrared spectral region, Appl. Opt., 44(26), 5512–5523, doi:10.1364/AO.44.005512.
Yang, P. and K. N. Liou (1996), Geometric-optics–integral-equation method for light scattering by nonspherical ice crystals, Appl. Opt., 35(33), 6568–6584, doi:10.1364/AO.35.006568.
Yurkin, M. A. and A. G. Hoekstra (2011), The discrete-dipole-approximation code ADDA: Capabilities and known limitations, J. Quant. Spectrosc. Radiat. Transfer, 112, 2234–2247, doi:10.1016/j.jqsrt.2011.01.031.
Zhang, Z., P. Yang, G. W. Kattawar, S. Tsay, B. A. Baum, Y. Hu, A. J. Heymsfield, and J. Reichardt (2004), Geometrical-optic solution to light scattering by droxtal ice crystals, Appl. Opt., 43(12).