| a-train | abs lookup | absorption | aerosols | aggregation | airs | albedo | algorithm | amsu | annual cycle | anomalies | aqua | ar4 | ar5 | arctic | arm | arts | arts-dev | asr | assimilation | astrophysics | atmosphere | atmospheric composition | atmospheric dynamics | atmospheric profiles | atsr-2 | avhrr | backscattering | basics | bayes | book | calculation | calculations | calibration | calipso | ccn | cdr | ceres | cfmip | chemistry | cia | ciraclim | cirrus | cirrus anvil sublimation | cirrus cloud | cirrus clouds | cirrusstudy | ciwsir/cloudice | claus | climate | climate change | climate dynamics | climate feedbacks | climate sensitivity | climate sensivity | climate variability | climatology | cloud feedback | cloud forcing | cloud fraction | cloud ice | cloud properties | cloud radiative effects | cloud radiative forcing | cloud regimes | clouds | cloudsat | cmip3 | cmip5 | cmip6 | cmsaf | co2 | collocation | comparison | computer science | continua | contrail | convection | convective clouds | convective processes | convective self-aggregation | correlated k | cosmic background | cosmic rays | cosp | cross-calibration | cth | cumulus | dardar | data bases | dda | deep convection | delta m | dimer | disort | diurnal cycle | dmsp | documentation | droplet size | dynamics | earth | earthcare | echam | ecmwf | effective radius | electromagnetism | electron content | elevation | elevation satellite-2 | emd | emissivity | enso | eof-pca-svd | erbe | error assessment | ers | eruption | esa planetary | exoplanets | extraterrestrial | fall speed | far-infrared | faraday-voigt | fcdr | feedback | feedbacks | fingerprinting | flux uav | forcing | forest fire | fox19_airborne_amt.pdf | friend | fun | gcm | genesis | geostationary | gerrit_erca | global warming | gnss | goes | gps | gras | graupel | greenhouse effect | groundbased | hadley circulation | hail | heating rate | heating rates | herschel | hiatus | hirs | history | hsb | humidity | hydrological sensitivity | hydrological sensivity | iasi | ice | ice clouds | ice crystal growth | ice nucleation | ice water | icesat-2 | ici | icon | icz | in situ | infrared | instruments | intercalibration | intercomparison | interference | inverse modelling | ipcc | ir/vis | iris | isccp | ismar | isotopes | itcz | iwc | iwp | iwv | jupiter | kessler scheme | lblrtm | lidar | limb effect | limb sounding | limb-correction | linemixing | lineshape | liquid water | liquid water path | longwave radiation | low-cloud feedback | magnetic field | magnetism | mars | mas | mass-dimension relation | masters thesis | math | megha-tropiques | mendrok | mesoscale organization | meteorology | meteosat | metop | mhs | microphysics | microwave | mipas | mirs | misr | mixed phase | mls | model | modeling | models | modis | monte carlo | mspps | msu | mth | multi-moment scheme | multisensor | mwhs | mwi | net radiation | neural network | nicam | nlte | noaa | nonsphericity | npoess | observation | ocean | ocean reflection | ocean-atmosphere interactions | odin | olr | one-moment scheme | open loop | optical | optical depth | optical properties | optics | orbital drift | orbits | ozone | pacific ocean | particle orientation | particle shape | particle size | particle size distribution | patmos-x | phase function | phd thesis | polarimetry | polarization | polder | potss | precipitation | profile datasets | programming | projection | promet | propagation modeling | python | radar | radiation | radiation profiles | radiative convective equilibrium | radiative equilibrium | radiative feedback | radiative fluxes | radiative forcing | radiative processes | radiative transfer | radiative-convective equilibrium | radiative-equilibrium | radio occultation | radiometers | radiosonde | radiosonde cloud liquid | radiosonde correction | rain | reanalysis | refractive index | relative humidity | remote sensing | retrieval | review | rodgers | rttov | sahara | sahel | sampling | sand/dust | sar | satellite | satellite missions | satellite observations | satellite simulator | sbuehler_habil | scattering | scattering databases | scintillations | scout-amma | self-aggregation | sensor geometry | seviri | shallow convection | simulated annealing | single scattering | smiles | sno | snow | snowfall | software | soil | solar | soot | sounders | spectral information | spectroscopy | split window technique | ssm/i | ssm/t | ssmis | ssmt2 | stability | statistics | ste | stereo | stratosphere | submillimeter | submm | sun | supersaturation | surface | synergies | task2 | tempera | temperature | terra | thermodynamics | time series | titan | toa radiation | top of the atmosphere | total column | tovs | trade-wind clouds | trajectory analysis | trend | trmm | tropical circulation | tropical convection | tropical meteorology | tropics | tropopause | troposphere | ttl | turbulence | tutorial | two-moment scheme | upper troposphere | uth | utls | validation | vater vapor | venus | visualization | volcanic ash | walker circulation | walker rirculation | water | water cycle | water dimer | water vapor | water vapor continuum | water vapour | water vapour path | water-vapour | wind | zeeman |

Hide tag cloud

Filter by author:
Filter by year:
Filter by bibtex key:
Filter by type:
Filter by keyword:
and
and
 

Filtered by keyword:scattering

There is currently a filter applied. To see the complete list of publications, clear the filter.
  1. Baran, A. J. (2009), A review of the light scattering properties of cirrusJ. Quant. Spectrosc. Radiat. Transfer, 110, 1239–1260, doi:10.1016/j.jqsrt.2009.02.026.
  2. Baran, A. J., P. J. Connolly, and C. Lee (2009), Testing an ensemble model of cirrus ice crystals using midlatitude in situ estimates of Ice water content, volume extinction coefficient and the total solar optical depthJ. Quant. Spectrosc. Radiat. Transfer, 110, 1579–1598, doi:10.1016/j.jqsrt.2009.02.021.
  3. Baran, A. J., A. Bodas-Salcedo, R. Cottona, and C. Lee (2011), Simulating the equivalent radar reflectivity of cirrus at 94 GHz using an ensemble model of cirrus ice crystals: a test of the Met Office global numerical weather prediction modelQ. J. R. Meteorol. Soc., Not published yet, doi:10.1002/qj.870.
  4. Baran, A. J., R. Cotton, K. Furtado, S. Havemann, L.-C. Labonnote, F. Marenco, A. Smith, and J.-C. Thelen (2014), A self-consistent scattering model for cirrus. II: The high and low frequenciesQ. J. R. Meteorol. Soc., 140(680), 1039–1057, doi:10.1002/qj.2193.
  5. Battaglia, A. and S. Mantovani (2005), Forward Monte Carlo computations of fully polarized microwave radiation in non-isotropic mediaJ. Quant. Spectrosc. Radiat. Transfer, 95, 285–308.
  6. Clough, S. A., M. W. Shephard, E. J. Mlawer, J. S. Delamere, M. Iacono, K. Cady-Pereira, S. Boukabara, and P. D. Brown (2005), Atmospheric radiative transfer modeling: a summary of the AER codesJ. Quant. Spectrosc. Radiat. Transfer, 91(2), 233–244, doi:10.1016/j.jqsrt.2004.05.058.
  7. Czekala, H. (1998), Effects of ice particle shape and orientation on polarized microwave radiation for off-nadir problemsGeophys. Res. Lett., 25(10), 1669–1672.
  8. Deirmendjian, D. (1963), Complete Microwave Scattering and Extinction Properties of Polydispersed Cloud and Rain Elements, United States Air Force, RAND, R-422-PR.
  9. Geer, A. J. and F. Baordo (2014), Improved scattering radiative transfer for frozen hydrometeors at microwave frequenciesAtmos. Meas. Tech., 7, 1839–1860, doi:10.5194/amt-7-1839-2014.
  10. Haller, M. and P. Catalán (2010), Detecting breaking ocean waves through microwave scatteringSPIE News, 1–3, doi:10.1117/2.1201006.003015.
  11. Kim, M.-J., M. S. Kulie, C. O'Dell, and R. Bennartz (2007), Scattering of Ice Particles at Microwave Frequencies: A Physically Based ParameterizationJ. Appl. Meteorol. Clim., 46(5), 615–633, doi:10.1175/JAM2483.1.
  12. Liu, G. and E.-K. Seo (2013), Detecting snowfall over land by satellite high-frequency microwave observations: The lack of scattering signature and a statistical approachJ. Geophys. Res., 118(3), 1376–1387, doi:10.1002/jgrd.50172.
  13. Mätzler, C. (2002), MATLAB Functions for Mie Scattering and Absorption, , IAP Res. Rep. No. 02-08.
  14. Mayer, B. and A. Kylling (2005), Technical note: The libRadtran software package for radiative transfer calculations - description and examples of useAtmos. Chem. Phys., 5, 1855–1877, doi:10.5194/acp-5-1855-2005.
  15. Mishchenko, M. I. (2009), Gustav Mie and the fundamental concept of electromagnetic scattering by particles: A perspectiveJ. Quant. Spectrosc. Radiat. Transfer, 110, 1210–1222, doi:10.1016/j.jqsrt.2009.02.002.
  16. Mishchenko, M. I. and L. D. Travis (1998), Capabilities and limitations of a current FORTRAN implementation of the T-matrix method for randomly oriented rotationally symmetric scatterersJ. Quant. Spectrosc. Radiat. Transfer, 60(3), 309–324, doi:10.1016/S0022-4073(98)00008-9.
  17. Naud, C., F. Di Guiseppe, J. E. Russell, R. Rizzi, and J. E. Harries (1111), Comparison of a two-stream parameterisation and high resolution full scattering calculation for cirrus effect on atmospheric heating rates in the far infrared, Space and Atmospheric Physics group, University of Bologna.
  18. Prigent, C., E. Defer, J. R. Pardo, C. Pearl, W. B. Rossow, and J.-P. Pinty (2005), Relations of polarized scattering signatures observed by the TRMM Microwave Instrument with electrical processes in cloud systemsGeophys. Res. Lett., 32, L04810, doi:10.1029/2004GL022225.
  19. Sihvola, L. Oikarinen E. and E. Kyroelae (1999), Multiple scattering radiance in limb-viewing geometryJ. Geophys. Res., 104(D24), 31,261–31,274.
  20. van de Hulst, H. C. (1981), Light Scattering by Small Particles, Dover Publications.
  21. Wiscombe, W. J. (1977), The Delta-M Method: Rapid Yet Accurate Radiative Flux Calculations for Strongly Asymmetric Phase FunctionsJ. Atmos. Sci., 34, 1408–1422.
  22. Wood, N. B., T. S. L'Ecuyer, A. J. Heymsfield, and G. L. Stephens (2015), Microphysical Constraints on Millimeter-Wavelength Scattering Properties of Snow ParticlesJ. Appl. Meteorol. Clim., 54, 909–931, doi:10.1175/JAMC-D-14-0137.1.
  23. Yang, P., H. Wei, H.-L. Huang, B. A. Baum, Y. X. Hu, G. W. Kattawar, M. I. Mishchenko, and Q. Fu (2005), Scattering and absorption property database for nonspherical ice particles in the near- through far-infrared spectral regionAppl. Opt., 44(26), 5512–5523, doi:10.1364/AO.44.005512.
  24. Yang, P. and K. N. Liou (1996), Geometric-optics–integral-equation method for light scattering by nonspherical ice crystalsAppl. Opt., 35(33), 6568–6584, doi:10.1364/AO.35.006568.
  25. Yurkin, M. A. and A. G. Hoekstra (2011), The discrete-dipole-approximation code ADDA: Capabilities and known limitationsJ. Quant. Spectrosc. Radiat. Transfer, 112, 2234–2247, doi:10.1016/j.jqsrt.2011.01.031.
  26. Zhang, Z., P. Yang, G. W. Kattawar, S. Tsay, B. A. Baum, Y. Hu, A. J. Heymsfield, and J. Reichardt (2004), Geometrical-optic solution to light scattering by droxtal ice crystalsAppl. Opt., 43(12).