| a-train | abs lookup | absorption | aerosols | aggregation | airs | albedo | algorithm | amsu | annual cycle | anomalies | aqua | ar4 | ar5 | arctic | arm | arts | arts-dev | asr | assimilation | astrophysics | atmosphere | atmospheric composition | atmospheric dynamics | atmospheric profiles | atsr-2 | avhrr | backscattering | basics | bayes | book | calculation | calculations | calibration | calipso | ccn | cdr | ceres | cfmip | chemistry | cia | ciraclim | cirrus | cirrus anvil sublimation | cirrus cloud | cirrus clouds | cirrusstudy | ciwsir/cloudice | claus | climate | climate change | climate dynamics | climate feedbacks | climate sensitivity | climate sensivity | climate variability | climatology | cloud feedback | cloud forcing | cloud fraction | cloud ice | cloud properties | cloud radiative effects | cloud radiative forcing | cloud regimes | clouds | cloudsat | cmip3 | cmip5 | cmip6 | cmsaf | co2 | collocation | comparison | computer science | continua | contrail | convection | convective clouds | convective processes | convective self-aggregation | correlated k | cosmic background | cosmic rays | cosp | cross-calibration | cth | cumulus | dardar | data bases | dda | deep convection | delta m | dimer | disort | diurnal cycle | dmsp | documentation | droplet size | dynamics | earth | earthcare | echam | ecmwf | effective radius | electromagnetism | electron content | elevation | elevation satellite-2 | emd | emissivity | enso | eof-pca-svd | erbe | error assessment | ers | eruption | esa planetary | exoplanets | extraterrestrial | fall speed | far-infrared | faraday-voigt | fcdr | feedback | feedbacks | fingerprinting | flux uav | forcing | forest fire | fox19_airborne_amt.pdf | friend | fun | gcm | genesis | geostationary | gerrit_erca | global warming | gnss | goes | gps | gras | graupel | greenhouse effect | groundbased | hadley circulation | hail | heating rate | heating rates | herschel | hiatus | hirs | history | hsb | humidity | hydrological sensitivity | hydrological sensivity | iasi | ice | ice clouds | ice crystal growth | ice nucleation | ice water | icesat-2 | ici | icon | icz | in situ | infrared | instruments | intercalibration | intercomparison | interference | inverse modelling | ipcc | ir/vis | iris | isccp | ismar | isotopes | itcz | iwc | iwp | iwv | jupiter | kessler scheme | lblrtm | lidar | limb effect | limb sounding | limb-correction | linemixing | lineshape | liquid water | liquid water path | longwave radiation | low-cloud feedback | magnetic field | magnetism | mars | mas | mass-dimension relation | masters thesis | math | megha-tropiques | mendrok | mesoscale organization | meteorology | meteosat | metop | mhs | microphysics | microwave | mipas | mirs | misr | mixed phase | mls | model | modeling | models | modis | monte carlo | mspps | msu | mth | multi-moment scheme | multisensor | mwhs | mwi | net radiation | neural network | nicam | nlte | noaa | nonsphericity | npoess | observation | ocean | ocean reflection | ocean-atmosphere interactions | odin | olr | one-moment scheme | open loop | optical | optical depth | optical properties | optics | orbital drift | orbits | ozone | pacific ocean | particle orientation | particle shape | particle size | particle size distribution | patmos-x | phase function | phd thesis | polarimetry | polarization | polder | potss | precipitation | profile datasets | programming | projection | promet | propagation modeling | python | radar | radiation | radiation profiles | radiative convective equilibrium | radiative equilibrium | radiative feedback | radiative fluxes | radiative forcing | radiative processes | radiative transfer | radiative-convective equilibrium | radiative-equilibrium | radio occultation | radiometers | radiosonde | radiosonde cloud liquid | radiosonde correction | rain | reanalysis | refractive index | relative humidity | remote sensing | retrieval | review | rodgers | rttov | sahara | sahel | sampling | sand/dust | sar | satellite | satellite missions | satellite observations | satellite simulator | sbuehler_habil | scattering | scattering databases | scintillations | scout-amma | self-aggregation | sensor geometry | seviri | shallow convection | simulated annealing | single scattering | smiles | sno | snow | snowfall | software | soil | solar | soot | sounders | spectral information | spectroscopy | split window technique | ssm/i | ssm/t | ssmis | ssmt2 | stability | statistics | ste | stereo | stratosphere | submillimeter | submm | sun | supersaturation | surface | synergies | task2 | tempera | temperature | terra | thermodynamics | time series | titan | toa radiation | top of the atmosphere | total column | tovs | trade-wind clouds | trajectory analysis | trend | trmm | tropical circulation | tropical convection | tropical meteorology | tropics | tropopause | troposphere | ttl | turbulence | tutorial | two-moment scheme | upper troposphere | uth | utls | validation | vater vapor | venus | visualization | volcanic ash | walker circulation | walker rirculation | water | water cycle | water dimer | water vapor | water vapor continuum | water vapour | water vapour path | water-vapour | wind | zeeman |

Hide tag cloud

Filter by author:
Filter by year:
Filter by bibtex key:
Filter by type:
Filter by keyword:
and
and
 

Filtered by keyword:climate

There is currently a filter applied. To see the complete list of publications, clear the filter.
  1. Ackerman, A. S., M. P. Kirkpatrick, D. E. Stevens, and O. B. Toon (2004), The impact of humidity above stratiform clouds on indirect aerosol climate forcingNature, 432(7020), 1014–1017, doi:10.1038/nature03174.
  2. Aghedo, A. M., K. W. Bowman, D. T. Shindell, and G. Faluvegi (2011), The impact of orbital sampling, monthly averaging and vertical resolution on climate chemistry model evaluation with satellite observationsAtmos. Chem. Phys. Discuss., 11, 9705–9742, doi:10.5194/acpd-11-9705-2011.
  3. Alan, R. P. and A. Slingo (2002), Can current climate model forcings explain the spatial and temporal signatures of decadal ORL variation?Geophys. Res. Lett., 29(7), doi:10.1029/2001GL014620.
  4. Albrecht, B. A., V. Ramanathan, and B. A. Boville (1986), The Effects of Cumulus Moisture Transports on the Simulation of Climate with a General Circulation ModelJ. Atmos. Sci., 43(21), 2443–2462.
  5. Allan, R. P., V. Ramaswamy, and A. Slingo (2002), Diagnostic analysis of atmospheric moisture and clear-sky radiative feedback in the Hadley Centre and Geophysical Fluid Dynamics Laboratory GFDL climate modelsJ. Geophys. Res., 107(D17), doi:10.1029/2001JD001131.
  6. Allan, R. P., M. A. Ringer, and A. Slingo (2003), Evaluation of moisture in the Hadley Centre climate model using simulations of HIRS water-vapour channel radiancesQ. J. R. Meteorol. Soc., 129, 3371–3389, doi:10.1256/qj.02.217.
  7. Allen, R. P. and A. Slingo (2002), Analysis of moisture variability in the European Centre for Medium-Range Weather Forecasts 15-year reanalysis over the tropical oceansJ. Geophys. Res., 107(D15), doi:10.1029/2001JD001132.
  8. Allen, M. R. and D. J. Frame (2007), Call Off the QuestScience, 318, 582–583, doi:10.1126/science.1149988.
  9. Alley, R., et al. (2007), Climate Change 2007: The Physical Science Basis – Summary for Policymakers, IPCC, Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change.
  10. Anderson, J. G., J. A. Dykemaa, R. M. Goody, H. Hua, and D. B. Kirk-Davidoff (2003), Absolute, spectrally-resolved, thermal radiance: a benchmark for climate monitoring from spaceJ. Quant. Spectrosc. Radiat. Transfer, doi:10.1016/S0022-4073(03)00232-2.
  11. Appenzeller, C., T. F. Stocker, and M. Anklin (1998), North Atlantic Oscillation Dynamics Recorded in Greenland Ice CoresScience, 282, 446–448.
  12. Appleman, H. S. (1953), The formation of exhaust condensation trails by jet aircraftBull. Amer. Met. Soc., 34, 14–20.
  13. Asrar, G., J. A. Kaye, and P. Morel (2001), NASA Research Strategy for Earth System Science: Climate ComponentBull. Amer. Met. Soc., 82(7), 1309–1329.
  14. Asrar, G., S. Bony, O. Boucher, A. Busalacchi, A. Cazenave, M. Dowell, G. Flato, G. Hegerl, E. Källén, T. Nakajima, A. Ratier, R. Saunders, J. Slingo, B.-J. Sohn, J. Schmetz, B. Stevens, P. Zhang, and F. Zwiers (2015), Climate Symposium 2014 - Findings and RecommendationsBull. Amer. Met. Soc., 96(9), ES145–ES147, doi:10.1175/BAMS-D-15-00003.1.
  15. Augustsson, T. and V. Ramanathan (1977), A Radiative-Convective Model Study of the CO2 Climate ProblemJ. Atmos. Sci., 34(3), 448–451, doi:10.1175/1520-0469(1977)034<0448:ARCMSO>2.0.CO;2.
  16. Baran, A. J. (2003), Simulation of infrared scattering from ice aggregates using a size/shape distribution of ice cylindersAppl. Opt., 42, 2811–2818.
  17. Baran, A. J. and P. N. Francis (2004), On the radiative properties of cirrus cloud at solar and thermal wavelengths: A test of model consistency using high-resolution airborne radiance measurementsQ. J. R. Meteorol. Soc., 130, 1–16.
  18. Baran, A. J. (2005), The dependence of cirrus infrared radiative properties in ice crystal geometry and shape of the size-distribution functionQ. J. R. Meteorol. Soc., 131, 1129–1142.
  19. Baran, A. J. (2012), From the single-scattering properties of ice crystals to climate prediction: A way forwardAtmos. Res., 112, 45–69, doi:10.1016/j.atmosres.2012.04.010.
  20. Barker, J. R. and M. H. Ross (1999), An introduction to global warmingAm. J. Phys., 67(12), 1216–1226.
  21. Bates, J. R. (2007), Some considerations of the concept of climate feedbackQ. J. R. Meteorol. Soc., 133, 545–560, doi:10.1002/qj.62.
  22. Bell, T. L., M.-D. Chou, A. Y. Hou, and R. S. Lindzen (2002), ReplyBull. Amer. Met. Soc., 598–600.
  23. Bengtsson, L., S. Hagemann, and K. I. Hodges (2004), Can climate trends be calculated from reanalysis data?J. Geophys. Res., 109, D11111, doi:10.1029/2004JD004536.
  24. Berger, A., M. F. Loutre, and M. Crucifix (2003), The Earth's Climate in the next hundred thousand years (100 kry)Geophysics, 24, 117–138.
  25. Birkenheuer, D. (1998), P5.27A Radiance Assimilation of Polar and Geostationary Satellite Data in Laps, NOAA Forecasts systems Laboratory.
  26. Blunden, J. and D. S. Arndt (ed.) (2017), State of the Climate in 2016Bull. Amer. Met. Soc., 98(8), Si–S277, doi:10.1175/2017BAMSStateoftheClimate.1.
  27. Blunden, J., D. S. Arndt, and G. Harfield (ed.) (2018), State of the Climate in 2017Bull. Amer. Met. Soc., 99(8), Si–S310, doi:10.1175/2018BAMSStateoftheClimate.1.
  28. Blunden, J. and D. S. Arndt (ed.) (2019), State of the Climate in 2018Bull. Amer. Met. Soc., 100(9), Si–S305, doi:10.1175/2019BAMSStateoftheClimate.1.
  29. Blunden, J. and D. S. Arndt (ed.) (2020), State of the Climate in 2019Bull. Amer. Met. Soc., 101(8), Si–S429, doi:10.1175/2020BAMSStateoftheClimate.1.
  30. Blunden, J. and T. Boyer (ed.) (2021), State of the Climate in 2020Bull. Amer. Met. Soc., 102(8), Si–S475, doi:10.1175/2021BAMSStateoftheClimate.1.
  31. Blunden, J. and T. Boyer (ed.) (2022), State of the Climate in 2021Bull. Amer. Met. Soc., 103(8), Si–S465, doi:10.1175/2022BAMSStateoftheClimate.1.
  32. Blunden, J., T. Boyer, and E. Bartow-Gillies (ed.) (2023), State of the Climate in 2022Bull. Amer. Met. Soc., 104(9), Si–S501, doi:10.1175/2023BAMSStateoftheClimate.1.
  33. Boer, G. J. and B. Yu (2003), Climate sensitivity and responseClimate Dynamics, 20, 415–429, doi:10.1007/s00382-002-0283-3.
  34. Bony, S., J.-L. Dufresne, H. Le Treut, J.-J. Morcrette, and C. Senior (2004), On dynamic and thermodynamic components of cloud changesClimate Dynamics, 22(2), 71–86, doi:10.1007/s00382-003-0369-6.
  35. Bony, S., et al. (2005), How Well do we Understand Climate Change Feedback Processes?J. Climate.
  36. Bony, S., R. Colman, V. M. Kattsov, R. P. Allan, C. S. Bretherton, J.-L. Dufresne, A. Hall, S. Hallegatte, M. M. Holland, W. Ingram, D. A. Randall, B. J. Soden, G. Tselioudis, and M. J. Webb (2006), How Well Do We Understand and Evaluate Climate Change Feedback Processes?J. Climate, 19, 3445–3482.
  37. Boucher, O. and J. Haywood (2001), On summing the components of radiative forcing of climate changeClimate Dynamics, 18, 297–302.
  38. Boucher, O. (1999), Air traffic may increase cirrus cloudinessNature, 397, 30–31.
  39. Bourjaily, P. (1999), Nowcasting the WeatherEnvironmental News Network.
  40. Brands, S., S. Herrera, J. Fernández, and J. M. Gutiérrez (2013), How well do CMIP5 Earth System Models simulate present climate conditions in Europe and Africa?Climate Dynamics, 41(3–4), 803–817, doi:10.1007/s00382-013-1742-8.
  41. Broecker, W. S. (1996), Chaotic Climate. Global temperatures have been known top change substantially in only a decade or two. Cloud another jump be in the offing?Scient. Amer., 44–50.
  42. Brogniez, H., R. Roca, and L. Picon (2005), Evaluation of the distribution of subtropical free tropospheric humidity in AMIP-2 simulations using METEOSAT water vapor channel dataGeophys. Res. Lett., 32, doi:10.1029/2005GL024341.
  43. Brown, R. G. and C. Zhang (1997), Variability of Midtropospheric Moisture and Its Effect on Cloud-Top Height Distribution during TOGA COAREJ. Atmos. Sci., 54, 2760–2774.
  44. Bunde, A., J. Eichner, R. Govindan, S. Havlin, E. Koscielny-Bunde, D. Rybski, and D. Vjushin (2002), Power law persistende in the atmosphere: An ideal test bed for climate models, Universitaet Giessen, Bar-Ilan University, Potsdam Institute for Climate Impact Research.
  45. Byrne, M. P. and T. Schneider (2016), Narrowing of the ITCZ in a warming climate: Physical mechanismsGeophys. Res. Lett., 43(21), 11350–11357, doi:10.1002/2016GL070396.
  46. Cavazos, T. and B. C. Hewitson (2005), Performance of NCEP–NCAR reanalysis variables in statistical downscaling of daily precipitationClimate Research, 28(2), 95–107, doi:10.3354/cr028095.
  47. Cerveny, R. S. (2005), Charles Darwin's Meteorological Observations aboard the H.M.S. BeagleBull. Amer. Met. Soc., 1295–1301.
  48. Cess, R. D. (2005), Water Vapor Feedback in Climate ModelsScience, 310, 795–796.
  49. Cess, R. D. (1974), Radiative transfer due to atmospheric water vapor: Global considerations of the Earth's energy balanceJ. Quant. Spectrosc. Radiat. Transfer, 14(9), 861–871, doi:10.1016/0022-4073(74)90014-4.
  50. Chae, J. H. and S. C. Sherwood (2007), Annual temperature cycle of the tropical tropopause: A simple model studyJ. Geophys. Res.: Atm., 112, D19111, doi:10.1029/2006JD007956.
  51. Charney, J. G., A. Arakawa, D. J. Baker, B. Bolin, R. E. Dickinson, R. M. Goody, C. E. Leith, H. M. Stommel, and C. I. Wunsch (1979), Carbon dioxide and climate: a scientific assessment, .
  52. Christy, J. R. and W. B. Norris (2004), What may we conclude about global tropospheric temperature trends?Geophys. Res. Lett., 31, doi:10.1029/2003GL019361.
  53. Ciesielski, P. E., R. H. Johnson, P. T. Haertel, and J. Wang (2003), Corrected TOGA CORARE Sounding Humidity Data: Impact on Diagnosed Properties of Convection and Climate over the Warm PoolJ. Climate, 16, 2370–2384.
  54. Collins, W. D., J. K. Hackney, and D. P. Edwards (2002), An updated parameterization for infrared emission and absorption by water vapor in the National Center for Atmospheric Research Community Atmosphere ModelJ. Geophys. Res., 107(D22), doi:10.1029/2001JD001365.
  55. Colman, R. (2003), A comparison of climate feedbacks in general circulation modelsClimate Dynamics, 20, 865–873.
  56. Colman, R. (2003), Seasonal contributions to climate feedbacksClimate Dynamics, 80, 825–841, doi:10.1007/s00382-002-0301-5.
  57. Colman, R. A. and B. J. McAvaney (1997), A study of general circulation model climate feedbacks determined from perturbed seasurface temperature experimentsJ. Geophys. Res., 102(D16), 19383–19402, doi:10.1029/97JD00206.
  58. Cook, K. H. (2003), Role of Continents in Driving the Hadley CellsJ. Atmos. Sci., 60, 957–976.
  59. Cooper, O. R., J. L. Moody, D. D. Parrish, M. Trainer, T. B. Ryerson, J. S. Holloway, G. Huebler, F. C. Fehsenfeld, S. J. Oltmans, and M. J. Evans (2001), Trace gas signatures of the airstreams within North Atlantic cyclones: Case studies from the North Atlantic Regional Experiment (NARE'97) aircraft intensiveJ. Geophys. Res., 106(D6), 5437–5456.
  60. Cubasch, U. (1992), Das Klima der naechsten 100 JahrePhysikalsiche Blaetter, 48(2), 85–89.
  61. Cubasch, U., B. D. Santer, and G. C. Hegerl (1995), Klimamodelle- wo stehen wir? Erreichtes und Probleme bei der Vorhersage und dem Nachweis anthropogener Klimaaenderungen mit globalen KlimamodellenPhysikalische Blaetter, 51(4), 269–176.
  62. Dai, A. and K. E. Trenberth (2004), The Diurnal Cycle and Its Depiction in the Community Climate System ModelJ. Climate, 17, 930–951.
  63. Dalu, G. A., M. Gaetani, R. A. Pielke Sr., M. Baldi, and G. Maracchi (2004), Regional Variability of the ITCZ and of the Hadley CellInt. J. Climatol.
  64. Deblonde, G. (2000), Evaluation of FASTEM and FASTEM2, Data Assimilation and Satellite Meteorology Division.
  65. De Freitas, C. R. (2002), Are observed changes in the concentration of carbon dioxide in the atmosphere really dangerous?, University of Auckland.
  66. Delanoë, J., R. J. Hogan, R. M. Forbes, A. Bodas-Salced, and T. H. M Stein (2011), Evaluation of ice cloud representation in the ECMWF and UK Met Office models using CloudSat and CALIPSO dataQ. J. R. Meteorol. Soc., Not published yet, doi:10.1002/qj.882.
  67. DelGenio, A. D. (2002), GCM simulations of cirrus for climate studies, In: Cirrus, pp. 310–326, Edited by Lynch, D. K., K. Sassen, D. Starr, and G. Stephens, Oxford University Press.
  68. DelGenio, A. D., M.-S. Yao, W. Kovari, and K. K.-W. Lo (1996), A Prognostic Cloud Water Parameterization for Global Climate ModelsJ. Climate, 9(2), 270–304.
  69. Del Genio, A. D. (1111), The Global Water Cycle and Climate Change, NASA Goddard Institute for Space Studies.
  70. Desbois, M., L. Picon, and R. Roca (xx), The Role of Atmospheric Water Vapour on Climate, Laboratoire de Meterologie Dynamique, Ecole Polytechnique-CNRS, France.
  71. Dima, I. M. and J. M. Wallace (2003), On the Seasonality of the Hadley CellJ. Atmos. Sci., 60, 1522–1527.
  72. Donner, L. J., C. J. Seman, B. J. Soden, R. S. Hemler, J. C. Warren, J. Stroem, and K.-N. Liou (1997), Large-scale ice clouds in the GFDL SKYHI general circulation modelJ. Geophys. Res., 102, 21745–21768.
  73. Dorman, L. I. (2006), Long-term cosmic ray intensity variation and part of global climate change, controlled by solar activity through cosmic raysAdv. Space. Res., 37(8), 1621–1628, doi:10.1016/j.asr.2005.06.032.
  74. Driscoll, N. W. and G. H. Haug (1998), A Short Circuit in Thermohaline Circulation: A Cause for Northern Hemisphere Glaciation?Science, 282, 436–438.
  75. Ebert, E. E. and J. A. Curry (1992), A Parameterization of Ice Cloud Optical Properties for Climate ModelsJ. Geophys. Res., 97(D4), 3831–3836.
  76. Ellingson, R. G. and Y. Fouquart (1991), The Intercomparison of Radiation Codes in Climate Models: An OverviewJ. Geophys. Res., 96(D5), 8925–8927.
  77. Ellingson, R. G., J. Ellis, and S. Fels (1991), The Intercomparison of Radiation Codes in Climate Models: Long Wave ResultsJ. Geophys. Res., 96(D5), 8929–8953.
  78. Ellingson, R. G. and W. J. Wiscombe (1996), The Spectral Radiance Experiment (SPECTRE): Project Description and Sample ResultsBull. Amer. Met. Soc., 77(9), 1967–1985.
  79. Elliott, W. P. and D. J. Gaffen (1991), On the Utility of Radiosonde Humidity Archives for Climate StudiesBull. Amer. Met. Soc., 72(10), 1507–1520.
  80. Eskridge, R. E., O. A. Alduchov, I. V. Chernykh, Z. Panmao, A. C. Polansky, and S. R. Doty (1995), A Comprehensive Aerological Reference Data Set (CARDS): Rough and Systematic ErrorsBull. Amer. Met. Soc., 76(10), 1759–1775.
  81. Evans, K. F. and T. C. Benner (1999), Three-Dimensional Broadband Solar Radiative Transfer in Small Tropical Cumulus Fields Derived from High-Resolution Imagery, University of Colorado.
  82. Fan, S., M. Gloor, J. Mahlman, S. Pascala, J. Sarmiento, T. Takahashi, and P. Tans (1998), A Large Terrestrial Carbon Sink in North America Implied by Atmospheric and Oceanic Carbon Dioxide Data and ModelsScience, 282, 442–445.
  83. Fasullo, J. T. and K. E. Trenberth (2012), A Less Cloudy Future: The Role of Subtropical Subsidence in Climate SensitivityScience, 338(6108), 792–794, doi:10.1126/science.1227465.
  84. Fläschner, D. (2016), Intermodel spread in global tropical precipitation changes, Ph.D. thesis, University of Hamburg.
  85. Fomin, B. A., T. A. Udalova, and E. A. Zhitnitskii (2004), Evolution of spectroscopic information over the last decade and its effect on line-by-line calculations for validation of radiation codes for climate modelsJ. Quant. Spectrosc. Radiat. Transfer, 86(1), 73–85.
  86. Forest, C. E., M. R. Allen, A. P. Sokolov, and P. H. Stone (2001), Constraining climate model properties using optimal fingerprint detection methodsClimate Dynamics, 18, 277–295.
  87. Forest, C. E., P. H. Stone, A. P. Sokolov, M. R. Allen, and M. D. Webster (2002), Quantifying Uncertainties in Climate System Properties with the Use of Recent Climate ObservationsScience, 295, 113–117.
  88. Free, M., et al. (2002), Creating Climate Refence Datasets. CARDS Workshop on Adjusting Radiosonde Temperature Data for Climate MonitoringBull. Amer. Met. Soc., 891–899.
  89. Frey, R. A., S. A. Ackerman, and B. J. Soden (1996), Climate Parameters from Satellite Spectral Measurements. Part I: Collocated AVHRR and HIRS/2 Observations of Spectral Greenhouse ParameterJ. Climate, 9, 327–344.
  90. Fu, Q. and Y. Takano (1994), On the limitation of using asymmetry factor for radiative transfer in cirrus cloudsAtmos. Res., 34, 299–308.
  91. Fu, Q. (1996), An Accurate Parameterization of the Solar Radiative Properties of Cirrus for Climate ModelsJ. Climate, 9(9), 2058–2082, doi:10.1175/1520-0442(1996)009<2058:AAPOTS>2.0.CO;2.
  92. Fu, Q., P. Yang, and W. B. Sun (1998), An Accurate Parameterization of the Infrared Radiative Properties of Cirrus Clouds for Climate ModelsJ. Climate, 11, 2223–2237, doi:10.1175/1520-0442(1998)011<2223:AAPOTI>2.0.CO;2.
  93. Gaffen, D. J., B. D. Santer, J. S. Boyle, J. R. Christy, N. E. Graham, and R. J. Ross (2000), Multidecadal Changes in the Vertical Temperature Structure of the Tropical TroposphereScience, 287, 1242–1245.
  94. Garand, L., C. Grassotti, J. Halle, and G. L. Klein (1992), On Differences in Radiosonde Humidity-Reporting Practices and Their Implications for Numerical Weather Prediction and Remote SensingBull. Amer. Met. Soc., 73(9), 1417–1423.
  95. Gates, W. L. (1999), An Overview of the Results of the Atmospheric Model Intercomparison Project (AMIP I)Bull. Amer. Met. Soc., 80(1), 29–55.
  96. Gebbie, H. A., W. J. Burroughs, J. Chamberlain, J. E. Harries, and R. G. Jones (1969), Dimers of the Water Molecule in the Earth's AtmosphereNature, 221, 143–145.
  97. Gettelman, Andrew, William D. Collins, Eric J. Fetzer, Annmarie Eldering, Fredrick W. Irion, Phillip B. Duffy, and Govindasamy Bala (2006), Climatology of Upper-Tropospheric Relative Humidity from the Atmospheric Infrared Sounder and Implications for ClimateJ. Climate, 19(23), 6104–6121, doi:10.1175/JCLI3956.1.
  98. Gettelman, A., V. P. Walden, L. M. Miloshevich, W. L. Roth, and B. Halter (2006), Relative Humidity over Antarctica from Radiosondes, Satellites and a General Circulation ModelJ. Geophys. Res., doi:10.1029/2005JD006636.
  99. Goldblatt, C., L. Kavanagh, and M. Dewey (2017), The Palaeoclimate and Terrestrial Exoplanet Radiative Transfer Model Intercomparison Project (PALAEOTRIP): experimental design and protocolsGeosci. Model Dev., 10(11), 3931–3940, doi:10.5194/gmd-10-3931-2017.
  100. Goody, R., J. Anderson, T. Karl, R. B. Miller, G. North, J. Simpson, G. Stephens, and W. Washington (2002), Why Monitore the Climate?Bull. Amer. Met. Soc., 873–878.
  101. Govindan, R. B., D. Vyushin, A. Bunde, S. Brenner, S. Havlin, and H.-J. Schellnhuber (2002), Global climate models violate scaling of the observed atmospheric variability, Bar-Ilan University, Justus-Liebig-Universitaet Giessen, Potsdam Institute for Climate Impact Research.
  102. Graf, H.-F. and D. Zanchettin (2012), Central Pacific El Niño, the "subtropical bridge," and Eurasian climateJ. Geophys. Res., 117, D01102, doi:10.1029/2011JD016493.
  103. Gultepe, I., G. A. Isaac, and S. G. Cober (2001), Ice crystal number concentration versus temperature for climate studiesInt. J. Climatol., 21, 1281–1302.
  104. Gultepe, I. and G. A. Isaac (2004), Aircraft observations of cloud droplet number concentration: Implications for climate studiesQ. J. R. Meteorol. Soc., 130, 2377–2390, doi:10.1256/qj.03.120.
  105. Hall, A. and S. Manabe (1998), The Role of Water Vapor Feedback in Unperturbed Climate Variability and Global WarmingJ. Climate, 12(8), 2327–2346.
  106. Hansen, J. E. and M. Sato (2001), Trends of measured climate forcing agentsProc. Nat. Aca. Sci., 98(26), 14778–14783.
  107. Hansen, J., R. Ruedy, M. Sato, and K. Lo (2002), Global Warming ContinuesScience, 295, 275.
  108. Hansen, J., et al. (2005), Efficacy of climate forcingsJ. Geophys. Res., 110, D18104, doi:10.1029/2005JD005776.
  109. Hansen, J., D. Johnson, A. Lacis, S. Lebedeff, P. Lee, D. Rind, and G. Russell (1981), Climate impact of increasing atmospheric carbon dioxideScience, 213(4511), 957–966.
  110. Hartmann, G. K. (2000), The Variability of H2O Fluxes in the Earth's AtmospherePhys. Chem. Earth, 25(3), 189–194.
  111. Hartmann, D. L., J. R. Holton, and Q. Fu (2001), The heat balance of the tropical tropopause, cirrus, and stratospheric dehydration, University of Washington.
  112. Hartmann, D. L. (2002), Tropical SurprisesScience, 811–812.
  113. Hartmann, D. L. and D. A. Short (1980), On the use of earth radiation budget statistics for studies of clouds and climateJ. Atmos. Sci., 37, 1233–1249.
  114. Harvey, L. D. D. (2000), An assessment of the potential impact of a downward shift of tropospheric water vapor on climate sensitivityClimate Dynamics, 16, 491–500.
  115. Havemann, S. (2000), Die Modellierung atmosphaerischer Eiskristalle und ihre Anwendung im Strahlungstransport, Christian-Albrechts-Universitaet.
  116. Havemann, S., A. J. Baran, and J. M. Edwards (2003), Implementation of the T-matrix method on a massively parallel machine: a comparison of hexagonal ice cylinder single-scattering properties using T-matrix and improved geometric optics methodJ. Quant. Spectrosc. Radiat. Transfer, 79, 707–720.
  117. Haynes, P. (2005), Stratospheric DynamicsAnn. Rev. Fluid Mech., 37, 263–293.
  118. Haywood, J. (2000), Estimate of the Direct and Indirect Radiative Forcing Due to Tropospheric Aerosols: A ReviewRev. Geophys., 38(4), 513–543.
  119. Held, I. M. and B. J. Soden (2000), Water Vapor Feedback and Global WarmingAnnu. Rev. Energy Environ., 25, 441–475.
  120. Held, Isaac M. and Brian J. Soden (2006), Robust Responses of the Hydrological Cycle to Global WarmingJ. Climate, 19(21), 5686–5699, doi:10.1175/JCLI3990.1.
  121. Hendricks, J., B. Kärcher, U. Lohmann, and M. Ponater (2005), Do aircraft black carbon emissions affect cirrus clouds on the global scale?Geophys. Res. Lett., 32, doi:10.1029/2005GL022740.
  122. Herman, G. F., M.-L.C. Wu, and W.T. Johnson (1980), The effect of clouds on the Earth's solar and infrared radiation budgetsJ. Atmos. Sci., 37, 1251–1261.
  123. Herring, D. (2002), Does the Earth Have an Iris Analog?, EOStudy.
  124. Heymsfield, A. J. (2003), Properties of tropical and midlatitude ice cloud particle ensembles, Part I: Median Mass Diameters and Terminal VelocitiesJ. Atmos. Sci., 60, 2592–2611.
  125. Heymsfield, A. J. (2003), Properties of tropical and midlatitude ice cloud particle ensembles, Part II: Applications for mesoscale and climate modelsJ. Atmos. Sci., 60, 2592–2611.
  126. Hobbs, P. V. (ed.) (1993), Aerosol-Cloud-Climate Interactions, , Vol. 54, Academic Press.
  127. Holland, M. M., A. J. Brasket, and A. J. Weaver (2000), The impact of rising atmospheric CO2 on simulated sea ice induced thermohaline circulation variabilityGeophys. Res. Lett., 27(10), 1519–1522.
  128. Houghton, J. (2005), Global warmingRep. Prog. Phys., 68, 1343–1403.
  129. Hu, Y. and K. Stamnes (2000), Climate sensitivity to cloud optical propertiesTellus, 52B, 81–93.
  130. Hu, H., R. J. Oglesby, and B. Saltzman (2000), The relationship between atmospheric water vapor and temperature in simulations of climate changeGeophys. Res. Lett., 27(21), 3513–3516.
  131. Hu, H. and W. T. Liu (1998), The impact of upper tropospheric humidity from Microwave Limd Sounder on the midlatitude greenhouse effectGeophys. Res. Lett., 25(16), 3151–3154.
  132. Hurrell, J. W., S. J. Brown, K. E. Trenberth, and J. R. Christy (2000), Comparison of Tropospheric Temperatures from Radiosonde and Satellite: 1979–98Bull. Amer. Met. Soc., 81(9), 2165–2177.
  133. Husson, N., A. Chedin, and B. Bonne (1993), Review of existing spectral line data catalogs, In: High Spectral Resolution Infrared Remote Sensing for Earth's Weather and Climate Studies, pp. 443–457, Springer-Verlag.
  134. Iacono, M. J., E. J. Mlawer, and S. A. Clough (2000), Impact of an improved longwave radiation model, RRTM, on the energy budget and thermodynamic properties of the NCAR community climate model, CCM3J. Geophys. Res., 105(D11), 14,873–14,890.
  135. Iacono, M. J., J. S. Delamere, E. J. Mlawer, and S. A. Clough (2003), Evaluation of upper tropospheric water vapor in the NCAR Community Climate Model (CCM3) using modeled and observed HIRS radiancesJ. Geophys. Res., 108, 1–19, doi:10.1029/2002JD002539.
  136. Ide, K., H. Le Treut, Z.-X. Li, and M. Ghil (2001), Atmospheric radiative equilibria. Part II: bimodal solutions for atmospheric optical propertiesClimate Dynamics, 18, 29–49.
  137. Ingram, W. (2010), A very simple model for the water vapour feedback on climate changeQ. J. R. Meteorol. Soc., 136(646), 30–40, doi:10.1002/qj.546.
  138. Iwasa, Y., Y. Abe, and H. Tanaka (2004), Global Warming of the Atmosphere in Radiative-Convective EquilibriumJ. Atmos. Sci., 61, 1894–1910.
  139. Jackson, D. R., S. J. Driscoll, E. J. Highwood, J. E. Harries, and J. M. Russel III (1998), Troposphere to stratosphere transport at low latitutes at studies using HALOE observations of water vapour 1992–1997Q. J. R. Meteorol. Soc., 124, 169–192.
  140. Jacobowitz, H., L. L. Stowe, G. Ohring, A. Heidinger, K. Knapp, and N. R. Nalli (2003), The Advanced Very High Resolution Radiometer Pathfinder Atmosphere (PATMOS) Climate dataset: A Resource for Climate ResearchBull. Amer. Met. Soc., 84(6), doi:10.1175/BAMS-84-6-785.
  141. Joos, H., P. Spichtinger, and U. Lohmann (2009), Orographic cirrus in a future climateAtmos. Chem. Phys., 9, 7825–7845, doi:10.5194/acp-9-7825-2009.
  142. Kanamitsu, M., W. Ebisuzaki, J. Woollen, S.-K. Yang, J. J. Hnilo, M. Fiorino, and G. L. Potter (2002), NCEP-DOE AMIP-II Reanalysis (R-2)Bull. Amer. Met. Soc., 1631–1643.
  143. Kao, C.-Y. J. and W. S. Smith (1999), Sensitivity of a cloud parameterization package in the National Center for Atmospheric Research Community Climate ModelJ. Geophys. Res., 104(D10), 11,961–11,983.
  144. Karbou, F., F. Aires, C. Prigent, and L. Eymard (2005), Potential of Advanced Microwave Sounding Unit-A (AMSU-A) and AMSU-B measurements for atmospheric temperature and humidity profiling over landJ. Geophys. Res., 110, D07109, doi:10.1029/2004JD005318.
  145. Kasting, J. F. (2013), How Was Early Earth Kept Warm?Science, 339(6115), 44–45, doi:10.1126/science.1232662.
  146. Kavouras, I. G., N. Mihalopoulos, and E. G. Stephanou (1998), Formation of atmospheric particles from organic acids produced by forestsNature, 395, 683–686.
  147. Kennett, E. J. and R. Toumi (2005), Temperature dependence of atmospheric moisture lifetimeGeophys. Res. Lett., 32, doi:10.1029/2005GL023936.
  148. Kerr, R. A. (1998), Warming's Unpleasant Surprise: Shivering in the Greenhouse?Science, 281, 156–158.
  149. Khain, A. M., M. Ovtchinnikov, M. Pinsky, A. Pokrovsky, and H. Krugliak (2000), Notes on the state-of-the-art numerical modelling of cloud microphysicsAtmos. Res., 55, 159–224.
  150. Kiehl, J. T. and B. P. Briegleb (1992), Comparison of the Observed and Calculated Clear Sky Greenhouse Effect: Implications for Climate StudiesJ. Geophys. Res., 97(D9), doi:10.1029/92JD00729.
  151. Kiehl, J. T. and Kevin E. Trenberth (1997), Earth's Annual Global Mean Energy BudgetBull. Amer. Met. Soc., 2(78), 197–208.
  152. Kim, K. S., B. J. Mhin, U.-S. Choi, and K. Lee (1992), Ab initio studies of the water dimer using large basis sets: The structure and thermodynamic energiesJ. Chem. Phys., 97(9), 6649–6662.
  153. Kistler, R., et al. (2001), The NCEP-NCAR 50-Year Reanalysis: Monthly means CD-ROM and DocumentationBull. Amer. Met. Soc., 82(2), 247–268.
  154. Knox, R. S. (1999), Physical aspects of the greenhouse effect and global warmingAm. J. Phys., 67(12), 1227–1238.
  155. Knuteson, T. R., R. E. Tuleya, and Y. Kurihara (1998), Simulated Increase of Hurricane Intensities in a CO2-Warmed ClimateScience, 279, 1018–1020.
  156. Koscielny-Bunde, E., A. Bunde, S. Havlin, H. E. Roman, Y. Goldrich, and H.-J. Schellnhuber (1998), Indication of a Universal Persistence Law Governing Atmospheric VariabilityPhys. Rev. L, 81(3), 729–732.
  157. Kristjánsson, J. E., J. M. Edwards, and D. L. Mitchell (1999), A new parameterization scheme for the optical properties of ice crystals for use in general circulation models of the atmospherePhys. Chem. Earth, 24, 231–236.
  158. Krivova, N. A. and S. K. Solanki (2004), Solar variability and global warming: a statistical comparison since 1850Adv. Space. Res., 34, 361–364.
  159. Lanzante, J. R. (2005), A Cautionary Note on the Use of Error BarsJ. Climate, 18, 3699–3703.
  160. Lanzante, J. R. (1996), Resistant, Robust and Non-Parametric Techniques for the Analysis of Climate Data: Theory and Examples, including Applications to Historical Radiosonde Station DataInt. J. Climatol., 16, 1197–1226.
  161. Lau, K.-M. and H. Weng (1995), Climate Signal Detection Using Wavelet Transform: How to Make a Time Series SingBull. Amer. Met. Soc., 76(12), 2391–2402.
  162. Lau, K.-M., J. H. Kim, and Y. Sud (1996), Intercomparison of Hydrologic Processes in AMIP GCMsBull. Amer. Met. Soc., 77(10), 2209–2227.
  163. Lawrence, M. G. (2004), On the relationship between relative humidity and the dew point temperature in moist air: A Simple conversion and applications, Max Planck Institute for Chemistry.
  164. Lawrence, M. G. (1999), Emissions of Nitrogen Oxides from Oceangoing Ships Perturb Atmospheric Chemistry and Climate, Max Planck Institute for Chemistry.
  165. Lean, J. and D. Rind (1996), The Sun and ClimateConsequences, 2(1).
  166. Levi, B. G. (2001), Warming Oceans Appear Linked to Increasing Atmospheric Greenhouse GasesPhysics Today Online.
  167. Lieder, R. M. (1981), Physikalische Methoden in der PaläoklimatologiePhysik in unserer Zeit.
  168. Lin, B., B. A. Wielicki, L. H. Chambers, Y. Hu, and K. Xu (2002), The iris hypothesis: a negative or positive cloud feedback?J. Climate, 15, 3–7.
  169. Lin, X. and K. G. Hubbard (2004), NOTES AND CORRESPONDENCE Uncertainties of Derived Dewpoint Temperature and Relative HumidityJ. Appl. Meteorol., 43, 821–825.
  170. Lindzen, R. S., M.-D. Chou, and A. Y. Hou (2001), Does the Earth Have an Adaptive Infrared Iris?Bull. Amer. Met. Soc., 82(3), 417–432.
  171. Lindzen, R. S., M.-D. Chou, and A. Y. Hou (2002), Comment on "No Evidence for Iris"Bull. Amer. Met. Soc., 345–349.
  172. Lindzen, R. S. (1990), Some Coolness Concering Global WarmingBull. Amer. Met. Soc., 71(3), 288–299.
  173. Lindzen, R. S. (1997), Can increasing carbon dioxide cause climate change?Proc. Natl. Acad. Sci., 94, 8355–8342.
  174. Liou, K. N. (2005), Cirrus clouds and Climate, The McGraw Hill Companies.
  175. Liou, K. N. (1986), Influence of cirrus clouds on weather and climate processes: a global perspectiveMon. Weather Rev., 114, 1167–1199.
  176. Liou, K. N. (1992), Radiation and Cloud Processes in the Atmosphere: Theory, Observation and Modeling, Oxford University Press, ISBN 978-0195049107.
  177. Liu, G. and J. A. Curry (1997), Precipitation characteristics in Greenland-Iceland-Norwegian Seas determined by using satellite microwave dataJ. Geophys. Res., 102(D12), 13,987–13,997.
  178. Lohmann, U. and B. Kaecher (2002), First interactive simulations of cirrus clouds formed by homogeneous freezing in the ECHAM GCMJ. Geophys. Res., 107, doi:10.1029/2001JD000767.
  179. Lohmann, U., B. Kärcher, and J. Hendricks (2004), Sensitivity studies of cirrus clouds formed by heterogeneous freezing in the ECHAM GCMJ. Geophys. Res., 108, doi:10.1029/2003JD004443.
  180. Lohmann, U. and E. Roeckner (1995), The influence of cirrus cloud-radiative forcing on climate and climate sensitivity in a general circulation modelJ. Geophys. Res., 100, 16,305–16,323.
  181. Luo, Z., W. B. Rossow, T. Inoue, and C. J. Stubenrauch (2002), Did the eruption of the Mount Pinatubo volcano affect cirrus properties?J. Climate, 15, 2806–2820.
  182. Lynch, D. K., K. Sassen, D. Starr, and G. Stephens (ed.) (2002), Cirrus, Oxford University Press.
  183. Lynch, P. (2008), The origins of computer weather prediction and climate modelingJ. of Comp. Phys., 227, 3431–3444, doi:10.1016/j.jcp.2007.02.034.
  184. Marchand, R., J. Haynes, G.G. Mace, T. Ackerman, and G. Stephens (2009), A comparison of simulated cloud radar output from the multiscale modeling framework global climate model with CloudSat cloud radar observationsJ. Geophys. Res., 114(8), D00A20, cited By (since 1996) 0.
  185. Maslowski, W., B. Newton, P. Schlosser, A. Semtner, and D. Martinson (2000), Modeling Recent Climate Variability in the Arctic OceanGeophys. Res. Lett., 27(22), 3743–3746.
  186. Mason, B. J. (1970), The Role of Satellites in Observing and Forecasting the WeatherContemp. Phys., 11(5), 477–496.
  187. Mason, B. J. (1979), Weather Forecasting as a Problem in Fluid DynamicsContemp. Phys., 20(3), 315–335.
  188. McFarlane, N. A., G. J. Boer, J. P. Blanchet, and M. Lazare (1992), The Canadian Climate Centre second-generation general circulation model and its equilibrium climateJ. Climate, 5, 1013–1044.
  189. McGuffie, K. and A. Henderson-Sellers (2001), Forty Years of Numerical Climate ModellingInt. J. Climatol., 21, 1067–1109, doi:10.1002/joc.632.
  190. Meyer, R., H. Mannstein, R. Meerkoetter, U. Schumann, and P. Wendling (2002), Regional radiative forcing by line-shaped contrails derived from satellite dataJ. Geophys. Res., 107(D10), doi:10.1029/2001JD000426.
  191. Mhin, B. J., S. J. Lee, and K. S. Kim (1993), Water-cluster distribution with respect to pressure and temperature in the gas phasePhys. Rev., 48(5), 3764–3770.
  192. Milan, M. M., M. J. Estrela, and J. Miro (2005), Rainfall Components: Variability and Spatial Distribution in a Mediterranean Area (Valencia Region)J. Climate, 18.
  193. Millan, M. M., et al. (2005), Climate Feedbacks and Desertification: The Mediterranean ModelJ. Climate, 18, 684–701.
  194. Minnis, P., J. K. Ayers, R. Palikonda, and D. Phan (2004), Contrails, Cirrus Trends, and ClimateJ. Climate, 17, 1671–1685.
  195. Minnis, P., J. K. Ayers, R. Palikonda, and D. Phan (2004), Contrails, cirrus trends, and climateJ. Climate, 1671–1685.
  196. Moncrieff, W. M., S. K. Krueger, D. Gregory, J.-L. Redelsperger, and W.-K. Tao (1997), GEWEX Cloud System Study (GCSS) Working Group 4: Precipitating Convective Cloud SystemsBull. Amer. Met. Soc., 78(5), 831–845.
  197. Morcrette, J.-J., S. A. Clough, E. J. Mlawer, and M. J. Iacono (1998), Impact of a validated radiative transfer scheme, RRTM, on the ECMWF model climate and 10-day forecasts, European Centre for Medium-Range Weather Forecasts.
  198. Nagel, D., U. Leiterer, H. Dier, A. Kats, J. Reichardt, and A. Behrendt (2001), High accuracy humidity measurements using the standardized frequency method with a research upper-air sounding systemMet. Zeit., 10(5), 395–405.
  199. Neshyba, S.P., T. C. Grenfell, and S. G. Warren (2003), Representation of a nonspherical ice particle by a collection of independent spheres for scattering and absorption of radiation: 2. Hexagonal columns and platesJ. Geophys. Res., 108(D15), doi:10.1029/2002JD003302.
  200. Ning, T. (2012), GPS Meteorology: With Focus on Climate Applications, Ph.D. thesis, Chalmers University of Technology, ISBN 978-91-7385-675-1.
  201. Nitsche, H. (2000), Water Vapour in the Atmosphere, Deutscher Wetterdienst (DWD).
  202. Norris, J. R. (2005), Multidecadal changes in near-global cloud cover and estimated cloud cover radiative forcingJ. Geophys. Res., 110.
  203. Norton, W. A. (2003), Sensitivity of northern hemisphere surface climate to simulation of the stratospheric polar vortexGeophys. Res. Lett., 30(12), 1627, doi:10.1029/2003GL016958.
  204. Ohring, G., B. Wielicki, R. Spencer, B. Emery, and R. Datla (2005), Satellite Instrument Calibration for Measuring Global Climate ChangeBull. Amer. Met. Soc., 1303–1313.
  205. Ohring, G., B. Wielicki, R. Spencer, B. Emery, and R. Datla (2005), Satellite Instrument Calibration for Measuring Global Climate ChangeBull. Amer. Met. Soc., 86, 1303–1313, doi:10.1175/BAMS-86-9-1303.
  206. Ou, S.-C. and K.-N. Liou (1995), Ice microphysics and climate temperature feedbackAtmos. Res., 35, 127–138.
  207. Ou, S. C. and K. N. Liou (1995), Ice microphysics and climatic temperature feedbackAtmos. Res., 35, 127–138.
  208. Paeth, H. and A. Hense (2001), Signal analysis of the atmospheric mean 500/1000 hPa temperature north 55°N between 1949 and 1994Climate Dynamics, 18, 345–358.
  209. Paltridge, G., A. Arking, and M. Pook (2009), Trends in middle- and upper-level tropospheric humidity from NCEP reanalysis dataTheor. Appl. Climatol., 98(3–4), 351–359, doi:10.1007/s00704-009-0117-x.
  210. Partridge, R. B., J. Cannon, R. Foster, C. Johnson, E. Rubinstein, A. Rudolph, L. Danese, and G. De Zotti (1984), Automated measurement of the temperature of the atmospheric at 3.2 cmPhys. Rev., 29(12), 2683–2685.
  211. Pawson, S., et al. (2000), The GCM-Reality Intercomparison Project for SPARC (GRIPS): Scientific Issus and Initial ResultsBull. Amer. Met. Soc., 81(4), 782–796.
  212. Pawson, S. and M. Fiorino (1998), A comparison of reanalyses in the tropical stratosphere. Part 1: thermal structure and the annual cycleClimate Dynamics, 14, 631–644.
  213. Peixoto, J. P. and A. H. Oort (1984), Physics of climateRev. Mod. Phys., 46(3), 365–429.
  214. Peixoto, J. P. and A. H. Oort (1992), Physics of Climate, American Institute of Physics.
  215. Pelletier, J. D. (1995), A Stochastic Diffusion Model of Climate Change, Cornell University.
  216. Penner, J. E., D. H. Lister, D. J. Griggs, D. J. Dokken, and M. McFarland (ed.) (1999), IPCC Report, chap. Aviation and the Global Atmosphere, A special report of IPCC, IPCC.
  217. Philander, S. G. and A. Fedorov (2003), Is El Nino Sporadic or Cyclic?Ann. Rev. Earth Planet. Sci., 31, 579–594.
  218. Picon, L., R. Roca, S. Serrar, J. L. Monge, and M. Desbois (2003), A new METEOSAT "water vapor" archive for climate studiesJ. Geophys. Res., 108(D10), doi:10.1029/2002JD002640.
  219. Pierrehumbert, R. T., H. Brogniez, and R. Roca (2007), On the Relative Humidity of the Atmosphere, In: The Global Circulation of the Atmosphere, chap. 6, pp. 143–184, Edited by Schneider, T. and A. H. Sobel, Princeton University Press, ISBN 978-0-691-12181-9.
  220. Pierrehumbert, R. T. (1995), Thermostats, Radiator Fins, and the Local Runaway GreenhouseJ. Atmos. Sci., 52(10), 1784–1806, doi:10.1175/1520-0469(1995)052<1784:TRFATL>2.0.CO;2.
  221. Pierrot, L., A. Soufiani, and J. Taine (1999), Accuracy of narrow-band and global models for radiative transfer in H2O, CO2, and H2O-CO2 mixtures at high temperatureJ. Quant. Spectrosc. Radiat. Transfer, 62, 523–548.
  222. Pope, V. D., J. A. Pamment, D. R. Jackson, and A. Slingo (2001), The Representation of Water Vapor and Its Dependence on Vertical Resolution in the Hadley Centre Climate ModelJ. Climate, 14, 3065–3085.
  223. Quaas, J. (2012), Evaluating the "critical relative humidity" as a measure of subgrid-scale variability of humidity in general circulation model cloud cover parameterizations using satellite dataJ. Geophys. Res., 117, D09208, doi:10.1029/2012JD017495.
  224. Quan, X.-W., H. F. Diaz, and M. P. Hoerling (2004), Change of the Tropical Hadley Cell Since 1950, NOAA-CIRES Climate Diagnostic Center.
  225. Quante, M. (2004), The role of clouds in the climate systemJ. Phys. IV France, 61–86, doi:10.1051/jp4:2004121003.
  226. Rahmstorf, S. (2002), Flotte Kurven, duenne Daten. Im Medienstreit um den Klimawechsel bleibt die Wissenschaft auf der StreckeDie Zeit.
  227. Rahmstorf, S. (1995), Bifurcations of the Atlantic thermohaline circulation in response to changes in the hydrological cycleNature, 378, 145–149.
  228. Ramanathan, V. and J. A. Coakley (1978), Climate modeling through radiative-convective modelsReviews of Geophysics and Space Physics, 16(4), 465–489.
  229. Ramanathan, V., R. D. Cess, E. F. Harrison, P. Minnis, B. R. Barkstrom, E. Ahmad, and D. Hartmann (1989), Cloud-Radiative Forcing and Climate: Results from the Earth Radiation Budget ExperimentScience, 243, 57–63.
  230. Rao, K. G., M. Desbois, R. Roca, and K. Nakamura (204), Upper tropospheric drying and the "transition to break" in the Indian summer monsoon during 1999Geophys. Res. Lett., 31, doi:10.1029/2003GL018269.
  231. Rasch, P. J. and J. E. Kristjánsson (1998), A comparison of the CCM3 model climate using diagnosed and predicted condensate parameterizationsJ. Climate, 11, 1587–1614.
  232. Raschke, E., A. Ohmura, W. B. Rossow, B. E. Carlson, Y.-C. Zhang, C. Stubenrauch, M. Kottek, and M. Wild (2005), Cloud effects on the radiation budget based on ISCCP data (1991 to 1995)Int. J. Climatol., 25, 1103–1125.
  233. Raval, A., A. H. Oort, and V. Ramaswamy (1994), Observed Dependence of Outgoing Longwave Radiation on Sea Surface Temperature and MoistureJ. Climate, 7, 807–821.
  234. Richardson, M., K. Cowtan, E. Hawkins, and M. B. Stolpe (2016), Reconciled climate response estimates from climate models and the energy budget of EarthNature Clim. Change, doi:10.1038/NCLIMATE3066.
  235. Rieck, M., L. Nuijens, and B. Stevens (2012), Marine Boundary Layer Cloud Feedbacks in a Constant Relative Humidity AtmosphereJ. Atmos. Sci., 69(8), 2538–2550, doi:10.1175/JAS-D-11-0203.1.
  236. Ringer, M. A. and R. P. Allan (2004), Evaluating climate model simulations of tropical cloudTellus, 56A(4), 308–327.
  237. Roca, R., S. Louvet, L. Picon, and M. Desbois (2005), A study of convective systems, water vapor and top of the atmosphere cloud radiative forcing over the Indian Ocean using INSAT-1B and ERBE dataMet. Atm. Phys., doi:10.1007/s00703-004-0098-3.
  238. Roe, G. H. and M. B. Baker (2007), Why Is Climate Sensitivity So Unpredictable?Science, 318, 629–632, doi:10.1126/science.1144735.
  239. Ruddiman, W. F. and J. E. Kutzbach (1991), Plateau Uplift and Climatic ChangeScient. Amer.
  240. Santer, B. D., et al. (2005), Amplification of Surface Temperature Trends and Variability in the Tropical AtmosphereScience, 309, 1551–1556.
  241. Sausen, R. and U. Schumann (1998), Estimates of the Climate Response to Aircraft CO2 and NOx Emissions Scenarios, Institute fuer Physik der Atmosphaere.
  242. Sausen, R., V. Grewe, I. Koehler, and M. Ponater (1999), Klimafaktor LuftfahrtPhysik in unserer Zeit, 30(3), 102–107.
  243. Scafetta, N., T. Imholt, P. Grigolini, and J. Roberts (2002), Statistical analysis of air and sea temperature anomalies, Duke University, University of North Texas, Dipartimento di Fisica dell'Universita di Pisa and INFM, Instituto di Biofisica CNR.
  244. Scaife, A. A., N. Butchart, C. D. Warner, D. Stainforth, W. Norton, and J. Austin (2000), Realistic Quasi-Biennial Oscillations in a simulation of the global climateGeophys. Res. Lett., 27(1), 3481–3484.
  245. Schidlowski, M. (1981), Die Geschichte der ErdatmosphaereSpek. Wissen., 17–28.
  246. Schlager, H., P. Schulte, F. Flatory, F. Slemr, P. van Velthoven, H. Ziereis, and U. Schumann (1999), Regional nitric oxide enhancements in the North Atlantic flight corridor observed and modeled during POLINAT 2- a case studyGeophys. Res. Lett., 26(20), 3061–3064.
  247. Schlesinger, M. E. (1986), Equilibrium and transient climatic warming induced by increased atmospheric CO2Climate Dynamics, 1(1), 35–51, doi:10.1007/BF01277045.
  248. Schneider, T., C. M. Kaul, and K. G. Pressel (2019), Possible climate transitions from breakup of stratocumulus decks under greenhouse warmingNature Geosci., 12(3), 163–167, doi:10.1038/s41561-019-0310-1.
  249. Schneider, Stephen H. (1975), On the Carbon Dioxide?Climate ConfusionJ. Atmos. Sci., 32(11), 2060–2066, doi:10.1175/1520-0469(1975)032<2060:OTCDC>2.0.CO;2.
  250. Schneider, E. K., B. P. Kirtman, and R. S. Lindzen (1999), Tropospheric Water Vapor and Climate SensitivityJ. Atmos. Sci., 56, 1649–1658.
  251. Schumann, U., H. Schlager, F. Arnold, J. Ovarlez, H. Kelder, O. Hov, G. Hayman, I. S. A. Isaksen, J. Staehelin, and P. D. Whitefield (2000), Pollution frim aircraft emissions in the North Atlantic flight corridor: Overview on the POLINAT projectsJ. Geophys. Res., 105(D3), 3605–3631.
  252. Seinfeld, J. H. (1998), Clouds, contrails and climateNature, 391, 837–838.
  253. Senior, C. A. and J. F. B. Mitchell (2000), The time dependence of climate sensitivity, Hadley Centre for Climate Predictions and Research.
  254. Senior, C. A. and J. F. B. Mitchell (1993), Carbon Dioxide and Climate: The Impact of Cloud ParameterizationJ. Climate, 6(3), 393–418.
  255. Shaw, R. (1999), Dramatic thinning of Arctic ice foundEnv. News Net.
  256. Shaw, R. (1999), Global warming unpredictable, scientist sayEnv. News Net.
  257. Shaw, R. (1999), Indian Ocean has its own El NinoEnv. News Net.
  258. Shaw, R. (1999), Don't forget methane, climate experts sayEnv. News Net.
  259. Shaw, R. (1999), New tools help forecast tropical stormsEnv. News Net.
  260. Shaw, R. (1999), Study hints at extreme climate changeEnv. News Net.
  261. Shaw, R. (1999), Warm ocean rings intensify hurricanesEnv. News Net.
  262. Sherwood, S. C. (2000), Climate signal mapping and an application to atmospheric tidesGeophys. Res. Lett., 27(21), 3525–3528.
  263. Sherwood, S. C., W. Ingram, Y. Tsushima, M. Satoh, M. Roberts, P. Luigi Vidale, and Paul A. O'Gorman (2010), Relative humidity changes in a warmer climateJ. Geophys. Res., 115, D09104, doi:10.1029/2009JD012585.
  264. Sherwood, S. C., R. Roca, T. M. Weckwerth, and N. G. Andronova (2010), Tropospheric water vapor, convection, and climateRev. Geophys., 48(2), RG2001, doi:10.1029/2009RG000301.
  265. Shine, K. P. (2000), Radiation forcing of Climate ChangeSpace Science Reviews, 94, 363–373.
  266. Simmons, A. J., A. Untch, C. Jakob, P. Kallberg, and P. Unden (1999), Stratospheric water vapour and tropical tropopause temperatures in ECMWF analyses and multi-year simulationsQ. J. R. Meteorol. Soc., 125, 353–386.
  267. Simonis, U. E. (1998), Das Kioto-Protokoll und seine BewertungSpek. Wissen., 96–103.
  268. Skofronick-Jackson, G. M., A. J. Gasiewski, and J. R. Wang (2002), Influence of microphysical cloud parametrizations on microwave brightness temperaturesIEEE T. Geosci. Remote, 40(1), 187–196.
  269. Slingo, A., J. A. Pamment, R. P. Allan, and P. S. Wilson (2000), Water Vapor Feedbacks in the ECMWF Reanalyses and Hadley Centre Climate ModelJ. Climate, 13, 3080–3098.
  270. Slingo, A. and J. M. Slingo (1991), Response of the National Center for Atmospheric Research Community Climate Model to Improvements in the Represenatation of CloudsJ. Geophys. Res., 96(D8), 15,341–15,357.
  271. Soden, B. J., R. T. Wetherald, G. L. Stenchikov, and A. Robock (2002), Global Cooling After the Eruption of Mount Pinatubo: A Test of Climate Feedback by Water VaporScience, 296, 727–730.
  272. Soden, B. J., L. J. Donner, J. J. Hack, and O. Brown (2004), Testing Climate Model Simulations of Cloud Lifecycle Dynamics Using NASA A-Train Measurements, University of Miami, National Oceanic and Atmospheric Administration, National Center for Atmospheric Research.
  273. Soden, B. J., D. J. Jackson, V. Ramaswamy, M. D. Schwarzkopf, and X. Huang (2005), The Radiative Signature of Upper Tropospheric MoisteningScience, 310(5749), 841–844, doi:10.1126/science.1115602.
  274. Soden, B. J. and I. M. Held (2006), An assessment of climate feedbacks in coupled ocean-atmosphere modelsJ. Climate, 19(14), 3354–3360, doi:10.1175/JCLI3799.1.
  275. Solanki, S. K. (2002), Solar variability and climate change: is there a link?Harry Jeffreys Lecture, 42, 5.9–5.13.
  276. Solanki, S. K. and M. Fligge (2002), Solar irradiance variations and climateJ. Atm. Sol.-Terr. Phys., 64, 677–685.
  277. Solanki, S. K. and N. A. Krivova (2003), Can solar variability explain global warming since 1970?J. Geophys. Res., 108(A5), doi:10.1029/2002JA009753.
  278. Solomon, S., K. H. Rosenlof, R. W. Portman, J. S. Daniel, S. M. Davis, T. J. Sanford, and G. Plattner (2010), Contributions of Stratospheric Water Vapor to Decadal Changes in the Rate of Global WarmingScience, 327, 1219–1223, doi:10.1126/science.1182488.
  279. Sonntag, D. (1994), Advancements in the field of hygrometryMet. Zeit., 3(2), 51–66.
  280. Spencer, R. W. and J. R. Christy (1992), Precision and Radiosonde Validation of Satellite Gridpoint Temperature Anomalies. Part I: MSU Channel 2J. Climate, 5(8), 847–857, doi:10.1175/1520-0442.
  281. Spencer, R. W. and W. D. Braswell (1997), How Dry is the Tropical Free Troposphere? Implications for Global Warming TheoryBull. Amer. Met. Soc., 78(6), 1097–1106.
  282. Stainforth, D. A., T. Aina, C. Christensen, M. Collins, N. Faull, D. J. Frame, J. A. Kettleborough, S. Knight, A. Martin, J. M. Murphy, C. Piani, D. Sexton, L. A. Smith, R. A. Spicer, A. J. Thorpe, and M. R. Allen (2005), Uncertainty in predictions of the climate response to rising levels of greenhouse gasesNature, 433, 403–406.
  283. Steig, E. J., E. J. Brook, J. W. C. White, C. M. Sucher, M. L. Bender, S. J. Lehman, D. L. Morse, E. D. Waddington, and G. D. Clow (1998), Synchronous Climate Changes in Antarctica and the North AtlanticScience, 282, 92–95.
  284. Steitz, D. and J. Bluck (2000), Slove: The SAGEIII Ozone Loss and Validation Experiment, National Aeronautics and Space Administration.
  285. Stephens, G. L. (2002), Cirrus, climate and global change, In: Cirrus, Edited by Lynch, D. K., K. Sassen, D. Starr, and G. Stephens, Oxford University Press.
  286. Stephens, G. L. (2005), Cloud feedbacks in the climate system: A critical reviewJ. Climate, 18(2), 237–273, doi:10.1175/JCLI-3243.1.
  287. Stephens, G. L., S. Tsay, P. W. Stackhouse Jr., and P. J. Flatau (1990), The relevance of the microphysical and radiative properties of cirrus clouds to climate and climatic feedbackJ. Atmos. Sci., 47(14), 1742–1753, doi:10.1175/1520-0469(1990)047<1742:TROTMA>2.0.CO;2.
  288. Stevens, B. and S. Bony (2013), Water in the atmospherePhys. Today, 66(6), doi:10.1063/PT.3.2009.
  289. Stevens, B. and S. Bony (2013), What are Climate Models MissingScience, 340(6136), 1053–1054, doi:10.1126/science.1237554.
  290. Stocker, T. F. and D. G. Wright (1991), Rapid transitions of the ocean's deep circulation induced by changes in surface water fluxesNature, 351, 729–732.
  291. Stocker, T. F. and A. Schmittner (1997), Influence of CO2 emission rates on the stability of the thermohaline circulationNature, 388, 862–865.
  292. Stohl, A., M. Hittenberger, and G. Wotowa (1998), Validation of the Lagrangian Particle Dispersion Model Flexpart against Large-Scale Tracer Experiment DataAtmos. Environ., 32(24), 4245–4264.
  293. Stohl, A. and D. J. Thompson (1999), A Density Correction for Lagrangian Particle Dispersion ModelsBoun.-Lay. Met., 90, 155–167.
  294. Stordal, F., G. Myhre, E. J. G. Stordal, W. B. Rossow, D. S. Lee, D. W. Arlander, and T. Svendby (2005), Is there a trend in cirrus cloud cover due to aircraft traffic?Atmos. Chem. Phys., 5, 2155–2162, doi:10.5194/acp-5-2155-2005.
  295. Stowe, L. L., H. Jacobowitz, G. Ohring, K. R. Knapp, and N. R Nalli (2002), The Advanced Very High Resolution Radiometer (AVHRR) Pathfinder Atmosphere (PATMOS) Climate Datatset: Initial Analyses and EvaluationsJ. Climate, 15(11), 1243–1260, doi:10.1175/1520-0442(2002)015<1243:TAVHRR>2.0.CO;2.
  296. Stubenrauch, C. (2004), Cirrus microphysical properties and their effect on Radiation: survey and integration into climate Models using combined Satellite observations, Laboratoire de Meteorologie Dynamique, Meteorological Office, Institute for Marine Research at Kiel, Laboratoire d'Optique Atmospherique, Final Report on the Environment project EVK2-CT-2000-00063, available at http://www.lmd.polytechnique.fr/CIRAMOSA/Welcome.html.
  297. Stubenrauch, C. J. and U. Schumann (2005), Impact of air traffic on cirrus coverageGeophys. Res. Lett., 32, L14813, doi:10.1029/2005GL022707.
  298. Stubenrauch, C. J., F. Eddounia, J. M. Edwards, and A. Macke (2007), Evaluation of cirrus parameterizations for radiative flux computations in climate models using TOVS–ScaRaB satellite observationsJ. Climate, 20(17), 4459–4475.
  299. Stubenrauch, C. J., S. Cros, A. Guignard, and N. Lamquin (2010), A 6-year global cloud climatology from the Atmospheric InfraRed Sounder AIRS and a statistical analysis in synergy with CALIPSO and CloudSatAtmos. Chem. Phys., 10, 7197–7214, doi:10.5194/acp-10-7197-2010.
  300. Stuber, N., M. Ponater, and R. Sausen (2005), Why radiative forcing might fail as a predictor of climate changeClimate Dynamics, 24, 497–510.
  301. Su, H., R. W. Read, J. H. Jiang, J. W. Waters, D. L. Wu, and E. J. Fetzer (2006), Enhanced positive water vapor feedback associated with tropical deep convection: New evidence from Aura MLSGeophys. Res. Lett., 33, L05709, doi:10.1029/2005GL025505.
  302. Summers, W. E., R. R. Conway, D. E. Siskind, M. H. Stevens, D. Offermann, M. Riese, P. Preusse, D. F. Strobel, and J. M. Russel III. (1997), Implications of Satellite OH Observations for Middle Atmospheric H2O and OzoneScience, 27, 1967–1970.
  303. Taylor, F. W. (2002), The greenhouse effect and climate change revisitedRep. Prog. Phys., 65, 1–25.
  304. Taylor, F. W. (1991), The greenhouse effect and climate changeRep. Prog. Phys., 54, 881–918.
  305. Thies, B. and J. Bendix (2011), Satellite based remote sensing of weather and climate: recent achievements and future perspectivesMet. Appl., 18, 262–295, doi:10.1002/met.288.
  306. Tjemkes, S. A. and J. Schmetz (1998), Radiative Transfer Simulations for the Thermal Channels of METEOSAT Second Generation, European Organisation for the Exploitation of Meteorological Satellites EUMETSAT.
  307. Tjemkes, S., B. Soden, and J. Schmetz (1998), Report on the First GVaP Workshop on Upper Tropospheric Humidity Measurements and RetrievalsGEWEX News, 8(4).
  308. Tome, A. R. and P. M. A. Miranda (2004), Piecewise linear fitting and trend changing points of climate parametersGeophys. Res. Lett., 31.
  309. Trenberth, K. E., T. R. Karl, and T. W. Spence (2002), The Need for a Systems Approach to Climate ObservationsBull. Amer. Met. Soc., 593–602.
  310. Trenberth, K. E., J. T. Fasullo, and J. Kiehl (2009), Earth's Global Energy BudgetBull. Amer. Met. Soc., 90(3), 311–323, doi:10.1175/2008BAMS2634.1.
  311. Trenberth, Kevin E. and John T. Fasullo (2012), Tracking Earth's Energy: From El Niño to Global WarmingSur. Geophy., 34(3–4), 413–426, doi:10.1007/s10712-011-9150-2.
  312. Udelhofen, P. M. and D. L. Hartmann (1995), Influence of tropical cloud systems on the relative humidity in the upper troposphereJ. Geophys. Res., 100(D4), 7423–7440.
  313. Vaida, V. and J. E. Headrick (2000), Physicochemical Properties of Hydrated Complexes in the Earth's AtmosphereJ. Phys. Chem., 104(23).
  314. Veldman, S. M. and K. Lundahl (1111), Atmosphere and Climate Explorer Plus Looking at the Horizon. Innovative atmospheric sounding using active inter-satellite cross-link signals, Swedish Space Corporation.
  315. Vial, J., J.-L. Defrusne, and S. Bony (2013), On the interpretation of inter-model spread in CMIP5 climate sensitivity estimatesClimate Dynamics, 41(11), 3339–3362, doi:10.1007/s00382-013-1725-9.
  316. Virmani, J. I. and R. H. Weisberg (2004), Relative Humidity over the West Florida Continental Shelf, University of South Florida.
  317. von Storch, H. (1997), Changing waves and storms in the Northeast Atlantic?, Forschungszentrum Karlsruhe, Institute fuer Meteorologie und Klimaforschung.
  318. von Storch, H. and F. W. Zwiers (1999), Statistical Analysis in Climate Research, Cambridge University Press, ISBN 0-521-01230-9.
  319. Wahl, S. and A. Macke (1111), Precipitable Water in Cloudy Area (VS-Plan 7.7), Institute for Marine Research.
  320. Waliser, D. E., J-L. F. Li, C. P. Woods, R. T. Austin, J. Bacmeister, J. Chern, A. Del Genio, J. H. Jiang, Z. Kuang, H. Meng, P. Minnis, S. Platnick, W. B. Rossow, G. L. Stephens, S. Sun-Mack, W-K. Tao, A. M. Tompkins, D. G. Vane, C. Walker, and D. Wu (2009), Cloud ice: A climate model challenge with signs and expectations of progressJ. Geophys. Res., 114, D00A21, doi:10.1029/2008JD010015.
  321. Wang, J., D. J. Carlson, D. B. Parsons, T. F. Hock, D. Lauritsen, H. L. Cole, K. Beierle, and E. Chamberlain (2003), Performance of operational radiosonde humidity sensors in direct comparison with a chilled mirror dew-point hygrometer and its climate implicationGeophys. Res. Lett., 30(16), doi:10.1029/2003GL016985.
  322. Wang, W. C., Y. L. Yung, A. A. Lacis, T. Mo, and J. E. Hansen (1976), Greenhouse Effects due to Man-Made Perturbations of Trace GasesScience, 194, 685-690, doi:10.1126/science.194.4266.685.
  323. Wang, W.-C., X.-Z. Liang, M. P. Dudek, D. Pollard, and S. L. Thompson (1995), Atmospheric ozone as a climate gasAtmos. Res., 37, 247–256.
  324. Wang, J. R. and P. Racette (1998), Airborne Millimeter-wave Radiometric Observations of Cirrus Clouds, Laboratory for Hydrospheric Processes.
  325. Waple, A. M., J. H. Lawrimore, M. S. Halpert, G. D. Bell, W. Higgins, B. Lyon, M. J. Menne, K. L. Gleason, R. C. Schnell, J. R. Christy, W. Thiaw, W. J. Wright, M. J. Salinger, L. Alexander, R. S. Stone, and S. J. Camargo (2002), Climate Assessment for 2001Bull. Amer. Met. Soc., 51–59, 510–561.
  326. Watterson, I. G., M. R. Dix, and R. A. Colman (1999), A comparison of present and doubled CO2 climates and feedbacks simulated by three general circulation modelsJ. Geophys. Res., 104(D2), 1943–1956.
  327. Weisensee, U., F. Beyrich, and J.-P. Leps (1111), Integration of Humidity Fluctuation Sensors into the Lindenberg Boundary Layer Measurement Facilities: Experiments, Problems, and Future Requirements, Meteorological Observatory Lindenberg.
  328. Wendisch, M., P. Pilewskie, J. Pommier, S. Howard, P. Yang, A. J. Heymsfield, C. G. Schmitt, D. Baumgardner, and B. Mayer (2005), Impact of cirrus crystal shape on solar spectral irradiance: a case study for subtropical cirrusJ. Geophys. Res., 110, D03202, doi:10.1029/2004JD005294.
  329. Wentz, F. J. and M. Schabel (1998), Effects of orbital decay on satellite-derived lower-tropospheric temperature trendsNature, 394, 661–664.
  330. Wielicki, B. A., R. D. Cess, M. D. King, D. A. Randall, and E. F. Harrison (1995), Mission to Planet Earth: Role of Clouds and Radiation in ClimateBull. Amer. Met. Soc., 76(11), 2125–2153.
  331. Wielicki, B. A. (1996), Clouds and the Earth's Radiant Energy System (CERES): An Earth observing experimentBull. Amer. Met. Soc., 77, 853–872.
  332. Wilheit, T. T. (1997), Water vapour profile retrieval from SSMT-2 data constrained by infrared-based cloud parametersInt. J. Remote Sensing, 18(15), 3263–3277.
  333. Intergovernmental Panel on Climate Change (2007), Fourth Assessment Report: Climate Change 2007: The AR4 Synthesis Report, Geneva: IPCC.
  334. Woelfli, W. and W. Baltensperger (1999), A possible explanation for Earth's climatic changes in the past few million years, Institute for Particle Physics.
  335. Woods, T. N. and J. Lean (2007), Anticipating the Next Decade of Sun-Earth System VariationsEos, 88(44).
  336. Wordsworth, R. and R. Pierrehumbert (2013), Hydrogen-Nitrogen Greenhouse Warming in Earth's Early AtmosphereScience, 339(6115), 64–67, doi:10.1126/science.1225759.
  337. Yang, S. S. and T. H. Song (2000), Error analysis of spectral remote sensing by CO2 4.3μm band in various temperatures profilesJ. Quant. Spectrosc. Radiat. Transfer, 66, 327–341.
  338. Yu, R., M. Zhang, and R. D. Cess (1999), Analysis of the atmospheric energy budget: A consistency study of available data setsJ. Geophys. Res., 108(D8), 9655–9661.
  339. Zerefos, C., K. Eleftheratos, D. Balis, P. Zanis, G. Tselioudis, and C. Meleti (2003), Evidence of impact of aviation on cirrus cloud formationAtmos. Chem. Phys., 3, 1633–1644, doi:10.5194/acp-3-1633-2003.
  340. Zhang, C. (2005), Madden-Julian OscillationRev. Geophys., 43.
  341. Zou, C.-Z., M. D. Goldberg, Z. Cheng, N. C. Grody, J. T. Sullivan, and D. Tarpley (2006), Recalibration of microwave sounding unit for climate studies using simultaneous nadir overpasseJ. Geophys. Res., 111, D19114, doi:10.1029/2005JD006798.